B Notes

B.1 Notes to Sec. 3 on quark masses

Collab.	Ref.	N_f	a [fm]	Description
MILC 18	[1]	2+1+1	0.04, 0.06, 0.09, 0.12, 0.15	Scale set from f_{π} .
HPQCD 18	[2]	2+1+1	0.06, 0.09, 0.12	Scale set from w_0 (and f_{π}).
FNAL/MILC/TUMQCD 18	[3]	2+1+1	0.03, 0.042, 0.06, 0.09, 0.12, 0.15	Scale set from f_{π} .
FNAL/MILC 17	[4]	2+1+1	0.03, 0.042, 0.06, 0.09, 0.12, 0.15	Scale set from f_{π} .
RM123 17	[5]	2+1+1	0.062, 0.082, 0.089	cf. ETM 14

Table 79: Continuum extrapolations/estimation of lattice artifacts in determinations of m_{ud} , m_s and, in some cases m_u and m_d , with $N_f = 2 + 1 + 1$ quark flavours.

Collab.	Ref.	N_f	$a~[{ m fm}]$	Description
BMW 16	[6]	2+1	0.05, 0.06, 0.07, 0.09, 0.11	Scale set through M_{Ω} and M_{Ξ} .
MILC 16	[7]	2+1	0.045, 0.06, 0.09, 0.12	Scale set through f_{π} .

Table 80: Continuum extrapolations/estimation of lattice artifacts in determinations of m_{ud} , m_s and, in some cases m_u and m_d , with $N_f = 2 + 1$ quark flavours.

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} \; [\mathrm{MeV}]$	Description
MILC 18	[1]	2+1+1	130 MeV	m_u-m_d obtained from $\hat{M}_{K^+}-\hat{M}_{K^0}$ extrapolated to physical masses. EM contributions are subtracted using ϵ from a dedicated $N_f=2+1$ QCD+QED calculation.
FNAL/MILC/TUMQCD 1	18 [3]	2+1+1	$130~{ m MeV}$	Mass extrapolation done through a general fit function which combines HQET and χPT terms.
FNAL/MILC 17	[4]	2+1+1	$130~{ m MeV}$	Mass extrapolation done through a general fit function which combines HQET and χPT terms.
RM123 17	[5]	2+1+1	223 MeV	Mass extrapolation done through $SU(2)$ χ PT plus polynomial corrections.
HPQCD 18	[2]	2+1+1	130 MeV	Fits include sea-quark mass tunings. Bare m_s set from $\bar{s}s$ meson.

Table 81: Chiral extrapolation/minimum pion mass in determinations of m_{ud} , m_s and, in some cases, m_u and m_d , with $N_f = 2 + 1 + 1$ quark flavours.

Collab.	Ref.	N_f	$L [\mathrm{fm}]$	$M_{\pi, \min} L$	Description
MILC 18	[1]	2+1+1	4.83 - 6.12	3.2	Universal QED _{TL} FV effects subtracted and higher order model using $S\chi PT$ for the $N_f=2+1$ calculation of ϵ .
HPQCD 18	[2]	2+1+1	2.88 - 5.76	3.8	Finite-volume effects negligible for strange-quark mass.
FNAL/MILC/TUMQCD	18 [<mark>3</mark>]	2+1+1	2.4 - 6.12	3.2	Corrections using NNLO χ PT.
FNAL/MILC 17	[4]	2+1+1	2.4 - 6.12	3.2	Corrections using $S\chi PT$ and systematic error estimation using the difference with χPT .
RM123 17	[5]	2+1+1	2.0 - 3.0	$2.7_{\pi^0} \ (3.3_{\pi^{\pm}})$	Universal QED _L FV effects subtracted and $O(1/L^3)$ fitted. χ PT inspired fit for the exponential effects.

Table 82: Finite-volume effects in determinations of m_{ud} , m_s and, in some cases m_u and m_d , with $N_f = 2 + 1 + 1$ quark flavours.

Collab.	Ref.	N_f	L [fm]	$M_{\pi, \min} L$	Description
BMW 16	[6]	2+1	$\gtrsim 5.0$	$\gtrsim 4.0$	Universal QED _{TL} FV effects subtracted and $O(1/L^3)$ fitted.
MILC 16	[7]	2+1	1.4 - 5.5	2.7	Universal QED _{TL} FV effects subtracted and higher order model using $S\chi PT$.

Table 83: Finite-volume effects in determinations of m_{ud} , m_s and, in some cases m_u and m_d , with $N_f=2+1$ quark flavours.

Collab.	Ref.	N_f	Description
MILC 18	[1]	2+1+1	Renormalization not required for m_u/m_d .
FNAL/MILC/TUMQCD 18	[3]	2+1+1	MRS scheme from [8].
FNAL/MILC 17	[4]	2+1+1	Renormalization not required for quark mass ratios.
HPQCD 18	[2]	2+1+1	Nonperturbative renormalization (RI/SMOM).
RM123 17	[5]	2+1+1	Nonperturbative renormalization (RI/MOM).

Table 84: Renormalization in determinations of m_{ud} , m_s and, in some cases m_u and m_d , with $N_f = 2 + 1 + 1$ quark flavours.

Collab.	Ref.	N_f	Description
BMW 16	[6]	2+1	Nonperturbative renormalization (tree-level improved RI-MOM), nonperturbative running.
MILC 16	[7]	2+1	Renormalization not required for m_u/m_d .

Table 85: Renormalization in determinations of m_{ud} , m_s and, in some cases m_u and m_d , with $N_f=2+1$ quark flavours.

Collab.	Ref.	N_f	a [fm]	Description
HPQCD 18	[2]	2+1+1	0.06, 0.09, 0.12	Scale set from w_0 and f_{π} . HISQ action for charm quarks.
FNAL/MILC/TUMQCD 18	[3]	2+1+1	0.03, 0.042, 0.06, 0.09, 0.12, 0.15	Scale set from f_{π} . HISQ action for charm quarks.

Table 86: Continuum extrapolations/estimation of lattice artifacts in the determinations of m_c with $N_f = 2 + 1 + 1$ quark flavours.

Maezawa 16	[9]	2+1	0.04 to 0.14 fm	HISQ action for the charm quark. Scale set from r_1 parameter of heavy quark potential.
JLQCD 16	[10]	2+1	0.044, 0.055. 0.083	Möbius domain wall fermions.

Table 87: Continuum extrapolations/estimation of lattice artifacts in the determinations of m_c with $N_f = 2 + 1$ quark flavours.

Collab.	Ref.	N_f	$M_{\pi, \min}$ [MeV]	Description
HPQCD 18	[2]	2+1+1	$130~{ m MeV}$	Fits include sea quark mass tunings. m_c set from η_c meson.
FNAL/MILC/TUMQCD 18	[3]	2+1+1	$130 \ (173_{RMS})$	

Table 88: Chiral extrapolation/minimum pion mass in the determinations of m_c with $N_f = 2 + 1 + 1$ quark flavours.

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} \; [\mathrm{MeV}]$	Description
Maezawa 16	[9]	2+1	160	
JLQCD 16	[10]	2+1	230	

Table 89: Chiral extrapolation/minimum pion mass in the determinations of m_c with $N_f = 2 + 1$ quark flavours.

Collab.	Ref.	N_f	L [fm]	$M_{\pi,\min}L$	Description
HPQCD 18	[2]	2+1+1	2.88 - 5.76	3.8	Finite-volume effects negligible for charm-quark mass.
FNAL/MILC/TUMQCD 18	[3]	2+1+1	2.89 - 6.12	3.7	

Table 90: Finite-volume effects in the determinations of m_c with $N_f=2+1+1$ quark flavours.

Collab.	Ref.	N_f	L [fm]	$M_{\pi, \mathrm{min}} L$	Description
Maezawa 16	[9]	2+1	2.6 - 5.2	4.2	
JLQCD 16	[10]	2+1	2.6 - 2.8	4.4	

Table 91: Finite-volume effects in the determinations of m_c with $N_f = 2 + 1$ quark flavours.

Collab.	Ref.	N_f	Description
HPQCD 18	[2]	2+1+1	Nonperturbative renormalization (RI/SMOM).
FNAL/MILC/TUMQCD 18	[3]	2+1+1	Renormalization not required.

Table 92: Renormalization in the determinations of m_c with $N_f=2+1+1$ quark flavours.

Collab.	Ref.	N_f	Description
Maezawa 16	[9]	2+1	Renormalization not required.
JLQCD 16	[10]	2+1	Renormalization not required.

Table 93: Renormalization in the determinations of m_c with $N_f=2+1$ quark flavours.

Collab.	Ref.	N_f	a [fm]	Description
FNAL/MILC/TUMQCD 1	.8 [3]	2+1+1	0.03, 0.042, 0.06, 0.09, 0.12, 0.15	Scale set from f_{π} . HISQ action for charm quarks.
Gambino 17	[11]	2+1+1	0.062, 0.082, 0.089	Scale set from f_{π^+}
ETM 16B	[12]	2+1+1	0.0619, 0.0815, 0.0885	Scale set from f_{π}

Table 94: Continuum extrapolations/estimation of lattice artifacts in the determinations of m_b with $N_f = 2 + 1 + 1$ quark flavours.

Collab.	Ref.	N_f	a [fm]	Description
Maezawa 16	[9]	2+1	0.04 to 0.14 fm	HISQ action for the charm quark. Scale set from r_1 parameter of heavy quark potential.

Table 95: Continuum extrapolations/estimation of lattice artifacts in the determinations of m_b with $N_f = 2 + 1$ quark flavours.

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} \; [\mathrm{MeV}]$
FNAL/MILC/TUMQCD 18	[3]	2+1+1	$130 \ (173_{RMS})$
Gambino 17	[11]	2+1+1	210
ETM 16B	[12]	2+1+1	210

Table 96: Chiral extrapolation/minimum pion mass in the determinations of m_b with $N_f = 2 + 1 + 1$ quark flavours.

Collab.	Ref.	N_f	$M_{\pi, { m min}} \; [{ m MeV}]$
Maezawa 16	[9]	2+1	160

Table 97: Chiral extrapolation/minimum pion mass in the determinations of m_b with $N_f = 2 + 1$ quark flavours.

Collab.	Ref.	N_f	L [fm]	$M_{\pi, \min} L$
FNAL/MILC/TUMQCD 18	[3]	2+1+1	2.89 - 6.12	3.7
Gambino 17	[11]	2+1+1	$2.7_{\pi^0} \ (3.3_{\pi^\pm})$	
ETM 16B	[12]	2+1+1	$2.7_{\pi^0} \ (3.3_{\pi^\pm})$	

Table 98: Finite-volume effects in the determinations of m_b with $N_f=2+1+1$ quark flavours.

Collab.	Ref.	N_f	$L~[{ m fm}]$	$M_{\pi, \min} L$
Maezawa 16	[9]	2+1	2.6 - 5.2	4.2

Table 99: Finite-volume effects in the determinations of m_b with $N_f=2+1$ quark flavours.

Collab.	Ref.	N_f	Description
FNAL/MILC/TUMQCD 18	[3]	2+1+1	Renormalization not required.
Gambino 17	[11]	2+1+1	Nonperturbative renormalization (RI/MOM).
ETM 16B	[12]	2+1+1	Nonperturbative renormalization (RI/MOM).

Table 100: Lattice renormalization in the determinations of m_b with $N_f=2+1+1$ flavours.

Collab.	Ref.	N_f	Description
Maezawa 16	[9]	2+1	Renormalization not required.

Table 101: Lattice renormalization in the determinations of m_b with $N_f=2+1$ flavours.

B.2 Notes to Sec. 4 on $|V_{ud}|$ and $|V_{us}|$

Collab.	Ref.	N_f	a [fm]	Description
ETM 16	[13]	2+1+1	0.062, 0.082, 0.089	Scale set through f_{π} . Automatic $\mathcal{O}(a)$ improvement.

Table 102: Continuum extrapolations/estimation of lattice artifacts in the determinations of $f_{+}(0)$.

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} \; [\mathrm{MeV}]$	Description
ETM 16	[13]	2+1+1	$180_{\pi^0}(220_{\pi^\pm})$	Chiral extrapolation performed through $SU(2)$ or $SU(3)$ χPT .

Table 103: Chiral extrapolation/minimum pion mass in determinations of $f_+(0)$. The subscripts RMS and $\pi, 5$ in the case of staggered fermions indicate the root-mean-square mass and the Nambu-Goldstone boson mass, respectively. In the case of twisted-mass fermions π^0 and π^{\pm} indicate the neutral and charged pion mass where applicable.

Collab.	Ref.	N_f	L [fm]	$M_{\pi, \min} L$	Description
ETM 16	[13]	2+1+1	2.0-3.0	$2.7_{\pi^0}(3.3_{\pi^{\pm}})$	FSE observed only in the slopes of the vector and scalar form factors.

Table 104: Finite-volume effects in determinations of $f_+(0)$. The subscripts RMS and $\pi, 5$ in the case of staggered fermions indicate the root-mean-square mass and the Nambu-Goldstone boson mass, respectively. In the case of twisted-mass fermions π^0 and π^{\pm} indicate the neutral and charged pion mass where applicable.

Collab.	Ref.	N_f	$a~[{ m fm}]$	Description
FNAL/MIL	C 17 [4]	2+1+1	0.03, 0.042, 0.06, 0.09, 0.12, 0.15	HISQ action for both valence and sea quarks. Absolute scale though f_{π} .

Table 105: Continuum extrapolations/estimation of lattice artifacts in determinations of f_K/f_{π} for $N_f = 2 + 1 + 1$ simulations.

Collab.	Ref.	N_f	a [fm]	Description
QCDSF/UKQCI	O 16 [14]	2+1	0.059, 0.068, 0.074, 0.082	Scale set through M_N . Nonperturbative $\mathcal{O}(a)$ clover improvement.
Dürr 16	[15, 16]	2+1	0.054, 0.065, 0.077, 0.092, 0.12	Scale set through M_{Ω} . Perturbative $\mathcal{O}(a)$ -improvement.

Table 106: Continuum extrapolations/estimation of lattice artifacts in determinations of f_K/f_{π} for $N_f = 2 + 1$ simulations.

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} \; [\mathrm{MeV}]$	Description
FNAL/MILC 17	[4]	2+1+1	$143_{\rm RMS}(128_{\pi,5})$	Linear interpolation to physical point. The lightest RMS mass is from the $a=0.06$ fm ensemble and the lightest Nambu-Goldstone mass is from the $a=0.09$ fm ensemble.

Table 107: Chiral extrapolation/minimum pion mass in determinations of f_K/f_{π} for $N_f = 2+1+1$ simulations. The subscripts RMS and $\pi, 5$ in the case of staggered fermions indicate the root-mean-square mass and the Nambu-Goldstone boson mass. In the case of twisted-mass fermions π^0 and π^{\pm} indicate the neutral and charged pion mass and, where applicable, "val" and "sea" indicate valence and sea pion masses.

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} \; [\mathrm{MeV}]$	Description
QCDSF/UKQCD 16	[14]	2+1	220	Expansion around the $SU(3)$ symmetric point $m_u = m_d = m_s = (m_u + m_d + m_s)^{phys}/3$.
Dürr 16	[15, 16]	2+1	130	Comparison between $SU(3)$ χ PT and polynomial fit-ansätze.

Table 108: Chiral extrapolation/minimum pion mass in determinations of f_K/f_{π} for $N_f=2+1$ simulations. The subscripts RMS and π , 5 in the case of staggered fermions indicate the root-mean-square mass and the Nambu-Goldstone boson mass. In the case of twisted-mass fermions π^0 and π^{\pm} indicate the neutral and charged pion mass and where applicable, "val" and "sea" indicate valence and sea pion masses.

Collab.	Ref.	N_f	L [fm]	$M_{\pi,\min}L$	Description
FNAL/MILC 17	[4]	2+1+1	2.4-6.1	$3.9_{\rm RMS}(3.7_{\pi,5})$	

Table 109: Finite-volume effects in determinations of f_K/f_π for $N_f=2+1+1$. The subscripts RMS and $\pi,5$ in the case of staggered fermions indicate the root-mean-square mass and the Nambu-Goldstone boson mass. In the case of twisted-mass fermions π^0 and π^\pm indicate the neutral and charged pion mass and where applicable, "val" and "sea" indicate valence and sea pion masses.

S. Aoki et al. FLAG Review 2019 1902.08191

Collab.	Ref.	N_f	L [fm]	$M_{\pi,\min}L$	Description
QCDSF/UKQCD 16	[14]	2+1	2.0-2.8	3.0	
Dürr 16	[15, 16]	2+1	1.5–5.5	3.85	Various volumes for comparison and corrections for FSE from NLO χ PT with re-fitted coefficients.

Table 110: Finite-volume effects in determinations of f_K/f_π for $N_f=2+1$ and $N_f=2$. The subscripts RMS and $\pi,5$ in the case of staggered fermions indicate the root-mean-square mass and the Nambu-Goldstone boson mass. In the case of twisted-mass fermions π^0 and π^{\pm} indicate the neutral and charged pion mass and where applicable, "val" and "sea" indicate valence and sea pion masses.

B.3 Notes to Sec. 5 on low-energy constants

Collab.	Ref.	N_f	$a \text{ [fm] (or } a^{-1} \text{ [GeV])}$	Lattices shared with
ETM 17E, 15E	[17, 18]	2+1+1	0.0619,0.0815,0.0885	
Fu 17	[19]	2+1	0.06, 0.09	
JLQCD 16B, 17A	[21, 46]	2+1	2.453(4), 3.610(9), 4.496(9)	
Boito 15	[22]	2+1	1.379, 1.785	RBC/UKQCD 12
PACS-CS 13	[23]	2+1	0.09	
Fu 13	[24]	2+1	0.118,0.144	
Fu 11	[25]	2+1	0.15	
NPLQCD 11A	[26]	2+1	0.123	
NPLQCD 05, 06, 07	[27-29]	2+1	0.125	

Table 111: Continuum extrapolations/estimation of lattice artifacts in $N_f = 2 + 1 + 1$ and 2 + 1 determinations of the low-energy constants.

Collab.	Ref.	N_f	a [fm]	Lattices shared with
ETM 17F	[30]	2	0.0914	
ETM 16C	[31]	2	0.0931(2)	
Yagi 11	[32]	2	0.1184(3)(17)(12)	
ETM 09G	[33]	2	0.067,0.086	
CP-PACS 04	[34]	2	0.11,0.16,0.22	

Table 112: Continuum extrapolations/estimation of lattice artifacts in $N_f = 2$ determinations of the low-energy constants.

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} \; [\mathrm{MeV}]$	Description
ETM 17E	[17]	2+1+1	211	
ETM 15E	[18]	2+1+1	245	

Table 113: Chiral extrapolation/minimum pion mass in $N_f = 2 + 1 + 1$ determinations of the low-energy constants.

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} \; [\mathrm{MeV}]$	Description
Fu 17	[19]	2+1	329	
JLQCD 16B, 17A	[21, 46]	2+1	225.8(0.3)	
Boito 15	[22]	2+1	172	
PACS-CS 13	[23]	2+1	166	
Fu 13	[24]	2+1	456	
Fu 11	[25]	2+1	590	
NPLQCD 11A	[26]	2+1	390	
NPLQCD 05, 06, 07	[27-29]	2+1	488	

Table 114: Chiral extrapolation/minimum pion mass in 2+1 determinations of the low-energy constants.

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} \; [\mathrm{MeV}]$	Description
ETM 16C, 17F	[30, 31]	2	phys.val.	
Yagi 11	[32]	2	286	
ETM 09G	[33]	2	270	
CP-PACS 04	[34]	2	500	

Table 115: Chiral extrapolation/minimum pion mass in $N_f=2$ determinations of the low-energy constants.

Collab.	Ref.	N_f	$L \text{ at } M_{\pi,\min}[\text{fm}]$	$M_{\pi,\min}L$ +2 ln(200MeV/ $M_{\pi,\min}$)	#V
ETM 17E	[17]	2+1+1	2.97	3.0687	1
ETM 15E	[18]	2+1+1	2.83	3.1078	3

Table 116: Finite-volume effects in $N_f=2+1+1$ determinations of the low-energy constants.

Collab.	Ref.	N_f	L at $M_{\pi,\min}[\mathrm{fm}]$	$M_{\pi,\min}L$ +2 ln(200MeV/ $M_{\pi,\min}$)	#V
Fu 17	[19]	2+1	3.4	4.6733	1
JLQCD 16B, 17A	[21, 46]	2+1	3.86	4.1743	2
Boito 15	[22]	2+1	4.579	4.2929	1
PACS-CS 13	[23]	2+1	2.9	2.8123	1
Fu 13	[24]	2+1	2.88	5.0070	1
Fu 11	[25]	2+1	2.4	5.0123	1
NPLQCD 11A	[26]	2+1	3.9	6.3724	4
NPLQCD 05, 06, 07	[27-29]	2+1	2.5	2.9484	1

Table 117: Finite-volume effects in $N_f=2+1+1$ and 2+1 determinations of the low-energy constants.

Collab.	Ref.	N_f	$L [{ m fm}]$	$M_{\pi,\min}L$ +2 ln(200MeV/ $M_{\pi,\min}$)	#V
ETM 17F	[30]	2	5.8	4.7541	4
ETM 16C	[31]	2	4.47	5.2169	1
Yagi 11	[32]	2	1.9	2.0385	1
ETM 09G	[33]	2	2.7	3.0942	1
CP-PACS 04	[34]	2	2.6	4.7555	1

Table 118: Finite-volume effects in $N_f=2$ determinations of the low-energy constants.

Collab.	Ref.	N_f	Description
ETM 17E	[17]	2+1+1	Nonperturbative
JLQCD 16B, 17A	[21, 46]	2+1	Nonperturbative
Others		2+1, 2+1+1	not needed
All collaborations		2	nonperturbative or not needed

Table 119: Renormalization in determinations of the low-energy constants.

B.4 Notes to Sec. 6 on kaon mixing

B.4.1 Kaon *B*-parameter B_K

Collab.	Ref.	N_f	a [fm]	Description
RBC/UKQCD 16	[35]	2+1	0.111, 0.083	Systematic uncertainty of 1.3% obtained from half the difference between the results on the fine lattice spacing and the continuum limit.

Table 120: Continuum extrapolations/estimation of lattice artifacts in determinations of B_K with $N_f = 2 + 1$ quark flavours.

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} \left[\mathrm{MeV} ight]$	Description
RBC/UKQCD 16	[35]	2+1	337, 302	Chiral extrapolations based on polynomial and $SU(2)$ - χ PT fits at NLO. A systematic uncertainty of 0.4% is quoted, which is half the difference between the two results.

Table 121: Chiral extrapolation/minimum pion mass in determinations of B_K with $N_f = 2+1$ quark flavours.

Collab.	Ref.	N_f	L [fm]	$M_{\pi, \min} L$	Description
RBC/UKQCD 16	[35]	2+1	2.7, 2.7	4.5, 4.0	Finite-volume effects are found to be negligible compared to the systematic errors and are thus omitted in the final error budget.

Table 122: Finite-volume effects in determinations of B_K . If partially-quenched fits are used, the quoted $M_{\pi,\min}L$ is for lightest valence (RMS) pion with $N_f = 2 + 1$ quark flavours.

Collab.	Ref.	N_f	Ren.	running match.	Description
RBC/UKQCD 16	[35]	2+1	RI	PT1ℓ	Two different RI-SMOM schemes used to estimate 2% systematic error in conversion to $\overline{\rm MS}$.

Table 123: Running and matching in determinations of B_K with $N_f = 2 + 1$.

B.4.2 Kaon BSM B-parameters

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} \left[\mathrm{MeV} \right]$	Description
RBC/UKQCD 16	[35]	2+1	0.111, 0.083	Systematic uncertainty of 1.3% obtained from half the difference between the results on the fine lattice spacing and the continuum limit.

Table 124: Continuum extrapolations/estimation of lattice artifacts in determinations of the BSM B_i parameters with $N_f = 2 + 1$.

Collab.	Ref.	N_f	$M_{\pi, \min} [\mathrm{MeV}]$	Description
RBC/UKQCD 16	[35]	2+1	337, 302	Chiral extrapolations based on polynomial and $SU(2)$ - χ PT fits at NLO. A systematic uncertainty of 0.4% is quoted, which is half the difference between the two results.

Table 125: Chiral extrapolation/minimum pion mass in determinations of the BSM B_i parameters with $N_f = 2 + 1$.

Collab.	Ref.	N_f	L [fm]	$M_{\pi, \min} L$	Description
RBC/UKQCD 16	[35]	2+1	2.7, 2.7	4.5, 4.0	Finite-volume effects are found to be negligible compared to system- atic errors and are thus omitted in the final error budget.

Table 126: Finite-volume effects in determinations of the BSM B_i parameters with $N_f = 2+1$. If partially-quenched fits are used, the quoted $M_{\pi,\min}L$ is for lightest valence (RMS) pion.

Collab.	Ref.	N_f	Ren.	running match.	Description
RBC/UKQCD 16	[35]	2+1	RI	PT1ℓ	Two different RI-SMOM schemes used to estimate systematic error in conversion to $\overline{\rm MS}$, which varies from 1–4%, depending on the four-quark operator.

Table 127: Running and matching in determinations of the BSM B_i parameters with $N_f = 2 + 1$.

B.5 Notes to Sec. 7 on *D*-meson decay constants and form factors

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} \left[\mathrm{MeV} \right]$	Description
FNAL/MILC 17	[4]	2+1+1	311, 241, 173, 143, 134, 309	Analyses are performed by using $\mathrm{HMrAS}\chi\mathrm{PT}$ formulae (complete 1-loop plus higher order analytic terms) to include heavier than physical masses and nonunitary points. In total 492 points and 60 parmeters are included in the continuum/chiral/heavy-mass fit.

Table 128: Chiral extrapolation/minimum pion mass in $N_f = 2 + 1 + 1$ determinations of the D- and D_s -meson decay constants. For actions with multiple species of pions, masses quoted are the RMS pion masses. The different $M_{\pi, \text{min}}$ entries correspond to the different lattice spacings.

Collab.	Ref.	N_f	$M_{\pi, \min} [\mathrm{MeV}]$	Description
RBC/UKQCD 17	[36]	2+1	139, 139, 234	The lattice spacing, pion-mass and charm-quark mass dependences are fit simultaneously through a Taylor expansion in a^2 , $(m_\pi^2 - m_\pi^{2phys})$ and $1/m_H - 1/m_{D_{(s)}}$.

Table 129: Chiral extrapolation/minimum pion mass in $N_f = 2 + 1$ determinations of the D- and D_s -meson decay constants. For actions with multiple species of pions, masses quoted are the RMS pion masses. The different $M_{\pi, \text{min}}$ entries correspond to the different lattice spacings.

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} \left[\mathrm{MeV} \right]$	Description
Blossier 18	[37]	2	194, 269	Linear fits (in m_{π}^2 and in a^2) are used in the combined chiral/continuum extrapolation. NLO HM χ PT expressions are used for a cross-check, concluding however that there are not enough data points to be sensitive to the NLO terms.

Table 130: Chiral extrapolation/minimum pion mass in $N_f = 2$ determinations of the D- and D_s -meson decay constants. For actions with multiple species of pions, masses quoted are the RMS pion masses. The different $M_{\pi,\text{min}}$ entries correspond to the different lattice spacings.

Collab.	Ref.	N_f	$L [{ m fm}]$	$M_{\pi, \mathrm{min}} L$	Description
FNAL/MILC 17	[4]	2+1+1	2.38-4.83, 2.90-5.82, 2.95-5.62, 2.94-5.44, 2.9-6.1, 3.1	3.2, 3.9, 3.7, 3.7, 4.2, 4.8	3 values of L (2.9, 3.9 and 4.9 fm) at $m_{\pi}=220$ MeV and $a=0.12$ fm. In addition FSE are estimated by performing the fits with and without finite-volume correction terms as computed at NLO in staggered χPT .

Table 131: Finite-volume effects in $N_f = 2 + 1 + 1$ determinations of the D- and D_s -meson decay constants. Each L-entry corresponds to a different lattice spacing, with multiple spatial volumes at some lattice spacings. For actions with multiple species of pions, the lightest masses are quoted.

Collab.	Ref.	N_f	$L [{ m fm}]$	$M_{\pi, \min} L$	Description
RBC/UKQC	D 17 [36]	2+1	5.5/2.7, 5.4/2.7, 3.4	3.86, 3.78, 4.05	FV errors estimated to be below 0.3% by comparing values of $m_{\pi}L$ to the study of FSE by MILC in [38].

Table 132: Finite-volume effects in $N_f = 2 + 1$ determinations of the D- and D_s -meson decay constants. Each L-entry corresponds to a different lattice spacing, with multiple spatial volumes at some lattice spacings. For actions with multiple species of pions, the lightest masses are quoted.

Collab.	Ref.	N_f	$L [\mathrm{fm}]$	$M_{\pi, \min} L$	Description
Blossier 18	[37]	2	2.1/3.1/4.2, 2.3/3.1	4.1, 4.2	No explicit discussion of FV effects, but $m_{\pi}L > 4$ always.

Table 133: Finite-volume effects in $N_f = 2$ determinations of the D- and D_s -meson decay constants. Each L-entry corresponds to a different lattice spacing, with multiple spatial volumes at some lattice spacings. For actions with multiple species of pions, the lightest masses are quoted.

Collab.	Ref.	N_f	a [fm]	Continuum extrapolation	Scale Setting
FNAL/MILC 17	[4]	2+1+1	0.15, 0.12, 0.09, 0.06, 0.042, 0.032	See FNAL/MILC 14A.	See FNAL/MILC 14A.

Table 134: Lattice spacings and description of actions used in $N_f = 2 + 1 + 1$ determinations of the D- and D_s -meson decay constants.

Collab.	Ref.	N_f	a [fm]	Continuum extrapolation	Scale Setting
SRAGAVERAD 17	[36]	2+1	0.11 <i>FLA</i> 0.08, 0.07	G The vietting Off pacing, pionmass and charm-quark mass dependences are fit simultaneously through a Taylor expansion in a^2 , $(m_\pi^2 - m_\pi^{2phys})$ and $1/m_H - 1/m_{D_{(s)}}$.	The lattice 902 le 00191 physical light-quark masses have been determined using m_{π} , m_{K} and m_{Ω} as inputs.

Table 135: Lattice spacings and description of actions used in $N_f = 2 + 1$ determinations of the D- and D_s -meson decay constants.

Collab.	Ref.	N_f	a [fm]	Continuum extrapolation	Scale Setting
Blossier 18	[37]	2	0.065, 0.048	Linear fits (in m_{π}^2 and in a^2) are used in the combined chiral/continuum extrapolation.	Scale set through f_K .

Table 136: Lattice spacings and description of actions used in $N_f = 2$ determinations of the D- and D_s -meson decay constants.

Collab.	Ref.	N_f	Ren.	Description
FNAL/MILC	17 [4]	2+1+1	-	The axial current is absolutely normalized.

Table 137: Operator renormalization in $N_f = 2+1+1$ determinations of the D- and D_s -meson decay constants.

Collab.	Ref.	N_f	Ren.	Description
RBC/UKQCD 17	[36]	2+1	mNPR	The local current is renormalized nonperturbatively for the case of the unmixed action, however in the actual computation the domain wall height is chosen differently in the valence than in the sea and the effect of that on the renormalization constant is estimated to be 0.4% through a study in the RI/SMOM scheme.

Table 138: Operator renormalization in $N_f=2+1$ determinations of the D- and D_s -meson decay constants.

Collab.	Ref.	N_f	Ren.	Description
Blossier 18	[37]	2	SF	NP renormalization and improvement of the axial current (am terms included at 1-loop).

Table 139: Operator renormalization in $N_f=2$ determinations of the D- and D_s -meson decay constants.

Collab.	Ref.	N_f	Action	Description
FNAL/MILC 17	[4]	2+1+1	HISQ (on HISQ)	$0.11 < am_c < 0.84$. Discretization errors estimated to be within the statistical errors by repeating the fits including the coarsest lattice spacing (0.15 fm) or excluding the finest (0.032 fm).

Table 140: Heavy-quark treatment in $N_f=2+1+1$ determinations of the *D*-and D_s -meson decay constants.

Collab.	Ref.	N_f	Action	Description
RBC/UKQCD 17	[36]	2+1	Möbius-DWF on Shamir- DWF or Möbius-DWF	$0.18 < am_h < 0.4$. Discretization errors estimated using different ways to define the charm quark mass (through D, D_s or η_c) in the global fits.

Table 141: Heavy-quark treatment in $N_f=2+1$ determinations of the D- and D_s -meson decay constants.

Collab.	Ref.	N_f	Action	Description
Blossier 18	[37]	2	npSW	$am_c \leq 0.28$. Axial current nonperturbatively improved (O(am) at 1-loop).

Table 142: Heavy-quark treatment in $N_f=2$ determinations of the D- and D_s -meson decay constants.

B.5.1 Form factors for semileptonic decays of charmed hadrons

Collab. Ref	N_f	a [fm]	Continuum extrapolation	Scale setting
ETM 17D, 18 [39,	0] 2+1+1	0.062, 0.082, 0.089	Modified z-expansion fit combining the continuum and chiral extrapolations and the momentum-transfer dependence. Lattice-spacing dependence through $\mathcal{O}(a^2)$, with systematic uncertainty estimated by adding $\mathcal{O}(a^4)$ terms constrained by priors. Additional terms included to fit artifacts due to the breaking of rotational invariance. Meson momenta tuned to be constant with changing lattice spacing and volume.	Relative scale set through $M_{c's'}$, the mass of a fictitious meson made of valence quarks of mass $r_0 m_{s'} = 0.22$ and $r_0 m_{c'} = 2.4$. Absolute scale from the experimental value of f_{π} .

Table 143: Continuum extrapolations/estimation of lattice artifacts in $N_f = 2 + 1 + 1$ determinations of form factors for semileptonic decays of charmed hadrons.

Collab.	Ref.	N_f	a [fm]	Continuum extrapolation	Scale setting
JLQCD 17B	[41]	2+1	0.044, 0.055, 0.080	Joint chiral-continuum extrapolation, with mass dependence based on hard-pion $HQ\chi PT$.	Set from t_0 by using the value in physical units provided in [42].
Meinel 16	[43]	2+1	0.085, 0.11	Joint chiral-continuum extrapolation, combined with fit to q^2 -dependence of form factors in a "modified" z -expansion. Systematics estimated by varying fit form and $\mathcal{O}(a)$ improvement parameter values.	Set from $\Upsilon(2S)$ – $\Upsilon(1S)$ splitting, cf. [44].

Table 144: Continuum extrapolations/estimation of lattice artifacts in $N_f = 2 + 1$ determinations of form factors for semileptonic decays of charmed hadrons.

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} \left[\mathrm{MeV} \right]$	Description
ETM 17D, 18	[39, 40]	2+1+1	220, 258, 275	Modified z-expansion fit combining the continuum and chiral extrapolations and the momentum-transfer dependence. Chiral log term in vector and scalar form factors set to hard-pion χ PT prediction [45]. Systematic uncertainty in tensor form factor estimated by comparing fits with and without chiral log terms.
JLQCD 17B	[41]	2+1	284, 296, 226	Joint chiral-continuum extrapolation, with mass dependence based on hard-pion $HQ\chi PT$.
Meinel 16	[43]	2+1	295, 139	Modified z-expansion fit combining the continuum and chiral extrapolations and the momentum-transfer dependence. Analytic function in m_{π} , m_{η_s} used for mass dependence. (η_s stands for a nonsinglet meson with two mass-degenerate valence quarks of mass m_s , used to set the strange scale.

Table 145: Chiral extrapolation/minimum pion mass in determinations of form factors for semileptonic decays of charmed hadrons. For actions with multiple species of pions, masses quoted are the RMS pion masses. The different $M_{\pi, \text{min}}$ entries correspond to the different lattice spacings.

Collab.	Ref.	N_f	L [fm]	$M_{\pi, \mathrm{min}} L$	Description
ETM 17D, 18	[39, 40]	2+1+1	2.97, 1.96/2.61, 2.13/2.84	3.31, 3.42, 3.49	Extrapolation to infinite volume performed by including term $\propto e^{-M_{\pi}L}/(M_{\pi}L)$ in global fit.
JLQCD 17B	[41]	2+1	2.8, 2.6, 2.6/3.9	4.0, 3.9, 4.4	No discussion of finite-volume effects.
Meinel 16	[43]	2+1	2.7, 2.6/5.3	4.1, 3.7	Finite-volume effect estimated to be at 1.0% level.

Table 146: Finite-volume effects in determinations of form factors for semileptonic decays of charmed hadrons. Each L-entry corresponds to a different lattice spacing, with multiple spatial volumes at some lattice spacings. For actions with multiple species of pions, the lightest pion masses are quoted.

Collab.	Ref.	N_f	Ren.	Description
ETM 17D, 18	[39, 40]	2+1+1	RI'-MOM	Vector current normalization obtained nonperturbatively by imposing charge conservation in $D \to D$, $K \to K$, and $\pi \to \pi$ transitions. Tensor current renormalization factors computed in RI'-MOM. Scalar form factor is absolutely normalized from chiral symmetry. Renormalized tensor current matched to $\overline{\rm MS}$ using 2-loop perturbation theory.
JLQCD 17B	[41]	2+1	mNPR	Nonperturbative renormalization of vector current.
Meinel 16	[43]	2+1	mNPR	Nonperturbative renormalization of singlet currents, residual factor computed at one loop in tadpole-improved perturbation theory.

Table 147: Operator renormalization in determinations of form factors for semileptonic decays of charmed hadrons.

Collab.	Ref.	N_f	Action	Description
ETM 17D, 18	[39, 40]	2+1+1	${ m tmWil}$	Bare charm-quark mass $0.14 \lesssim am_c \lesssim 0.29$.
JLQCD 17B	[41]	2+1	Möbius DWF	Charm quark matched to its physical value.
Meinel 16	[43]	2+1	Anisotropic SW.	Residual $\mathcal{O}(a)$ improvement coefficients in currents computed in 1-loop tadpole-improved perturbation theory.

Table 148: Heavy-quark treatment in determinations of form factors for semileptonic decays of charmed hadrons.

B.6 Notes to Sec. 8 on *B*-meson decay constants, mixing parameters and form factors

B.6.1 $B_{(s)}$ -meson decay constants

Collab.	Ref.	N_f	$M_{\pi, \min} [{ m MeV}]$	Description
FNAL/MILC 17	[4]	2+1+1	130, 133, 130, 135, 134, 309	Multiple values of pion masses at each lattice spacing, except for the finest lattice. Chiral extrapolation performed using the heavy-meson rooted all-staggered χPT [46].
HPQCD 17A	[47]	2+1+1	310, 294, 173	Two or three pion masses at each lattice spacing, one each with a physical mass GB pion. NLO (full QCD) HM χ PT supplemented by generic a^2 and a^4 terms is used to extrapolate to the physical pion mass.
ETM 16B	[12]	2+1+1	245, 239, 211	$M_{\pi, \rm min}$ refers to the charged pions. Linear and NLO (full QCD) HM χ PT formulae supplemented by an a^2 term are used for the chiral-continuum extrapolation. In ETC 13, the chiral fit error is estimated from the difference between the NLO HM χ PT and linear fits with half the difference used as estimate of the systematic error. The ratio z_s is fit using just linear HM χ PT supplemented by an a^2 term. On the other hand, in ETC 16B, the systematic error is estimated by using data points with $M_{\pi} < 350$ MeV for the chiral-continuum fit.

Table 149: Chiral extrapolation/minimum pion mass in determinations of the B- and B_s meson decay constants for $N_f = 2 + 1 + 1$ simulations. For actions with multiple species of
pions, masses quoted are the RMS pion masses. The different $M_{\pi, \min}$ entries correspond to
the different lattice spacings.

Collab.	Ref.	N_f	L [fm]	$M_{\pi, \mathrm{min}} L$	Description
FNAL/MILC 17	[4]	2+1+1	$2.4\sim4.8 /$ $3.0\sim5.8/$ $3.0\sim5.6/$ $2.9\sim5.4/$ $2.9, 6.1/$ 3.3	3.2, 3.9, 3.7, 3.7, 4.2, 4.8	Finite-size effects estimated, using alternative EFT fits, to be 0.1% for f_{B^0} , 0.07% for f_{B_s} , and 0.03% for f_{B_s}/f_{B^0} .
HPQCD 17A	[47]	2+1+1	2.4/3.5/4.7, 2.9/3.8/5.8, 2.8/5.6	3.30, 3.88, 3.66	The analysis uses finite-volume χPT . No explicit estimation of the systematic error arising from finite-size effects.
ETM 16B	[12]	2+1+1	2.84/2.13, 2.61/1.96, 2.97	3.53, 3.16, 3.19	The data show no statistically dis- cernible finite-volume effects, and the related systematic error is not explicitly estimated

Table 150: Finite-volume effects in determinations of the B- and B_s -meson decay constants. Each L-entry corresponds to a different lattice spacing, with multiple spatial volumes at some lattice spacings.

Collab.	Ref.	N_f	a [fm]	Continuum extrapolation	Scale setting
FNAL/MILC 17	[4]	2+1+1	0.15, 0.12, 0.09, 0.06, 0.042, 0.032	Continuum extrapolation, linear in a^2 , combined with the EFT study for the quark-mass dependence.	Scale set by f_{π} , with details described in Ref. [38].
HPQCD 17A	[47]	2+1+1	0.15, 0.12, 0.09	Combined continuum and chiral extrapolation. Continuum extrapolation errors estimated to be 0.7% in HPQCD 13, and 1.1% in HPQCD 17A.	Scale set from $\Upsilon(2S-1S)$ splitting, see Ref. [48]. Scale uncertainty included in statistical error.
ETM 16B	[12]	2+1+1	0.89, 0.82, 0.62	Combined continuum and chiral extrapolation, linear in a^2 .	Scale set from f_{π} . Scale setting uncertainty included in combined statistical and systematic error. Discretization effects are also estimated by removing data at the coarest lattice in the chiral-continuum fit.

Table 151: Continuum extrapolations/estimation of lattice artifacts in determinations of the B- and B_s -meson decay constants for $N_f = 2 + 1 + 1$ simulations.

Collab.	Ref.	N_f	Ren.	Description
FNAL/MILC 17	[4]	2+1+1	-	The current used for this work is absolutely normalized.
HPQCD 17A	[47]	2+1+1	$\mathrm{PT}1\ell$	The NRQD effective current is matched through $O(1/m)$ and renormalized using 1-loop PT. Included are all terms though $O(\alpha_s)$, $O(\alpha_s a)$, $O(\Lambda_{\rm QCD}/M)$, $O(\alpha_s/aM)$, $O(\alpha_s \Lambda_{\rm QCD}/M)$. The dominant error is due unknown $O(\alpha_s^2)$ contributions to the current renormalization. The error is estimated as $\sim 1.4\%$ in HPQCD 13, and as $\sim 2\%$ in HPQCD 17A.
ETM 16B	[12]	2+1+1	-, PT	The current used for the relativistic decay constants is absolutely normalized. The ratio is constructed from the relativistic decay constant data and the heavy-quark pole masses. Ratios of pole-to- $\overline{\rm MS}$ mass conversion factors are included at N³LO in continuum perturbation theory, and the matching between the continuum QCD and HQET currents is performed at N²LO.

Table 152: Description of the renormalization/matching procedure adopted in the determinations of the B- and B_s -meson decay constants for $N_f = 2 + 1 + 1$ simulations.

Collab.	Ref.	N_f	Action	Description
FNAL/MILC 17	[4]	2+1+1	HISQ	The discretization effects are estimated by repeating the fit by either adding the coarsest $(a \approx 0.15 \text{ fm})$ ensembles or omitting the finest $(a \approx 0.03 \text{ fm})$ ensembles, as well as changing the fit ansatz in the combined EFT and continuum-limit analysis.
HPQCD 17A	[47]	2+1+1	NRQCD	HQ truncation effects estimated as in HPQCD 09 to be 1.0%.
ETM 16B	[12]	2+1+1	tmWil	The estimate of the discretization effects is described in the continuum table. Ratios of pole-to- $\overline{\rm MS}$ mass conversion factors are included at N ³ LO in continuum perturbation theory, and the matching between the continuum QCD and HQET currents is performed at N ² LO. The systematic error in this procedure is very small compared to other systematic effects.

Table 153: Heavy-quark treatment in determinations of the B- and B_s -meson decay constants for $N_f = 2 + 1 + 1$ simulations.

B.6.2 $B_{(s)}$ -meson mixing matrix elements

Collab.	Ref.	N_f	a [fm]	Continuum extrapolation	Scale setting
FNAL/MILC 16	[49]	2+1	0.12, 0.09, 0.06, 0.045	Combined continuum and chiral extrapolation with NLO HMrS χ PT and NNLO analytic terms as well as the terms for the heavy quark discretization errors up to a^3 , heavy quark mass mismatch, and renormalization error of α_s^2 .	Relative scale r_1/a is set via static-quark potential. Absolute scale is set as $r_1 = 0.3117(22)$ fm. See the description of FNAL/MILC 12 below. The scale uncertainty on ξ , e.g., is estimated as 0.6% .

Table 154: Continuum extrapolations/estimation of lattice artifacts in determinations of the neutral B-meson mixing matrix elements for $N_f = 2 + 1$ simulations.

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} \left[\mathrm{MeV} \right]$	Description
FNAL/MILC 16	[49]	2+1	464, 280, 257, 332	Combined continuum and chiral extrapolation with NLO HMrS χ PT, NNLO analytic terms and other discretization errors. See the entry in Tab. 154. The breakdown of the chiral error on ξ is 0.4% and not the dominant one.

Table 155: Chiral extrapolation/minimum pion mass in determinations of the neutral Bmeson mixing matrix elements. For actions with multiple species of pions, masses quoted
are the RMS pion masses (where available). The different $M_{\pi,\text{min}}$ entries correspond to the
different lattice spacings.

Collab.	Ref.	N_f	$L [{ m fm}]$	$M_{\pi, \min} L$	Description
FNAL/MILC 16	[49]	2+1	2.4/2.9, 2.5/2.9/3.6/5.8, 2.9/3.4/3.8, 2.9	6.8, 8.2, 5.0, 4.8	FV error is estimated to be less than 0.1% for $SU(3)$ -breaking ratios from FV HMrS χ PT.

Table 156: Finite-volume effects in determinations of the neutral B-meson mixing matrix elements. Each L-entry corresponds to a different lattice spacing, with multiple spatial volumes at some lattice spacings. For actions with multiple species of pions, masses quoted are the RMS pion masses (where available).

Collab.	Ref.	N_f	Ren.	Description
FNAL/MILC 16	[49]	2+1	mNPR	mNPR is used with 1-loop lattice perturbation theory to renormalize the four-quark operators with heavy quarks rotated to eliminate tree-level $\mathcal{O}(a)$ errors. The error from neglecting higher order corrections is estimated to be 0.5% on ξ .

Table 157: Operator renormalization in determinations of the neutral B-meson mixing matrix elements.

Collab.	Ref.	N_f	Action	Description
FNAL/MILC 16	[49]	2+1	Fermilab	The heavy-quark discretization error is a dominant error comparable to the statistical error. It reads 4.6%, 3.2% or 0.7% for the B_d , B_s matrix element or ξ .

Table 158: Heavy-quark treatment in determinations of the neutral B-meson mixing matrix elements.

B.6.3 Form factors entering determinations of $|V_{ub}|$ ($B \to \pi l \nu$, $B_s \to K l \nu$, $\Lambda_b \to p l \nu$) No new calculations w.r.t. the previous FLAG report.

B.6.4 Form factors for rare decays of beauty hadrons

Collab.	Ref.	N_f	a [fm]	Continuum extrapolation	Scale setting
Detmold 16	[50]	2+1	0.0849(12), 0.1119(17)	Joint chiral-continuum extrapolation, combined with fit to q^2 -dependence of form factors in a "modified" z -expansion. Systematics estimated by varying fit form and $\mathcal{O}(a)$ improvement parameter values. Contrary to Detmold 15 $\Lambda_b \to p$, no odd powers of spatial momenta are included in the fit ansatz, based on cubic symmetry.	Set from $\Upsilon(2S)$ – $\Upsilon(1S)$ splitting, cf. [44].
FNAL/MILC 15E	[51]	2+1	0.045, 0.06, 0.09, 0.12	Fit to $SU(2)$ HMrS χ PT for the combined chiral-continuum limit extrapolation. Combined stat + chiral extrap + HQ discretization + $g_{B^*B\pi}$ error provided as a function of q^2 for each form factor; representative impact on f_T quoted as 3.8% at $q^2 = 20 \text{ GeV}^2$.	Relative scale r_1/a set from the static- quark potential. Ab- solute scale r_1 , in- cluding related un- certainty estimates, taken from [52].
FNAL/MILC 15D	[53]	2+1	0.045, 0.06, 0.09, 0.12	Fit to $SU(2)$ HMrS χ PT for the combined chiral-continuum limit extrapolation. Combined stat + chiral extrap + HQ discretization + $g_{B^*B\pi}$ error provided as a function of q^2 for each form factor, ranging between $\sim 1.4\%$ and $\sim 2.8\%$.	Relative scale r_1/a set from the static- quark potential. Ab- solute scale r_1 , in- cluding related un- certainty estimates, taken from [52].
HPQCD 13E	[54]	2+1	0.09,0.12	Combined chiral-continuum extrapolation using rHMS χ PT. Errors provided as a function of q^2 , combined total ranging from $\sim 3\%$ to $\sim 5\%$ in data region.	Relative scale r_1/a set from the static- quark potential. Absolute scale r_1 set to 0.3133(23) fm.

Table 159: Continuum extrapolations/estimation of lattice artifacts in determinations of form factors for rare decays of beauty hadrons.

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} [\mathrm{MeV}]$	Description
Detmold 16	[50]	2+1	227, 245 (valence pions)	Joint chiral-continuum extrapolation, combined with fit to q^2 -dependence of form factors in a "modified" z-expansion. Only analytic NLO terms $\propto (m_\pi^2 - m_{\pi, \rm phys}^2)$ included in light-mass dependence. Systematic uncertainty estimated by repeating fit with added higher-order terms.
FNAL/MILC 15E	[51]	2+1	330, 260, 280, 470	Simultaneous chiral-continuum extrapolation and q^2 interpolation using $SU(2)$ HMrS χ PT, with a hardpion χ PT treatment of high-energy pions.
FNAL/MILC 15D	[53]	2+1	330, 260, 280, 470	Simultaneous chiral-continuum extrapolation and q^2 interpolation using $SU(2)$ HMrS χ PT, with a hard-kaon χ PT treatment of high-energy kaons. Combined stat + chiral extrap + HQ discretization + $g_{B^*B\pi}$ error provided as a function of q^2 for each form factor, ranging between $\sim 1.4\%$ and $\sim 2.8\%$.
HPQCD 13E	[54]	2+1	295, 260	Combined chiral-continuum extrapolation using rHMS χ PT. Errors provided as a function of q^2 , combined total ranging from $\sim 3\%$ to $\sim 5\%$ in data region.

Table 160: Chiral extrapolation/minimum pion mass in determinations of form factors for rare decays of beauty hadrons. For actions with multiple species of pions, masses quoted are the RMS pion masses. The different $M_{\pi,\text{min}}$ entries correspond to the different lattice spacings.

S. Aoki et al. FLAG Review 2019 1902.08191

Collab.	Ref.	N_f	$L [\mathrm{fm}]$	$M_{\pi, \min} L$	Description
Detmold 16	[50]	2+1	2.7, 2.7	$\gtrsim 3.1$ (valence sector)	FV effect estimated at 3% from experience on χ PT estimates of FV effects for heavy-baryon axial couplings.
FNAL/MILC 15.	E [51]	2+1	2.9, 2.9/3.8, 2.5/2.9/3.6/5.8 2.4/2.9	$\gtrsim 3.8$	FV effects estimated by replacing infinite-volume chiral logs with sums over discrete momenta, found to be negligible.
FNAL/MILC 15	D [53]	2+1	2.9, 2.9/3.8, 2.5/2.9/3.6/5.8 2.4/2.9	$\gtrsim 3.8$	FV effects estimated by replacing infinite-volume chiral logs with sums over discrete momenta, found to be negligible.
HPQCD 13E	[54]	2+1	2.5, 2.4/2.9	≥ 3.8	FV effects included in combined chiral-continuum extrapolation.

Table 161: Finite-volume effects in determinations of form factors for rare decays of beauty hadrons. Each L-entry corresponds to a different lattice spacing, with multiple spatial volumes at some lattice spacings. For actions with multiple species of pions, the lightest masses are quoted.

Collab.	Ref.	N_f	Ren.	Description
Detmold 16	[50]	2+1	mNPR/missing	Same procedure as in Detmold 15 $\Lambda_p \to p$ for vector and axial currents. For tensor currents, the residual renormalization factor is set to its tree-level value $\rho_{T^{\mu\nu}} = 1$. A systematic uncertainty is assigned as the double of max $[1 - \rho_{A^{\mu}}, 1 - \rho_{V^{\mu}}]$, using the known 1-loop values of the residual matchings for the vector and axial currents.
FNAL/MILC 15E	[51]	2+1	mNPR	Perturbative truncation error on f_T estimated at 0.7% from the ratio of singlet renormalization constants and 2.0% from the residual renormalization.
FNAL/MILC 15D	[53]	2+1	mNPR	Perturbative truncation error estimated at 1% for f_+ and f_0 and 2% for f_T , using size of 1-loop correction on next-to-finer ensemble.
HPQCD 13E	[54]	2+1	mNPR	Currents matched using 1-loop massless-HISQ lattice perturbation theory. Associated systematic uncertainty dominates quoted 4% uncertainty from matching, charm quenching, and electromagnetic and isospin-breaking effects.

Table 162: Operator renormalization in determinations of form factors for rare decays of beauty hadrons.

Collab.	Ref.	N_f	Action	Description
Detmold 16	[50]	2+1	Columbia RHQ	Discretization errors discussed as part of combined chiral-continuum- q^2 fit, stemming from $a^2 \mathbf{p} ^2$ terms.
FNAL/MILC 151	E [51]	2+1	Fermilab	Combined stat + chiral extrap + HQ discretization + $g_{B^*B\pi}$ error provided as a function of q^2 for each form factor; representative impact on f_T quoted as 3.8% at $q^2 = 20 \text{ GeV}^2$.
FNAL/MILC 151	D [53]	2+1	Fermilab	Combined stat + chiral extrap + HQ discretization + $g_{B^*B\pi}$ error provided as a function of q^2 for each form factor, ranging between $\sim 1.4\%$ and $\sim 2.8\%$.
HPQCD 13E	[54]	2+1	NRQCD	Currents matched using 1-loop massless-HISQ lattice perturbation theory. Associated systematic uncertainty dominates quoted 4% uncertainty from matching, charm quenching, and electromagnetic and isospin-breaking effects.

Table 163: Heavy-quark treatment in determinations of form factors for rare decays of beauty hadrons.

B.6.5 Form factors entering determinations of $|V_{cb}|$ $(B_{(s)} \to D_{(s)}^{(*)} l \nu, \Lambda_b \to \Lambda_c l \nu)$ and $R(D_{(s)})$

Collab. I	Ref.	N_f	a [fm]	Continuum extrapolation	Scale setting
HPQCD 17B [[55]	2+1+1	0.09, 0.12, 0.15	Combined chiral-continuum extrapolation. $\mathcal{O}(a^2)$ uncertainty on the two relevant form factors at zero recoil estimated to be 0.7% and 1.4% .	Determined from $\Upsilon(2S-1S)$ splitting in [48].

Table 164: Continuum extrapolations/estimation of lattice artifacts in $N_f = 2 + 1 + 1$ determinations of $B_{(s)} \to D_{(s)}^{(*)} l \nu$ and $\Lambda_b \to \Lambda_c l \nu$ form factors, and of $R(D_{(s)})$.

Collab.	Ref.	N_f	a [fm]	Continuum extrapolation	Scale setting
HPQCD 17	[56]	2+1	0.09, 0.12	Combined chiral-continuum extrapolation as part of modified z-expansion of form factors, which also includes uncertainty related to matching of NRQCD and relativistic currents.	Implicitly set from r_1 .
Datta 17	[57]	2+1	0.0849(12), 0.1119(17)	Joint chiral-continuum extrapolation, combined with fit to q^2 -dependence of form factors in a "modified" z -expansion. Systematics estimated by varying fit form and $\mathcal{O}(a)$ improvement parameter values.	Set from $\Upsilon(2S)$ – $\Upsilon(1S)$ splitting, cf. [44].

Table 165: Continuum extrapolations/estimation of lattice artifacts in $N_f=2+1$ determinations of $B_{(s)}\to D_{(s)}^{(*)}l\nu$ and $\Lambda_b\to \Lambda_c l\nu$ form factors, and of $R(D_{(s)})$.

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} \left[\mathrm{MeV} \right]$	Description
HPQCD 17B	[55]	2+1+1	130, 133, 130	Combined chiral-continuum extrapolation using rS χ PT. No specific uncertainty coming from chiral extrapolation quoted.

Table 166: Chiral extrapolation/minimum pion mass in $N_f = 2 + 1 + 1$ determinations of $B_{(s)} \to D_{(s)}^{(*)} l \nu$ and $\Lambda_b \to \Lambda_c l \nu$ form factors, and of $R(D_{(s)})$. For actions with multiple species of pions, masses quoted are the RMS pion masses. The different $M_{\pi, \text{min}}$ entries correspond to the different lattice spacings.

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} \left[\mathrm{MeV} \right]$	Description
HPQCD 17	[56]	2+1	295, 260	Combined chiral-continuum extrapolation as part of modified z-expansion of form factors. Systematic uncertainties at $q^2=0$ estimated to 0.80% $(B_s \to D_s)$ and 1.14% $(B \to D)$, with input from hard-pion χ PT).
Datta 17	[57]	2+1	227, 245 (valence pions)	Joint chiral-continuum extrapolation, combined with fit to q^2 -dependence of form factors in a "modified" z-expansion. Only analytic NLO terms $\propto (m_\pi^2 - m_{\pi, \rm phys}^2)$ included in light-mass dependence. Systematic uncertainty estimated by repeating fit with added higher-order terms.

Table 167: Chiral extrapolation/minimum pion mass in $N_f = 2+1$ determinations of $B_{(s)} \to D_{(s)}^{(*)} l\nu$ and $\Lambda_b \to \Lambda_c l\nu$ form factors, and of $R(D_{(s)})$. For actions with multiple species of pions, masses quoted are the RMS pion masses. The different $M_{\pi,\text{min}}$ entries correspond to the different lattice spacings.

Collab.	Ref.	N_f	$L [\mathrm{fm}]$	$M_{\pi, \min} L$	Description
HPQCD 17B	[55]	2+1+1	2.4/3.7/4.8, 3.0/3.9/5.8, 3.0/5.6	$\gtrsim 3.2$	FV effects estimated and subtracted using $rs\chi PT$ formulae. No associated uncertainty quoted.
HPQCD 17	[56]	2+1	2.5, 2.4/2.9	≥ 3.8	FV effects estimated to be below 0.01%.
Datta 17	[57]	2+1	2.7, 2.7	$\gtrsim 3.1$ (valence sector)	No explicit discussion of finite-volume effects. Analysis identical to that of vector and axial form factors in Detmold 15 $\Lambda_b \to \Lambda_c$.

Table 168: Finite-volume effects in determinations of $B_{(s)} \to D_{(s)}^{(*)} l\nu$ and $\Lambda_b \to \Lambda_c l\nu$ form factors, and of $R(D_{(s)})$. Each *L*-entry corresponds to a different lattice spacing, with multiple spatial volumes at some lattice spacings. For actions with multiple species of pions, the lightest pion masses are quoted.

Collab.	Ref.	N_f	Ren.	Description
HPQCD 17B	[55]	2+1+1	1-loop	1-loop matching of currents taken from [58].
HPQCD 17	[56]	2+1	1-loop	1-loop matching of currents taken from [58].
Datta 17	[57]	2+1	(incomplete)	mNPR procedure followed, fixing the residual renormalization factor to its tree-level value $\rho_{T^{\mu\nu}}=1$. A systematic uncertainty is assigned as the double of $\max[1-\rho_{A^{\mu}},1-\rho_{V^{\mu}}]$, using the known 1-loop values of the residual matchings for the vector and axial currents.

Table 169: Operator renormalization in determinations of $B_{(s)} \to D_{(s)}^{(*)} l \nu$ and $\Lambda_b \to \Lambda_c l \nu$ form factors, and of $R(D_{(s)})$.

Collab.	Ref.	N_f	Action	Description
HPQCD 17B	[55]	2+1+1	NRQCD for b quark, HISQ for c quark	$\mathcal{O}(\alpha_s^2)$ uncertainty quoted as 2.1% and 2.5% for the two relevant form factors; $\mathcal{O}(\alpha_s \Lambda_{\rm QCD}/m_b, (\Lambda_{\rm QCD}/m_b)^2)$ errors quoted as 0.9% and 0.8% in both cases.
HPQCD 17	[56]	2+1	NRQCD for b quark, HISQ for c quark	Discretization errors estimated via power counting to be 2.47% $(B_s \rightarrow D_s)$ and 2.59% $(B \rightarrow D)$ at $q^2 = 0$.
Datta 17	[57]	2+1	Columbia RHQ	Discretization errors discussed as part of combined chiral-continuum- q^2 fit, stemming from $a^2 \mathbf{p} ^2$ terms.

Table 170: Heavy-quark treatment in determinations of $B_{(s)} \to D_{(s)}^{(*)} l\nu$ and $\Lambda_b \to \Lambda_c l\nu$ form factors, and of $R(D_{(s)})$.

B.7 Notes to Sec. 9 on the strong coupling α_s

B.7.1 Renormalization scale and perturbative behaviour

Collab.	Ref.	N_f	$lpha_{ ext{eff}}$	n_l	Description
Husung 17	[59]	0	0.17-0.23	3	$g_{qq}^2(r)$ found for $r/r_0=1.1\dots0.1$. $r_0\Lambda_{qq}$ determined using the 4-loop β^{qq} function.
Ishikawa 17	[60]	0	0.1-0.5	1	Finite volume α_{TGF} . 1-loop relation of coupling to SF coupling by means of a MC computation.
Kitazawa 16	[61]	0	0.09-0.12	2	$\alpha_{\overline{\rm MS}}(2.63/a)$ computed from the boosted coupling. The physical volume ranges from $2.4\sim3.8{\rm fm}.$

Table 171: Renormalization scale and perturbative behaviour of α_s determinations for $N_f=0$.

Collab.	Ref.	N_f	$lpha_{ ext{eff}}$	n_l	Description
Karbstein 18	[62]	2	0.28 - 0.41	3	$\alpha_V(p)$ for momentum $1.5 . Values computed from the quoted \Lambda parameter with the 2-loop \beta function; larger values (0.32-0.62) are obtained with 3-loop running. As with ETM 11C central values are taken from a=0.042\mathrm{fm} lattice with L=1.3\mathrm{fm} and m_\pi=350\mathrm{MeV}.$

Table 172: Renormalization scale and perturbative behaviour of α_s determinations for $N_f=2$.

S. Aoki et al. $FLAG\ Review\ 2019$ 1902.08191

Collab.	Ref.	N_f	$lpha_{ ext{eff}}$	n_l	Description
Takaura 18 [6	63, 64]	2+1	0.17 - 0.43	3	$\alpha_{\overline{\rm MS}}(\mu)$ for $\mu=2/r$ and $0.04{\rm fm}\le r\le 0.35{\rm fm}$ with power correction. Taken from analysis II.
Hudspith 18	[65]	2+1	0.31-0.22	3	$\alpha_{\overline{\rm MS}}(Q)$ for $1.7{\rm GeV} \leq Q \leq 4{\rm GeV}$ without power corrections. Multiple $\mu{\rm s}$ were used to minimise a residual μ dependence.
Nakayama 18	[66]	2+1	0.40 - 0.66	2	Range of $\alpha_{\overline{\rm MS}}(\lambda)$.
ALPHA 17	[67]	2+1	SF: 0.1-0.2 GF: 0.2-0.9	2	Two different schemes, SF and GF; Three loop perturbative β -function for $\mu > 70\mathrm{GeV}$, nonperturbative SF step scaling [68] from $\mu \sim 4$ - 70 GeV, nonperturbative GF step scaling [69], from $\mu \sim 0.2$ - 4 GeV.
Maezawa 16	[9]	2+1	0.25	2	$\alpha_{\overline{\rm MS}}(\mu)$ for $\mu=2\bar{m}_c\approx 2.6$ GeV. An estimate of the higher order coefficient is used to estimate the perturbative truncation error.
JLQCD 16	[10]	2+1	0.25	2	$\alpha_{\overline{\rm MS}}(\mu)$ for $\mu=3$ GeV. The μ dependence in the range of $\mu=2-4$ GeV is used to estimate the perturbative truncation error.

Table 173: Renormalization scale and perturbative behaviour of α_s determinations for $N_f=3$.

B.7.2 Continuum limit

Collaboration	Ref.	N_f	$a\mu$	Description
Husung 17	[59]	0	6 lattice spacings with $a = 0.083 - 0.015$ fm.	$g_{qq}^2(r,a)$ coupling with continuum extrapolation. Step-scaling used at short distances.
Ishikawa 17	[60]	0	3 spacings, $a/L = 1/18, 1/16, 1/12$ in step-scaling functions (SSF)	TGF coupling. Global fit to SSF using scale factor $s=3/2$. Several $L_{\rm max}/a$ from [70] and $\sqrt{\sigma}a$ from [71].
Kitazawa 16	[61]	0	9 lattice spacings with $a = 0.06$ - 0.02 fm.	w_0 together with conversion factor $r_0/w_0 = 2.885(50)$.

Table 174: Continuum limit for α_s determinations with $N_f=0.$

Collab.	Ref.	N_f	$a\mu$	Description
Takaura 18 [63	3, 64]	2+1	2a/r = 0.43, 0.53, 0.79	at $\alpha_{\overline{\rm MS}}(2/r)=0.3$. Three lattice spacings: (0.080, 0.055, 0.044) fm.
Hudspith 18	[65]	2+1	aQ = 0.5 - 1.3	For the finest of the lattice spacings. The coarsest lattice spacing could not be used, so only two lattice spacings are available.
Nakayama 18	[66]	2+1	$a\mu = 0.18 - 0.5$	Range of $a\lambda$ for the full set of lattice spacings and eigenvalues, λ . Note that $\alpha_{\rm eff}=0.3$ is not reached.
ALPHA 17	[67]	2+1	SF: a/L = 1/12, 1/8, 1/6, 1/5 GF: a/L = 1/16, 1/12, 1/8	Two different schemes, SF [68] and GF [69]; $O(a)$ boundary improvement errors included in systematic error.
Maezawa 16	[9]	2+1	$a\mu = 2a\bar{m}_c = 0.5 - 1.8$	4 lattice spacings; 1 lattice spacing with $a\mu \leq 1.5$ and 2 lattice spacings with $a\mu \leq 1$ with full $O(a)$ improvement.
JLQCD 16	[10]	2+1	$a\mu = 2a\bar{m}_c = 0.58, 0.72, 1.1$	3 lattice spacings; 1 lattice spacing with $a\mu \leq 1.5$ and 2 lattice spacings with $a\mu \leq 1$ with full $O(a)$ improvement.

Table 175: Continuum limit for α_s determinations with $N_f=3.$

B.8 Notes to Sec. 10 on nucleon matrix elements

Collab.	Ref.	N_f	a [fm]	Description
PNDME 18	[72]	2+1+1	0.15,0.12,0.09,0.06	Extrapolation performed including a linear term in a as part of a simultaneous fit in a , M_{π} and $M_{\pi}L$.
CalLat 18	[73]	2+1+1	0.15,0.12,0.09	Extrapolation to the physical point via simultaneous fit in the lattice spacing, M_{π} and $M_{\pi}L$, including terms of order a^2 and a^4 .
CalLat 17	[74]	2+1+1	0.15,0.12,0.09	Extrapolation to the physical point via simultaneous fit in the lattice spacing, M_{π} and $M_{\pi}L$, including terms of order a^2 and a^4 .
PNDME 16	[75]	2+1+1	0.12,0.09,0.06	Extrapolation performed including a linear term in a as part of a simultaneous fit in a , M_{π} and $M_{\pi}L$.
PNDME 15	[76, 77]	2+1+1	0.12,0.09,0.06	Extrapolation performed including a linear term in a as part of a simultaneous fit in a , M_{π} and $M_{\pi}L$.
PNDME 13	[78]	2+1+1	0.12	Single lattice spacing.

Table 176: Continuum extrapolations/estimation of lattice artifacts in determinations of the isovector axial, scalar and tensor charges with $N_f = 2 + 1 + 1$ quark flavours.

Collab.	Ref.	N_f	a [fm]	Description
Mainz 18	[79]	2+1	0.09,0.08,0.06,0.05	Extrapolation performed including a quadratic term in a as part of a simultaneous fit in a , M_{π} and $M_{\pi}L$.
PACS 18	[80]	2+1	0.09	Single lattice spacing.
$\chi \mathrm{QCD} \ 18$	[81]	2+1	0.14,0.11,0.08	Extrapolation to the physical point via simultaneous fit in the lattice spacing, M_{π} and $M_{\pi}L$, including terms of order a^2 .
JLQCD 18	[82]	2+1	0.11	Single lattice spacing.
LHPC 12	[83]	2+1	0.12,0.09	No extrapolation or uncertainty estimated. Comparison between two lattice spacings at a single pion mass shows no deviation within statistical errors.
LHPC 12A	[84]	2+1	0.12,0.09	No statistically significant discretization effects observed. Results assumed to be constant in a .
LHPC 10	[85]	2+1	0.12	Single lattice spacing.
RBC/UKQCD 10D	[86]	2+1	0.11	Single lattice spacing.
RBC/UKQCD 09B	[87]	2+1	0.11	Single lattice spacing.
RBC/UKQCD 08B	[88]	2+1	0.11	Single lattice spacing.
LHPC 05	[89]	2+1	0.12	Single lattice spacing.

Table 177: Continuum extrapolations/estimation of lattice artifacts in determinations of the isovector axial, scalar and tensor charges with $N_f=2+1$ quark flavours.

Collab.	Ref.	N_f	a [fm]	Description
Mainz 17	[90]	2	0.08,0.06,0.05	No statistically significant discretization effects observed. Results assumed to be constant in a .
ETM 17	[91]	2	0.09	Single lattice spacing.
ETM 17B	[92]	2	0.09	Single lattice spacing.
ETM 15D	[93]	2	0.09	Single lattice spacing.
RQCD 14	[94]	2	0.08,0.07,0.06	No statistically significant discretization effects observed. No extrapolation performed, but residual systematic error due to discretization effects is estimated.
QCDSF 13	[95]	2	0.08,0.07,0.06	No statistically significant discretization effects observed. Results assumed to be constant in a .
Mainz 12	[96]	2	0.08,0.06,0.05	No statistically significant discretization effects observed. Results assumed to be constant in a .
RBC 08	[97]	2	0.11	Single lattice spacing.
QCDSF 06	[98]	2	0.09,0.08,0.07,0.06	No statistically significant discretization effects observed. Results assumed to be constant in a .

Table 178: Continuum extrapolations/estimation of lattice artifacts in determinations of the isovector axial, scalar and tensor charges with $N_f=2$ quark flavours.

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} \left[\mathrm{MeV} \right]$	Description
PNDME 18	[72]	2+1+1	321,225,138,136	Fit performed including a linear term in M_{π}^2 and investigating a logarithmic term as part of a simultaneous fit in a , M_{π} and $M_{\pi}L$.
CalLat 18	[73]	2+1+1	130,130,220	Fit performed including analytic and non-analytic terms in M_{π} up to order M_{π}^4 .
CalLat 17	[74]	2+1+1	130,220,310	Fit performed including analytic and non-analytic terms in M_{π} up to order M_{π}^4 .
PNDME 16	[75]	2+1+1	225,138,235	Fit performed including linear and logarithmic terms in M_{π}^2 as part of a simultaneous fit in a, M_{π} and $M_{\pi}L$.
PNDME 15	[76, 77]	2+1+1	225,138,235	Fit performed including a linear term in M_{π}^2 as part of a simultaneous fit in a, M_{π} and $M_{\pi}L$.
PNDME 13	[78]	2+1+1	228	Fit performed with a linear term in M_{π}^2 .

Table 179: Chiral extrapolation/minimum pion mass in determinations of the isovector axial, scalar and tensor charges with $N_f = 2 + 1 + 1$ quark flavours.

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} \left[\mathrm{MeV} \right]$	Description
Mainz 18	[79]	2+1	223,289,203,262	Fit performed including linear and logarithmic terms in M_{π}^2 as part of a simultaneous fit in a^2 , M_{π} and $M_{\pi}L$.
PACS 18	[80]	2+1	146	Single, nearly physical pion mass.
$\chi \text{QCD 18}$	[81]	2+1	171,337,302	Linear fit in M_{π}^2 , including terms containing $M_{\pi}L$.
JLQCD 18	[82]	2+1	293	Fit performed with linear and quadratic terms in M_{π}^2 .
LHPC 12	[83]	2+1	149,317	Chiral fit performed with g_A and F_{π} held fixed to NNLO in $SU(2)$ HBChPT. Several other M_{π} investigated.
LHPC 12A	[84]	2+1	149,317	Chiral fit formula based on the "small scale expansion" to order ϵ^3 with some coefficients fixed.
LHPC 10	[85]	2+1	293	Chiral fit formula based on the "small scale expansion" to order ϵ^3 with some coefficients fixed.
RBC/UKQCD 10D	[86]	2+1	329,416,555,668	Constant fit to heaviest three and linear fit to lightest two pion masses gives the quoted range.
RBC/UKQCD 09B	[87]	2+1	329	Linear fit in M_{π}^2 , supplemented by a term in $e^{-M_{\pi}L}$ to describe finite-volume effects.
RBC/UKQCD 08B	[88]	2+1	329	Linear fit in M_{π}^2 , supplemented by a term in $e^{-M_{\pi}L}$ to describe finite-volume effects.
LHPC 05	[89]	2+1	353	Chiral fit formula based on the "small scale expansion" with some coefficients fixed.

Table 180: Chiral extrapolation/minimum pion mass in determinations of the isovector axial, scalar and tensor charges with $N_f=2+1$ quark flavours.

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} \left[\mathrm{MeV} \right]$	Description
Mainz 17	[90]	2	268,193,261	Main result from linear fit in M_{π}^2 with mass cut of $M_{\pi} \leq 300 \text{MeV}$. Systematic error estimated from considering fits containing logarithmic terms.
ETM 17	[91]	2	130	Single, nearly physical, pion mass.
ETM 17B	[92]	2	130	Single, nearly physical, pion mass.
ETM 15D	[93]	2	130	Single, nearly physical, pion mass.
RQCD 14	[94]	2	280,150,260	Linear fit in M_{π}^2 with pion mass cut $(M_{\pi}^2 < 0.1 \text{ GeV}^2)$.
QCDSF 13	[95]	2	259,158,262	Chiral fit of g_A/f_π including linear, quadratic and logarithmic terms in M_π^2 .
Mainz 12	[96]	2	312,277,430	Main result from linear fit in M_{π}^2 . Systematic error estimated from considering additional terms containing M_{π}^4 and $M_{\pi}L$.
RBC 08	[97]	2	493	Linear fit in M_{π}^2 .
QCDSF 06	[98]	2	617,664,666,726	Chiral fit formula based on the "small scale expansion" with some fixed coefficients and finite-volume corrections subtracted.

Table 181: Chiral extrapolation/minimum pion mass in determinations of the isovector axial, scalar and tensor charges with $N_f=2$ quark flavours.

Collab.	Ref.	N_f	$L [\mathrm{fm}]$	$M_{\pi,\min}L$	Description
PNDME 18	[72]	2+1+1	2.4, 2.9–4.8, 2.8–5.6, 2.8–5.5	3.9, 5.5, 3.9, 3.7	Fit performed including a term of the form $M_{\pi}^2 e^{-M_{\pi}L}$ as part of a simultaneous fit in a, M_{π} and $M_{\pi}L$.
CalLat 18	[73]	2+1+1	2.4–4.8, 2.9–5.8, 2.9–4.3	3.2, 3.9, 4.7	Fit performed including a term of the form $M_{\pi}^2 e^{-M_{\pi}L}/\sqrt{M_{\pi}L}$ as part of a simultaneous fit in a^2 , M_{π} and $M_{\pi}L$.
CalLat 17	[74]	2+1+1	2.4–4.8, 2.9–4.8, 2.9	3.2, 5.4, 4.5	Fit performed including a term of the form $M_{\pi}^2 e^{-M_{\pi}L}/\sqrt{M_{\pi}L}$ as part of a simultaneous fit in a^2 , M_{π} and $M_{\pi}L$.
PNDME 16	[75]	2+1+1	2.9–4.8, 2.8–5.6, 2.8–3.7	5.5, 3.9, 4.4	Fit performed including a term of the form $M_{\pi}^2 e^{-M_{\pi}L}$ as part of a simultaneous fit in a, M_{π} and $M_{\pi}L$.
PNDME 15	[76, 77]	2+1+1	2.9-4.8, 2.8-5.6, 2.8-3.7	5.5, 3.9, 4.4	Fit performed including a term of the form $\exp\{-M_{\pi}L\}$ as part of a simultaneous fit in a, M_{π} and $M_{\pi}L$.
PNDME 13	[78]	2+1+1	2.9-3.8	4.4	Finite-volume effects not estimated.

Table 182: Finite-volume effects in determinations of the isovector axial, scalar and tensor charges with $N_f = 2 + 1 + 1$ quark flavours.

Collab.	Ref.	N_f	$L [\mathrm{fm}]$	$M_{\pi,\min}L$	Description
Mainz 18	[79]	2+1	2.8-4.1, 2.4-3.7, 2.1-4.1, 2.4-3.2	4.7, 5.4, 4.2, 4.2	Fit performed including a term of the form $M_{\pi}^2 e^{-M_{\pi}L}/\sqrt{M_{\pi}L}$ as part of a simultaneous fit in a^2 , M_{π} and $M_{\pi}L$.
PACS 18	[80]	2+1	8.2	6.0	Single spatial volume of 8.2 fm at near- physical pion mass $M_{\pi}L=6$.
$\chi { m QCD} \ 18$	[81]	2+1	4.6, 2.7, 2.6	4.0, 4.5, 4.1	Fit performed including a term of the form $e^{-M_{\pi}L}$ as part of a simultaneous fit in a , M_{π} and $M_{\pi}L$.
JLQCD 18	[82]	2+1	1.8-2.7	4.0	Finite-volume effects not estimated.
LHPC 12	[83]	2+1	2.8–5.6, 2.9	4.2, 4.6	No uncertainty estimated. Comparison between two volumes at a single pion mass shows no deviation within statistical errors.
LHPC 12A	[84]	2+1	2.8–5.6, 2.9	4.2, 4.6	Finite-volume effects investigated and found to be negligible.
LHPC 10	[85]	2+1	2.5–3.5	3.7	Finite-volume effects included in chiral fit formula and found to be negligible.
RBC/UKQCD 10D	[86]	2+1	2.7	4.6	No uncertainty estimated. Comparison between two volumes for the three heaviest pion masses shows no deviation within statistical errors.
RBC/UKQCD 09B	[87]	2+1	2.7	4.6	Chiral fit ansatz contains term in $e^{-M_{\pi}L}$ to describe finite-volume effects.
RBC/UKQCD 08B	[88]	2+1	2.7	4.6	Chiral fit ansatz contains term in $e^{-M_{\pi}L}$ to describe finite-volume effects.
LHPC 05	[89]	2+1	2.5–3.5	6.2	Finite-volume effects included in chiral fit formula and found to be negligible.

Table 183: Finite-volume effects in determinations of the isovector axial, scalar and tensor charges with $N_f=2+1$ quark flavours.

Collab.	Ref.	N_f	L [fm]	$M_{\pi, \min} L$	Description
Mainz 17	[90]	2	2.5–3.8, 2.0–4.0, 2.4–3.2	5.0, 4.0, 4.4	Finite-volume effects not estimated.
ETM 17	[91]	2	4.5	3.0	Finite-volume effects not estimated.
ETM 17B	[92]	2	4.5	3.0	Finite-volume effects not estimated.
ETM 15D	[93]	2	4.5	3.0	Finite-volume effects not estimated.
RQCD 14	[94]	2	2.6, 1.7–4.5, 1.9–2.9	3.7, 3.5, 3.8	No uncertainty estimated. Comparison between volumes for two pion masses, including the lightest, shows no deviation within statistical errors.
QCDSF 13	[95]	2	1.2–2.4, 0.9–3.4, 1.4–2.9	3.2, 2.7, 3.8	Finite-volume effects assumed to be negligible in ratio g_A/f_π .
Mainz 12	[96]	2	2.5, 2.0–3.0, 2.4	4.0, 4.3, 5.2	Finite-volume corrections estimated in $\chi {\rm PT}$ and subtracted before chiral fit.
RBC 08	[97]	2	1.8	4.6	Finite-volume effects investigated, but not included in error budget. All volumes below 2 fm.
QCDSF 06	[98]	2	1.5, 1.2–1.8, 0.9–1.7, 1.4	4.7, 6.1, 5.7, 5.3	Finite-volume effects included in fit formula based on "small scale expansion". All spatial volumes below 2 fm.

Table 184: Finite-volume effects in determinations of the isovector axial, scalar and tensor charges with $N_f=2$ quark flavours.

Collab.	Ref.	N_f	Ren.
PNDME 18	[72]	2+1+1	RI-SMOM
CalLat 18	[73]	2+1+1	RI-MOM
CalLat 17	[74]	2+1+1	RI-MOM
PNDME 16	[75]	2+1+1	RI-SMOM
PNDME 15	[76, 77]	2+1+1	RI-SMOM
PNDME 13	[78]	2+1+1	RI-SMOM

Table 185: Renormalization in determinations of the isovector axial, scalar and tensor charges with $N_f=2+1+1$ quark flavours.

Collab.	Ref.	N_f	Ren.
Mainz 18	[79]	2+1	RI-MOM
PACS 18	[80]	2+1	SF
$\chi \text{QCD 18}$	[81]	2+1	RI-MOM
JLQCD 18	[82]	2+1	RI-MOM
LHPC 12	[83]	2+1	RI-MOM
LHPC 12A	[84]	2+1	RI-MOM
LHPC 10	[85]	2+1	RI-MOM
RBC/UKQCD 10D	[86]	2+1	RI-MOM
RBC/UKQCD 09B	[87]	2+1	g_A/g_V
RBC/UKQCD 08B	[88]	2+1	g_A/g_V
LHPC 05	[89]	2+1	g_A/g_V

Table 186: Renormalization in determinations of the isovector axial, scalar and tensor charges with 2+1 quark flavours.

Collab.	Ref.	N_f	Ren.
Mainz 17	[90]	2	SF
ETM 17B	[92]	2	RI'-MOM
ETM 15D	[93]	2	RI'-MOM
RQCD 14	[94]	2	RI'-MOM
QCDSF 13	[95]	2	g_A/f_π
Mainz 12	[96]	2	SF
RBC 08	[97]	2	g_A/g_V
QCDSF 06	[98]	2	RI'-MOM

Table 187: Renormalization in determinations of the isovector axial, scalar and tensor charges with $N_f=2$ quark flavours.

Collab.	Ref.	N_f	au [fm]	Description
PNDME 18	[72]	2+1+1	$ \begin{bmatrix} 0.8 - 1.4 \\ [1.0 - 1.4, 1.0 - 1.4] \\ [0.9 - 1.2, 0.9 - 1.2, 0.7 - 1.4] \\ [0.9 - 1.4, 0.9 - 1.4, 0.9 - 1.2] \end{bmatrix} $	Fits to the τ - and t -dependence of three-point correlators using two or three lowest-lying states.
CalLat 18	[73]	2+1+1	all	Two-state fits to the τ -dependence of summed operator insertion for $\tau \geq 0.3 \text{fm}$.
CalLat 17	[74]	2+1+1	all	Two-state fits to the τ -dependence of summed operator insertion for $\tau \geq 0.3 \text{fm}$.
PNDME 16	[75]	2+1+1	$ \begin{bmatrix} 1.0 - 1.4, 1.0 - 1.4 \\ [0.9 - 1.2, 0.9 - 1.2, 0.9 - 1.2] \\ [0.9 - 1.4, 0.9 - 1.4] \end{bmatrix} $	Fits to the τ and t -dependence of three-point correlators using two or three lowest-lying states.
PNDME 15	[76, 77]	2+1+1	[1.0-1.4,1.0-1.4] [0.9-1.2,0.9-1.2,0.9-1.2] [0.9-1.4,0.9-1.4]	Fits including up to two states are investigated.
PNDME 13	[78]	2+1+1	[1.0-1.4,0.9-1.4]	Fits including up to two states are investigated.

Table 188: Control of excited state contamination in determinations of the isovector axial, scalar and tensor charges with $N_f = 2 + 1 + 1$ quark flavours. The comma-separated list of numbers in square brackets denote the range of source-sink separations τ (in fermi) at each value of the bare coupling.

Collab.	Ref.	N_f	au [fm]	Description
Mainz 18	[79]	2+1	$ \begin{bmatrix} 1.0 - 1.4, 1.0 - 1.4, 1.0 - 1.4 \\ [1.0 - 1.7, 1.0 - 1.7] \\ [1.0 - 1.5, 1.0 - 1.4, 1.0 - 1.4] \\ [1.0 - 1.4, 1.0 - 1.3] \end{bmatrix} $	Fits to the τ - and t -dependence of correlator ratios using the two lowest-lying states.
PACS 18	[80]	2+1	[1.3]	Plateau fits of correlator ratio at $\tau = 1.3 \mathrm{fm}$.
$\chi { m QCD} \ 18$	[81]	2+1	[1.0–1.6] [0.9–1.3] [1.0–1.2]	
JLQCD 18	[82]	2+1	all	Fits to the leading (ground state) τ - and t -dependence.
LHPC 12	[83]	2+1	$\begin{bmatrix} 0.9 - 1.4, 0.9 - 1.4, 0.9 - \\ 1.4, 0.9 - 1.4, 0.9 - 1.4 \end{bmatrix}$ $\begin{bmatrix} 0.9 - 1.4 \end{bmatrix}$	Result is given by the average over central points in plateau, and a fitting uncertainty is estimated from the variation over two to three points.
LHPC 12A	[84]	2+1	$\begin{bmatrix} 0.9 - 1.4, 0.9 - 1.4, 0.9 - \\ 1.4, 0.9 - 1.4, 0.9 - 1.4 \end{bmatrix}$ $\begin{bmatrix} 0.9 - 1.4 \end{bmatrix}$	Fits to the leading (ground state) τ -dependence of summed correlator ratios.
LHPC 10	[85]	2+1	[1.1,1.1,1.1,1.1,1.1- 1.2,1.1]	Plateau fits of correlator ratio at $\tau = 1.1\mathrm{fm}$. Larger source-sink separation on one ensemble as cross check.
RBC/UKQCD 10D	[86]	2+1	[1.4,1.4,1.4,1.4]	Single source-sink separation considered.
RBC/UKQCD 09B	[87]	2+1	[1.4,1.4,1.4,1.4]	Plateau fits to correlator ratios for $\tau = 1.4 \mathrm{fm}$.
RBC/UKQCD 08B	[88]	2+1	[1.4,1.4,1.4,1.4]	Plateau fits to correlator ratios for $\tau = 1.4 \mathrm{fm}$.
LHPC 05	[89]	2+1	[1.1]	Plateau fits of correlator ratio at single value of τ .

Table 189: Control of excited state contamination in determinations of the isovector axial, scalar and tensor charges with $N_f=2+1$ quark flavours. The comma-separated list of numbers in square brackets denote the range of source-sink separations τ (in fermi) at each value of the bare coupling.

Collab.	Ref.	N_f	au [fm]	Description
Mainz 17	[90]	2	$ \begin{bmatrix} 0.8 - 1.3, 0.8 - 1.3, 0.8 - \\ 1.3, 0.8 - 1.3 \end{bmatrix} \\ \begin{bmatrix} 0.7 - 1.1, 0.7 - 1.1, 0.7 - \\ 1.1, 0.7 - 1.1 \end{bmatrix} \\ \begin{bmatrix} 0.7 - 1.1, 0.7 - 1.1, 0.7 - 1.1 \end{bmatrix} $	Two-state fits of correlator ratio with fixed energy gaps. Summation method consistent within the total quoted error.
ETM 17	[91]	2	[0.9–1.7]	Fits including up to two states and summation method are considered. Result taken from the largest source-sink separation and error estimated from comparison with two-state fits.
ETM 17B	[92]	2	[0.9–1.3]	Fits including up to two states and the summation method are considered. No excited state contamination seen within statistical errors. Result taken from the smallest source-sink separation at which plateau fits and two-state fits agree. Systematic error estimated as the difference with the summation method.
ETM 15D	[93]	2	[0.9–1.3]	Fits including up to two states and the summation method are considered. No excited state contamination seen within statistical errors. Result taken from the largest source-sink separation and no error estimated.
RQCD 14	[94]	2	[1.1] [1.1–1.2,0.5–1.2,0.6–1.1] [1.1,1.1,1.1]	Multiple source-sink separations produced on two ensembles to determine a single source-sink separation to be used for all other ensembles.
QCDSF 1:	3 [95]	2	$ \begin{bmatrix} 1.0,1.0,1.0,1.0,1.0 \\ 1.0,1.0,1.0,0.8 - \\ 1.3,1.0,1.0,1.0 \\ \end{bmatrix} $ $ \begin{bmatrix} 1.0,1.0,1.0,1.0 \\ \end{bmatrix} $ $ \begin{bmatrix} 1.0,1.0,1.0,1.0,1.0,1.0 \end{bmatrix} $	Plateau fits to g_A/f_π for $\tau=1.0\mathrm{fm}$. Multiple source-sink separations investigated on one ensemble as cross check.

Table 190: Control of excited state contamination in determinations of the isovector axial, scalar and tensor charges with $N_f=2$ quark flavours. The comma-separated list of numbers in square brackets denote the range of source-sink separations τ (in fermi) at each value of the bare coupling.

Collab.	Ref.	N_f	au [fm]	Description
Mainz 12	[96]	2	$ \begin{bmatrix} 0.8-1.3, 0.8-1.3, 0.8-\\ 1.3, 0.8-1.3 \end{bmatrix} \\ \begin{bmatrix} 0.7-1.1, 0.7-1.1, 0.7-\\ 1.1, 0.7-1.1, 0.7-1.1 \end{bmatrix} \\ \begin{bmatrix} 0.7-1.1, 0.7-1.1 \end{bmatrix} $	Fits to the leading (ground state) τ -dependence of summed correlator ratios.
RBC 08	[97]	2	[1.1,1.1,1.1–1.4]	Two source-sink separations produced for lightest pion mass to determine a single source-sink separa- tion to be used for all other ensembles.
QCDSF 0	6 [98]	2		Ground state fits performed. No investigation of excited-state effects.

Table 190: (cntd.) Control of excited state contamination in determinations of the isovector axial, scalar and tensor charges with $N_f=2$ quark flavours. The comma-separated list of numbers in square brackets denote the range of source-sink separations τ (in fermi) at each value of the bare coupling.

Collab.	Ref.	N_f	a [fm]	Description
PNDME 18A	[99]	2+1+1	0.15,0.12,0.09,0.06	Connected: Joint continuum, chiral and volume fit with a term linear in a . Disconnected: Joint continuum and chiral fit with a term linear in a .
$\chi \text{QCD 18}$	[81]	2+1	0.14,0.11,0.08	Joint continuum and chiral fit with a term linear in a^2 .
JLQCD 18	[82]	2+1	0.11	Discretization effects are estimated to be 8% using $O(\Lambda_{QCD}^2 a^2)$ with $\Lambda_{QCD} \approx 500$ MeV.
$\chi \text{QCD 15}$	[100]	2+1	0.11	Single lattice spacing.
Engelhardt 12	[101]	2+1	0.12	Single lattice spacing.
ETM 17C	[102]	2	0.09	Single lattice spacing.

Table 191: Continuum extrapolations/estimation of lattice artifacts in determinations of g_A^q .

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} \left[\mathrm{MeV} ight]$	Description
PNDME 18A	[99]	2+1+1	C: 320,225,135 D_t : 320, 235 D_s : 320, 225, 138	Connected: Joint continuum, chiral and volume fit with a term linear in M_{π}^2 . Disconnected: Joint continuum and chiral fit with a term linear in M_{π}^2 .
χ QCD 18	[81]	2+1	171,337,302	Joint continuum and chiral fit with a term linear in $M_{\pi,\text{val}}^2$.
JLQCD 18	[82]	2+1	293	Chiral fit with a term linear in M_{π}^2 .
χ QCD 15	[100]	2+1	330	Chiral fit with a term linear in $M_{\pi^2,\mathrm{val}}$.
Engelhardt 12	[101]	2+1	495, 356, 293	Value from chiral log fit. Difference from constant fit added as a systematic uncertainty.
ETM 17C	[102]	2	130	Single simulation at $M_{\pi}=130$ MeV.

Table 192: Chiral extrapolation/minimum pion mass in determinations of g_A^q .

Collab.	Ref.	N_f	$L~[{ m fm}]$	$M_{\pi, \min} L$	Description
PNDME 18A	[99]	2+1+1	2.4, 2.9–3.8, 2.8–5.6, 2.8	3.9, 4.4, 3.9, 4.5	Connected: Joint continuum, chiral and volume fit with the term $M_{\pi}^2 e^{-M_{\pi}L}$. Disconnected: Neglect volume dependence.
$\chi { m QCD} \ 18$	[81]	2+1	4.6, 2.7, 2.6	4.0, 4.5, 4.1	FV correction expected to be small.
JLQCD 18	[82]	2+1	1.8-2.7	4.0	FV correction expected to be small.
$\chi \text{QCD 15}$	[100]	2+1	2.6	3.3	FV correction neglected.
Engelhardt 12	[101]	2+1	2.5	3.7	A generic 10% error is added based on possible FVE in g_A .
ETM 17C	[102]	2	3.7	3.0	Single simulation with $M_{\pi}L = 3.0$.

Table 193: Finite-volume effects in determinations of g_A^q .

Collab.	Ref.	N_f	Ren.
PNDME 18A	[99]	2+1+1	RI-SMOM
χ QCD 18	[81]	2+1	NP
JLQCD 18	[82]	2+1	RI-MOM
$\chi { m QCD} \ 15$	[100]	2+1	NP
Engelhardt 12	[101]	2+1	NP
ETM 17C	[102]	2	RI'-MOM

Table 194: Renormalization in determinations of g_A^q .

Collab.	Ref.	N_f	au [fm]	Description
PNDME 18A	[99]	2+1+1		Connected: three-state fit. Disconnected: two-state fit.
$\chi \text{QCD 18}$	[81]	2+1	[1.0–1.6] [0.9–1.3] [1.0–1.2]	Two-state fit.
JLQCD 18	[82]	2+1	[1.0–1.54]	Constant fit to all τ and $t \in [4 - (\tau - 4)]$ data.
χ QCD 15	[100]	2+1	[0.68–1.14]	Two-state fit.
Engelhardt 12	[101]	2+1	[1.24–1.5]	Not quantified.
ETM 17C	[102]	2	[0.9–1.3]	Plateau value at 1.31 fm. Included systematic error as the difference from the two-state fit.

Table 195: Control of excited state contamination in determinations of g_A^q . The comma-separated list of numbers in square brackets denote the range of source-sink separations τ (in fermi) at each value of the bare coupling.

Collab.	Ref.	N_f	a [fm]	Description
JLQCD 18	[82]	2+1	0.11	Discretization effects are estimated to be $O(\Lambda_{QCD}^2 a^2) \sim 8\%$ with $\Lambda_{QCD} \sim 500$ MeV. This error is neglected for σ_s as it is much smaller than the overall uncertainty.
$\chi { m QCD}$ 15A	[103]	2+1	0.11,0.08	Joint continuum, chiral and volume fit with a linear term in a^2 .
$\chi { m QCD} \ 13{ m A}$	[104]	2+1	0.11	Not estimated.
JLQCD 12A	[105]	2+1	0.11	Discretization effects are estimated at 9% taking $O(\Lambda_{QCD}^2 a^2)$ with $\Lambda_{QCD} \approx 500$ MeV. This error is neglected as this is much smaller than the statistical accuracy.
Engelhardt 12	[101]	2+1	0.12	Estimate 3% discretization error based on a study of the nucleon mass in Ref. [106].
ETM 16A	[107]	2	0.09	Uncertainty in the fixing the lattice spacing is given based on the analysis of Ref. [108].
RQCD 16	[109]	2	0.08,0.07,0.06	No significant discretization effects observed.
MILC 12C	[110]	2+1+1	0.15,0.12,0.09,0.06	Combined chiral and continuum fit with an a^2 term. Coefficient constrained with a Bayesian prior with a 1 standard deviation width corresponding to a 10% effect at $a=0.12$ fm.
MILC 12C	[110]	2+1	0.12,0.09,0.06	Combined chiral and continuum fit with an a^2 term. Coefficient constrained with a Bayesian prior with a 1 standard deviation width corresponding to a 10% effect at $a=0.12$ fm.
MILC 09D	[111]	2+1	0.12,0.09,0.06	Combined chiral and continuum fit with an a^2 term. Coefficient constrained with a Bayesian prior with a 1 standard deviation width corresponding to a 10% effect at $a=0.12$ fm.

Table 196: Continuum extrapolation/estimation of lattice artifacts in the determinations of $\sigma_{\pi N}$ and σ_s . The calculations of σ_s by MILC 12C and MILC 09D employ a hybrid approach, while all other results were obtained from a direct calculation.

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} \left[\mathrm{MeV} \right]$	Description
JLQCD 18	[82]	2+1	293	$\sigma_{\pi N}$: Fit including linear and quadratic terms in M_{π}^2 . Difference with a linear fit taken as the systematic error. σ_s : Linear fit in M_{π}^2 . Difference with a constant fit taken as the systematic error.
$\chi { m QCD}$ 15A	[103]	2+1	139,300	Joint continuum, chiral and volume fit. Partially quenched analysis with $M_{\pi} \in [114, 400]$ MeV. $\sigma_{\pi N}$: employ partially quenched $SU(2)$ χ PT [106, 112, 113]. σ_s : linear terms in the sea and valence M_{π}^2 are included. Unitary M_{π} given.
χ QCD 13A	[104]	2+1	331	Partially quenched study with a valence $M_{\pi,min} = 250$ MeV. Combined chiral and excited state fit. Linear fit in the valence light-quark mass (and m_s to interpolate to the physical strange-quark mass). Unitary M_{π} given.
JLQCD 12A	[105]	2+1	300	Linear fit in m_{ud} (and m_s to interpolate to the physical strange quark mass). Difference with $SU(3)$ HB χ PT [114] fit taken as the systematic error.
Engelhardt 12	[101]	2+1	293	Linear fit in M_{π}^2 . Systematic error of 6% estimated from comparing with a constant fit.
ETM 16A	[107]	2	130	Simulate close to M_{π}^{phys} .
RQCD 16	[109]	2	280,150,260	$\sigma_{\pi N}$: Rescaling with M_{π}^2 of the result at lightest M_{π} . Result is consistent with (but the error more conservative than) performing a baryon χ PT [115, 116] fit to $M_{\pi} \leq 420$ MeV. σ_s : Linear fit in M_{π}^2 .

Table 197: Chiral extrapolation/minimum pion mass in direct determinations of $\sigma_{\pi N}$ and σ_s .

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} \left[\mathrm{MeV} \right]$	Description
MILC 12C	[110]	2+1+1	131,216,221,329	Combined chiral and continuum fit with a linear term in m_{ud} . Bayesian prior used to constrain the coefficient with the central value taken from the $N_f = 2+1$ analysis and a width equal to the error of the slope. A 7% error is added to account for omitted higher order terms in χ PT.
MILC 12C	[110]	2+1	269,247,224	Combined chiral and continuum fit with a linear term in m_{ud} . A 7% error is added to account for omitted higher order terms in χ PT.
MILC 09D	[111]	2+1	269,247,224	Combined chiral and continuum fit with a linear term in m_{ud} . A 7% error is added to account for omitted higher order terms in χ PT.

Table 198: Chiral extrapolation/minimum pion mass in hybrid calculations of σ_s .

Collab.	Ref.	N_f	$L \; [{ m fm}]$	$M_{\pi, \min} L$	Description
JLQCD 18	[82]	2+1	1.8-2.7	4.0	FVE expected to be small for $M_{\pi}L \gtrsim 4$.
$\chi { m QCD~15A}$	[103]	2+1	2.7–5.5, 2.6	3.9, 4.0	Joint continuum, chiral and volume fit with leading order FV terms included for $\sigma_{\pi N}$ and a $e^{-M_{\pi}L}$ term included for σ_s . Unitary $M_{\pi,min}L$ given.
χ QCD 13A	[104]	2+1	2.7	4.6	Not estimated. Unitary $M_{\pi,min}L$ given.
JLQCD 12A	[105]	2+1	1.8-2.7	4.1	No significant effects observed when comparing $L/a=16$ and 24 for the two lightest M_{π} .
Engelhardt 12	[101]	2+1	2.5	3.7	A generic 10% FVE is added based on possible FVE in g_A .
ETM 16A	[107]	2	4.5	3.0	FVE from baryon χ PT following Ref. [117] estimated to lead to a 5% increase in $\sigma_{\pi N}$, included as a systematic. This increase is taken as an upper bound on FVE for σ_s .
RQCD 16	[109]	2	2.6, 1.7–4.5, 1.9–2.9	3.7, 3.5, 3.8	No significant FVE seen for $LM_{\pi}=3.4-6.7$ at $M_{\pi}=290$ MeV.
MILC 12C	[110]	2+1+1	2.5-4.9, 2.9-4.9, 2.8-4.2, 2.7	3.3, 5.4, 4.7, 4.5	Estimated to be 2%, less than for the $N_f = 2 + 1$ analysis, since the volumes are larger.
MILC 12C	[110]	2+1	2.3–2.8, 2.3–3.4, 2.8–3.8	3.8, 4.2, 4.3	Estimated to be 3%, based on FVE observed in the nucleon mass.
MILC 09D	[111]	2+1	2.3–2.8, 2.3–3.4, 2.8–3.8	3.8, 4.2, 4.3	Estimated to be 3%, based on FVE observed in the nucleon mass.

Table 199: Finite-volume effects in the determinations of $\sigma_{\pi N}$ and σ_s . The calculations of σ_s by MILC 12C and MILC 09D employ a hybrid approach, while all other results were obtained from a direct calculation.

Collab.	Ref.	N_f	Ren.	Description
JLQCD 18	[82]	2+1	na/na	
$\chi { m QCD} \ 15{ m A}$	[103]	2+1	na/na	
$\chi \text{QCD 13A}$	[104]	2+1	-/na	
JLQCD 12A	[105]	2+1	-/na	
Engelhardt 12	[101]	2+1	-/na	Flavour mixing due to residual chiral symmetry breaking for a DW action estimated to be 1% and neglected.
ETM 16A	[107]	2	na/na	
RQCD 16	[109]	2	na/NP	Flavour mixing occurs due to breaking of chiral symmetry when evaluating σ_s . The ratio of Z^{ns}/Z^s is computed nonperturbatively.
MILC 12C	[110]	2+1+1	2-loop	$\langle N s\bar{s} N\rangle$ computed. Z_m for Asqtad action applied. The 1-loop factors for Asqtad and HISQ are very similar, cf Refs. [118] and [119].
MILC 12C	[110]	2+1	2-loop	$\langle N s\bar{s} N\rangle$ computed. Z_m from Ref. [119].
MILC 09D	[111]	2+1	na	

Table 200: Renormalization for determinations of $\sigma_{\pi N}$ and σ_s . The calculations of σ_s by MILC 12C and MILC 09D employ a hybrid approach. For the remaining direct determinations, the type of renormalization (Ren.) is given for $\sigma_{\pi N}$ first and σ_s second. The label 'na' indicates that no renormalization is required.

Collab.	Ref.	N_f	au [fm]	Description
JLQCD 18	[82]	2+1	all/all	Simultaneous plateau fit for $\tau/a \gtrsim 11$.
$\chi { m QCD} \ 15{ m A}$	[103]	2+1	[0.9–1.3,0.9–1.4] [1.0–1.2]/all	Two-state fit with $t \in [0.2, \tau - 0.2]$ fm.
χ QCD 13A	[104]	2+1	-/all	Combined chiral and excited state fit using the summation method with $\tau/a=7-14$.
JLQCD 12A	[105]	2+1	-/all	Simultaneous plateau fit to $\tau/a \in [12, 23]$ with $t/a \in [5, \tau - 5]$.
Engelhardt 1	2 [101]	2+1	-/all	Ratio of three-point to two-point function averaged over $t/a \in [3,7]$ for $\tau/a = 10$.
ETM 16A	[107]	2	[0.9–1.7]/all	Plateau fit to $\tau=1.7$ fm. Systematic error estimated from plateau fits for $\tau\geq 1.5$ fm. Comparison made with 2-state fits and the summation method.
RQCD 16	[109]	2	[1.1] [1.1–1.2,0.5–1.2,0.6–1.1] [1.1,1.1,1.1]/all	Two state (simultaneous plateau) fit for the connected (disconnected) terms.
MILC 12C	[110]	2+1+1	all	A modified nucleon correlator is fitted including a positive and negative parity state starting from ≈ 0.6 fm. A 5% error for possible excited state contamination is included.
MILC 12C	[110]	2+1	all	A modified nucleon correlator is fitted including a positive and negative parity state starting from ≈ 0.6 fm. A 5% error for possible excited state contamination is included.
MILC 09D	[111]	2+1	all	A modified nucleon correlator is fitted including a positive and negative parity state starting from ≈ 0.6 fm. A 10% error for possible excited state contamination is included.

Table 201: Control of excited state contamination in determinations of $\sigma_{\pi N}$ and of σ_s . The calculations of σ_s by MILC 12C and MILC 09D employ a hybrid approach, while all other results were obtained from a direct calculation. The comma-separated list of numbers in square brackets denote the range of source-sink separations τ (in fermi) at each value of the bare coupling. For the direct determinations, the range of τ for the connected (disconnected) contributions to the three-point correlation functions is given first (second). If a wide range of τ values is available this is indicated by "all" in the table.

Collab.	Ref.	N_f	a [fm]	Description
ETM 14A	[120]	2+1+1	0.09,0.08,0.06	No significant discretization effects are observed. M_N used to fix the lattice spacing.
BMW 15	[121]	2+1	0.12,0.09,0.08, 0.07,0.05	Combined continuum, chiral and volume fit to $M_{N,\Omega,\pi,K}$ within an extended frequentist method. For M_N , $O(\alpha a)$ or $O(a^2)$ errors on the physical limit are included. Lattice spacing fixed using M_{Ω} . Shift when including discretization errors on the slope of M_N with $m_{ud,s}$, fixing M_N to expt., included in systematic error.
Junnarkar 13	[122]	2+1	0.12,0.09	Discretization effects are not resolved.
Shanahan 12	[123]	2+1	0.09	Two results quoted, differing on setting the lat- tice spacing per ensemble or in the chiral limit.
JLQCD 12A	[105]	2+1	0.11	Discretization effects are estimated to be $O(\Lambda_{QCD}^2 a^2) \sim 9\%$ with $\Lambda_{QCD} \sim 500$ MeV and neglected as the statistical error is much larger.
QCDSF 11	[124]	2+1	0.08	Not estimated.
BMW 11A	[125]	2+1	0.12,0.08,0.06	Joint continuum and chiral extrapolation of octet baryons masses with $O(a)$, $O(a^2)$ terms or no discretization terms. Final result from consideration of all fit combinations weighted with the fit quality.
Martin Camalich	10[126]	2+1	0.09	Not estimated.
PACS-CS 09	[127]	2+1	0.09	Not estimated.
QCDSF 12	[128]	2	0.08,0.07,0.06	No significant discretization effects observed. M_N is used to fix the lattice spacing.
JLQCD 08B	[129]	2	0.12	Not estimated.

Table 202: Continuum extrapolations/estimation of lattice artifacts in determinations of $\sigma_{\pi N}$ and σ_s from the Feynman-Hellmann method.

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} [\mathrm{MeV}]$	Description
ETM 14A	[120]	2+1+1	261,256,213	Fit using $SU(2)$ HB χ PT to $O(p^3)$ [130]. Error assigned to difference with fit using HB χ PT in SSE to $O(p^4)$ [131].
BMW 15	[121]	2+1	136,131,120,182,219	Combined continuum, chiral and volume fit to $M_{N,\Omega,\pi,K}$ within an extended frequentist method [132]. Terms linear in $m_{ud,s}$ are included and cuts of $M_{\pi} \leq 480$ MeV and $M_{\pi} \leq 320$ MeV are made. Higher order terms in the fit are also considered.
Junnarkar 13	[122]	2+1	380,238	σ_s from M_N with one m_s value above and one below the physical m_s . Weighted average is made of fits to σ_s (including a M_π^2 term) and f_{T_s} (including a M_π or M_π^2 term). Correlations are taken into account.
Shanahan 12	[123]	2+1	296	Fit to baryon octet masses using finite-range regularization of baryon χ PT [133]. Coefficients held fixed in the fit are varied by 10%.
JLQCD 12A	[105]	2+1	300	Only σ_s computed. Reweighting used to vary M_N in a region $m_s' \in [m_s - 25 \mathrm{MeV}, m_s + 25 \mathrm{MeV}]$. Linear fit to extract the slope at physical m_s for two different sea m_s . Linear fit in m_{ud} and m_s . 1-loop $SU(3)$ HB χ PT [114] used to estimate the systematic error.
QCDSF 11	[124]	2+1	328	SU(3) flavour expansion along simulation trajectory with average quark mass held fixed [134]. Fit with linear flavour breaking terms, with systematics from next order terms included in the error.
BMW 11A	[125]	2+1	273,197,321	Joint continuum and chiral extrapolation of octet baryon masses. Fits involving Taylor and Padé expansions and $SU(3)$ baryon χ PT [135, 136] and cuts of $M_{\pi} < 410$ MeV and $M_{\pi} < 550$ MeV. Final result from consideration of all fit combinations weighted with the fit quality.

Table 203: Chiral extrapolation/minimum pion mass in determinations of $\sigma_{\pi N}$ and σ_s from the Feynman-Hellmann method.

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} \left[\mathrm{MeV} \right]$	Description
Martin Camalich 10	[126]	2+1	156	Fit to baryon octet masses using NLO covariant baryon χ PT in the EOMS scheme [137, 138]. Uncertainty from omitted higher order terms estimated as half the difference between LO and NLO.
PACS-CS 09	[127]	2+1	156	Fit M_N with $O(p^3)$ $SU(2)$ HB χ PT [130].
QCDSF 12	[128]	2	478,158,262	Fit M_N to $O(p^4)$ baryon χ PT [139]. Slope at $M_{\pi} = 290$ MeV is fixed from a direct determination of $\sigma_{\pi N}$. Results consistent with $O(p^2)$ and $O(p^3)$ fits.
JLQCD 08B	[129]	2	288	Fit M_N using a reduced form of covariant baryon χ PT [139] with the systematic error determined from $O(p^3)$ and $O(p^4)$ fits.

Table 203: (cntd.) Chiral extrapolation/minimum pion mass in determinations of $\sigma_{\pi N}$ and σ_s from the Feynman-Hellmann method.

Collab.	Ref.	N_f	$L [\mathrm{fm}]$	$M_{\pi,\min}L$	Description
ETM 14A	[120]	2+1+1	1.9–3.0, 2.0–2.6, 2.1–3.1	4.0, 3.4, 3.4	No significant finite-volume effects are observed.
BMW 15	[121]	2+1	1.9-5.6, 1.5-5.9, 2.5-4.9, 2.1-4.2, 1.7-3.4	3.9, 3.9, 3.0, 3.9, 3.8	Combined continuum, chiral and volume fit to $M_{N,\Omega,\pi,K}$ within an extended frequentist method with finite-volume corrections following Ref. [140]
Junnarkar 13	[122]	2+1	2.4, 3.6	4.4, 4.1	Not estimated.
Shanahan 12	[123]	2+1	2.9	4.3	Baryons masses are finite-volume corrected [117].
JLQCD 12A	[105]	2+1	1.8-2.7	4.1	No significant effects observed when comparing $L/a=16$ and 24 for the two lightest M_{π} .
QCDSF 11	[124]	2+1	1.8-2.5	4.1	Not estimated.
BMW 11A	[125]	2+1	2.0-3.9, 2.0-3.9, 2.0-2.5	4.1, 3.9, 4.1	FVE found to be small in Ref. [132].
Martin Camalich 10	[126]	2+1	2.9	2.3	Baryons masses are finite-volume corrected using Ref. [141].
PACS-CS 09	[127]	2+1	2.9	2.3	Estimated to be less than 1% in M_N using Ref. [141].
QCDSF 12	[128]	2	1.8, 1.7–3.4, 1.9–2.9	4.4, 2.7, 3.8	Finite-volume corrections are applied [117].
JLQCD 08B	[129]	2	1.9	2.8	Fits with and without FVE of Ref. [117] are used to estimate the systematic error.

Table 204: Finite-volume effects in determinations of $\sigma_{\pi N}$ and σ_s from the Feynman-Hellmann method.

Collab.	Ref.	N_f	$a~[\mathrm{fm}]$	Description
PNDME 18B	[142]	2+1+1	0.15,0.12,0.09,0.06	Connected: Joint continuum, chiral and volume fit with a term linear in a . Disconnected: Joint continuum and chiral fit with a term linear in a .
PNDME 16	[75]	2+1+1	0.12,0.09,0.06	Connected: Joint continuum, chiral and volume fit with a term linear in a . Disconnected contribution neglected.
PNDME 15	[76, 77]	2+1+1	0.12,0.09,0.06	Connected: Joint continuum, chiral and volume fit with a term linear in a . Disconnected strange: Joint continuum and chiral fit with a term linear in a .
JLQCD 18	[82]	2+1	0.11	Discretization effects are estimated to be 8% using $O(\Lambda_{QCD}^2 a^2)$ with $\Lambda_{QCD} \approx 500$ MeV.
ETM 17	[91]	2	0.09	Single lattice spacing.

Table 205: Continuum extrapolations/estimation of lattice artifacts in determinations of g_T^q .

Collab.	Ref.	N_f	$M_{\pi, \mathrm{min}} [\mathrm{MeV}]$	Description
PNDME 18B	[142]	2+1+1	C: 320,225,135 D_t : 320, 235 D_s : 320, 225, 138	Connected: Joint continuum, chiral and volume fit with a term linear in M_{π}^2 . Disconnected: Joint continuum and chiral fit with a term linear in M_{π}^2 .
PNDME 16	[75]	2+1+1	C: 310,225,138	Connected: Joint continuum, chiral and volume fit with a term linear in M_{π}^2 .
PNDME 15	[76, 77]	2+1+1	C : 310,225,138 D_s : 310, 228	Connected: Joint continuum, chiral and volume fit with a term linear in M_{π}^2 . Disconnected: Joint continuum and chiral fit with a term linear in M_{π}^2 .
JLQCD 18	[82]	2+1	293	Fit linear in M_{π}^2 .
ETM 17	[91]	2	130	Single simulation at $M_{\pi}=130$ MeV.

Table 206: Chiral extrapolation/minimum pion mass in determinations of g_T^q .

Collab.	Ref.	N_f	$L [\mathrm{fm}]$	$M_{\pi, \min} L$	Description
PNDME 18B	[142]	2+1+1	2.4, 2.9–3.8, 2.8–5.6, 2.8	3.9, 4.4, 3.9, 4.5	Connected: Joint continuum, chiral and volume fit with the term $M_{\pi}^2 e^{-M_{\pi}L}$. Disconnected: Neglect volume dependence.
PNDME 16	[75]	2+1+1	2.9–4.8, 2.8–5.6, 2.8–3.7	5.5, 3.9, 4.4	Connected: Joint continuum, chiral and volume fit with the term $M_{\pi}^2 e^{-M_{\pi}L}$.
PNDME 15	[76, 77]	2+1+1	2.9–4.8, 2.8–5.6, 2.8–3.7	5.5, 3.9, 4.4	Connected: Joint continuum, chiral and volume fit with the term $M_{\pi}^2 e^{-M_{\pi}L}$. Disconnected strange: Neglect volume dependence.
JLQCD 18	[82]	2+1	1.8-2.7	4.0	FV correction expected to be small for $M_{\pi}L \gtrsim 4$.
ETM 17	[91]	2	4.5	3.0	Single simulation with $M_{\pi}L=3.0$.

Table 207: Finite-volume effects in determinations of g_T^q .

Collab.	Ref.	N_f	Ren.
PNDME 18B	[142]	2+1+1	RI-SMOM
PNDME 16	[75]	2+1+1	RI-SMOM
PNDME 15	[76, 77]	2+1+1	RI-SMOM
JLQCD 18	[82]	2+1	NP
ETM 17	[91]	2	RI'-MOM

Table 208: Renormalization in determinations of g_T^q .

Collab.	Ref.	N_f	au [fm]	Description
PNDME 18B	[142]	2+1+1		Connected: three-state fit. Disconnected: constant fit.
PNDME 16	[75]	2+1+1	$ \begin{bmatrix} 1.0 - 1.4, 1.0 - 1.4 \\ [0.9 - 1.2, 0.9 - 1.2, 0.9 - 1.2] \\ [0.9 - 1.4, 0.9 - 1.4] \end{bmatrix} $	Connected: two-state fit.
PNDME 15	[76, 77]	2+1+1	$ \begin{bmatrix} 1.0 - 1.4, 1.0 - 1.4 \\ [0.9 - 1.2, 0.9 - 1.2, 0.9 - 1.2] \\ [0.9 - 1.4, 0.9 - 1.4] \end{bmatrix} $	Connected: two-state fit. Disconnected: two-state fit.
JLQCD 18	[82]	2+1	[1.0-1.54]	Constant fit to all data
ETM 17	[91]	2	[0.9–1.3]	C: Plateau fit to 1.31 fm data D: Plateau fit to 0.75 fm data

Table 209: Control of excited state contamination in determinations of g_T^q . The commaseparated list of numbers in square brackets denote the range of source-sink separations τ (in fermi) at each value of the bare coupling.

References

- [1] [MILC 18] Basak, S. et al., Lattice computation of the electromagnetic contributions to kaon and pion masses, Phys. Rev. **D99** (2019) 034503, [1807.05556].
- [2] [HPQCD 18] A. T. Lytle, C. T. H. Davies, D. Hatton, G. P. Lepage and C. Sturm, Determination of quark masses from $\mathbf{n_f} = \mathbf{4}$ lattice QCD and the RI-SMOM intermediate scheme, Phys. Rev. D98 (2018) 014513, [1805.06225].
- [3] [FNAL/MILC/TUMQCD 18] A. Bazavov et al., Up-, down-, strange-, charm-, and bottom-quark masses from four-flavor lattice QCD, Phys. Rev. **D98** (2018) 054517, [1802.04248].
- [4] [FNAL/MILC 17] A. Bazavov et al., B- and D-meson leptonic decay constants from four-flavor lattice QCD, Phys. Rev. **D98** (2018) 074512, [1712.09262].
- [5] [RM123 17] D. Giusti, V. Lubicz, C. Tarantino, G. Martinelli, S. Sanfilippo, S. Simula et al., Leading isospin-breaking corrections to pion, kaon and charmed-meson masses with Twisted-Mass fermions, Phys. Rev. **D95** (2017) 114504, [1704.06561].
- [6] [BMW 16] Z. Fodor, C. Hoelbling, S. Krieg, L. Lellouch, T. Lippert, A. Portelli et al., Up and down quark masses and corrections to Dashen's theorem from lattice QCD and quenched QED, Phys. Rev. Lett. 117 (2016) 082001, [1604.07112].
- [7] [MILC 16] S. Basak et al., Electromagnetic effects on the light pseudoscalar mesons and determination of m_u/m_d , PoS LATTICE2015 (2016) 259, [1606.01228].
- [8] [TUMQCD 17] N. Brambilla, J. Komijani, A. S. Kronfeld and A. Vairo, Relations between Heavy-light Meson and Quark Masses, Phys. Rev. D97 (2018) 034503, [1712.04983].
- [9] Y. Maezawa and P. Petreczky, Quark masses and strong coupling constant in 2+1 flavor QCD, Phys. Rev. **D94** (2016) 034507, [1606.08798].
- [10] [JLQCD 16] K. Nakayama, B. Fahy and S. Hashimoto, Short-distance charmonium correlator on the lattice with Möbius domain-wall fermion and a determination of charm quark mass, Phys. Rev. **D94** (2016) 054507, [1606.01002].
- [11] P. Gambino, A. Melis and S. Simula, Extraction of heavy-quark-expansion parameters from unquenched lattice data on pseudoscalar and vector heavy-light meson masses, Phys. Rev. **D96** (2017) 014511, [1704.06105].
- [12] [ETM 16B] A. Bussone et al., Mass of the b quark and B -meson decay constants from $N_f = 2+1+1$ twisted-mass lattice QCD, Phys. Rev. **D93** (2016) 114505, [1603.04306].
- [13] [ETM 16] N. Carrasco, P. Lami, V. Lubicz, L. Riggio, S. Simula and C. Tarantino, $K \to \pi$ semileptonic form factors with $N_f = 2 + 1 + 1$ twisted mass fermions, *Phys. Rev.* **D93** (2016) 114512, [1602.04113].
- [14] [QCDSF/UKQCD 16] V. G. Bornyakov, R. Horsley, Y. Nakamura, H. Perlt, D. Pleiter, P. E. L. Rakow et al., Flavour breaking effects in the pseudoscalar meson decay constants, Phys. Lett. B767 (2017) 366–373, [1612.04798].

- [15] S. Dürr et al., Leptonic decay-constant ratio f_K/f_{π} from lattice QCD using 2+1 clover-improved fermion flavors with 2-HEX smearing, Phys. Rev. **D95** (2017) 054513, [1601.05998].
- [16] E. E. Scholz and S. Dürr, Leptonic decay-constant ratio f_K/f_{π} from clover-improved $N_f = 2 + 1$ QCD, PoS LATTICE2016 (2016) 283, [1610.00932].
- [17] [ETMC 17E] C. Alexandrou, A. Athenodorou, K. Cichy, M. Constantinou, D. P. Horkel, K. Jansen et al., Topological susceptibility from twisted mass fermions using spectral projectors and the gradient flow, Phys. Rev. D97 (2018) 074503, [1709.06596].
- [18] [ETM 15E] C. Helmes, C. Jost, B. Knippschild, C. Liu, J. Liu, L. Liu et al., Hadron-hadron interactions from $N_f=2+1+1$ lattice QCD: isospin-2 π - π scattering length, JHEP **09** (2015) 109, [1506.00408].
- [19] Z. Fu and X. Chen, $I = 0 \pi \pi$ s-wave scattering length from lattice QCD, Phys. Rev. **D98** (2018) 014514, [1712.02219].
- [20] [JLQCD 16B] G. Cossu, H. Fukaya, S. Hashimoto, T. Kaneko and J.-I. Noaki, Stochastic calculation of the Dirac spectrum on the lattice and a determination of chiral condensate in 2+1-flavor QCD, PTEP 2016 (2016) 093B06, [1607.01099].
- [21] [JLQCD 17A] S. Aoki, G. Cossu, H. Fukaya, S. Hashimoto and T. Kaneko, *Topological susceptibility of QCD with dynamical Möbius domain wall fermions*, *PTEP* **2018** (2018) 043B07, [1705.10906].
- [22] D. Boito, A. Francis, M. Golterman, R. Hudspith, R. Lewis, K. Maltman et al., Low-energy constants and condensates from ALEPH hadronic τ decay data, Phys. Rev. D92 (2015) 114501, [1503.03450].
- [23] [PACS-CS 13] K. Sasaki, N. Ishizuka, M. Oka and T. Yamazaki, Scattering lengths for two pseudoscalar meson systems, Phys. Rev. D89 (2014) 054502, [1311.7226].
- [24] Z. Fu, Lattice QCD study of the s-wave $\pi\pi$ scattering lengths in the I=0 and 2 channels, Phys. Rev. **D87** (2013) 074501, [1303.0517].
- [25] Z. Fu, Lattice QCD calculation of $\pi\pi$ scattering length, Commun. Theor. Phys. **57** (2012) 78–84, [1110.3918].
- [26] [NPLQCD 11A] S. R. Beane, E. Chang, W. Detmold, H. W. Lin, T. C. Luu, K. Orginos et al., The I=2 pipi S-wave Scattering Phase Shift from Lattice QCD, Phys. Rev. **D85** (2012) 034505, [1107.5023].
- [27] [NPLQCD 05] S. R. Beane, P. F. Bedaque, K. Orginos and M. J. Savage, I=2 pi-pi scattering from fully-dynamical mixed-action lattice QCD, Phys. Rev. **D73** (2006) 054503, [hep-lat/0506013].
- [28] [NPLQCD 06] S. R. Beane, P. F. Bedaque, K. Orginos and M. J. Savage, f_K/f_{π} in full QCD with domain wall valence quarks, Phys. Rev. **D75** (2007) 094501, [hep-lat/0606023].

- [29] [NPLQCD 07] S. R. Beane et al., Precise determination of the I=2 $\pi\pi$ scattering length from mixed-action lattice QCD, Phys. Rev. D77 (2008) 014505, [0706.3026].
- [30] [ETM 17F] C. Alexandrou et al., Pion vector form factor from lattice QCD at the physical point, Phys. Rev. **D97** (2018) 014508, [1710.10401].
- [31] [ETM 16C] L. Liu et al., Isospin-0 $\pi\pi$ s-wave scattering length from twisted mass lattice QCD, Phys. Rev. **D96** (2017) 054516, [1612.02061].
- [32] T. Yagi, S. Hashimoto, O. Morimatsu and M. Ohtani, $I=2\pi-\pi$ scattering length with dynamical overlap fermion, 1108.2970.
- [33] [ETM 09G] X. Feng, K. Jansen and D. B. Renner, The pi+ pi+ scattering length from maximally twisted mass lattice QCD, Phys. Lett. B684 (2010) 268–274, [0909.3255].
- [34] [CP-PACS 04] T. Yamazaki et al., I=2 pi pi scattering phase shift with two flavors of O(a) improved dynamical quarks, Phys. Rev. D70 (2004) 074513, [hep-lat/0402025].
- [35] [RBC/UKQCD 16] N. Garron, R. J. Hudspith and A. T. Lytle, Neutral Kaon Mixing Beyond the Standard Model with $n_f = 2 + 1$ Chiral Fermions Part 1: Bare Matrix Elements and Physical Results, JHEP 11 (2016) 001, [1609.03334].
- [36] [RBC/UKQCD 17] P. A. Boyle, L. Del Debbio, A. Jttner, A. Khamseh, F. Sanfilippo and J. T. Tsang, The decay constants $\mathbf{f_D}$ and $\mathbf{f_{D_s}}$ in the continuum limit of $\mathbf{N_f} = \mathbf{2} + \mathbf{1}$ domain wall lattice QCD, JHEP 12 (2017) 008, [1701.02644].
- [37] B. Blossier, J. Heitger and M. Post, Leptonic D_s decays in two-flavour lattice QCD, Phys. Rev. **D98** (2018) 054506, [1803.03065].
- [38] [FNAL/MILC 14A] A. Bazavov et al., Charmed and light pseudoscalar meson decay constants from four-flavor lattice QCD with physical light quarks, Phys. Rev. **D90** (2014) 074509, [1407.3772].
- [39] [ETM 17D] V. Lubicz, L. Riggio, G. Salerno, S. Simula and C. Tarantino, Scalar and vector form factors of $D \to \pi(K)\ell\nu$ decays with $N_f = 2 + 1 + 1$ twisted fermions, Phys. Rev. **D96** (2017) 054514, [1706.03017].
- [40] [ETM 18] V. Lubicz, L. Riggio, G. Salerno, S. Simula and C. Tarantino, Tensor form factor of $D \to \pi(K)\ell\nu$ and $D \to \pi(K)\ell\ell$ decays with $N_f = 2 + 1 + 1$ twisted-mass fermions, Phys. Rev. **D98** (2018) 014516, [1803.04807].
- [41] [JLQCD 17B] T. Kaneko, B. Colquhoun, H. Fukaya and S. Hashimoto, D meson semileptonic form factors in $N_f = 3$ QCD with Möbius domain-wall quarks, EPJ Web Conf. 175 (2018) 13007, [1711.11235].
- [42] [BMW 12A] S. Borsanyi, S. Dürr, Z. Fodor, C. Hoelbling, S. D. Katz et al., High-precision scale setting in lattice QCD, JHEP 1209 (2012) 010, [1203.4469].
- [43] S. Meinel, $\Lambda_c \to \Lambda l^+ \nu_l$ form factors and decay rates from lattice QCD with physical quark masses, Phys. Rev. Lett. 118 (2017) 082001, [1611.09696].
- [44] S. Meinel, Bottomonium spectrum at order v⁶ from domain-wall lattice QCD: Precise results for hyperfine splittings, Phys. Rev. **D82** (2010) 114502, [1007.3966].

- [45] J. Bijnens and I. Jemos, Hard Pion Chiral Perturbation Theory for $B \to \pi$ and $D \to \pi$ Formfactors, Nucl. Phys. **B840** (2010) 54–66, [1006.1197].
- [46] C. Bernard and J. Komijani, Chiral Perturbation Theory for All-Staggered Heavy-Light Mesons, Phys. Rev. D88 (2013) 094017, [1309.4533].
- [47] [HPQCD 17A] C. Hughes, C. T. H. Davies and C. J. Monahan, New methods for B meson decay constants and form factors from lattice NRQCD, Phys. Rev. D97 (2018) 054509, [1711.09981].
- [48] [HPQCD 11B] R. J. Dowdall et al., The upsilon spectrum and the determination of the lattice spacing from lattice QCD including charm quarks in the sea, Phys. Rev. **D85** (2012) 054509, [1110.6887].
- [49] [FNAL/MILC 16] A. Bazavov et al., $B_{(s)}^0$ -mixing matrix elements from lattice QCD for the Standard Model and beyond, Phys. Rev. **D93** (2016) 113016, [1602.03560].
- [50] W. Detmold and S. Meinel, $\Lambda_b \to \Lambda \ell^+ \ell^-$ form factors, differential branching fraction, and angular observables from lattice QCD with relativistic b quarks, Phys. Rev. **D93** (2016) 074501, [1602.01399].
- [51] [FNAL/MILC 15E] J. A. Bailey et al., $B \to \pi \ell \ell$ form factors for new-physics searches from lattice QCD, Phys. Rev. Lett. 115 (2015) 152002, [1507.01618].
- [52] [FNAL/MILC 11] A. Bazavov et al., B- and D-meson decay constants from three-flavor lattice QCD, Phys.Rev. D85 (2012) 114506, [1112.3051].
- [53] [FNAL/MILC 15D] J. A. Bailey et al., $B \to K l^+ l^-$ decay form factors from three-flavor lattice QCD, Phys. Rev. **D93** (2016) 025026, [1509.06235].
- [54] [HPQCD 13D] C. Bouchard, G. P. Lepage, C. Monahan, H. Na and J. Shigemitsu, Standard Model predictions for $B \to Kll$ with form factors from lattice QCD, Phys. Rev. Lett. 111 (2013) 162002, [1306.0434].
- [55] [HPQCD 17B] J. Harrison, C. Davies and M. Wingate, Lattice QCD calculation of the $B_{(s)} \to D_{(s)}^* \ell \nu$ form factors at zero recoil and implications for $|V_{cb}|$, Phys. Rev. **D97** (2018) 054502, [1711.11013].
- [56] [HPQCD 17] C. J. Monahan, H. Na, C. M. Bouchard, G. P. Lepage and J. Shigemitsu, $B_s \to D_s \ell \nu$ Form Factors and the Fragmentation Fraction Ratio f_s/f_d , Phys. Rev. **D95** (2017) 114506, [1703.09728].
- [57] A. Datta, S. Kamali, S. Meinel and A. Rashed, Phenomenology of $\Lambda_b \to \Lambda_c \tau \overline{\nu}_{\tau}$ using lattice QCD calculations, JHEP 08 (2017) 131, [1702.02243].
- [58] [HPQCD 12D] C. Monahan, J. Shigemitsu and R. Horgan, Matching lattice and continuum axial-vector and vector currents with NRQCD and HISQ quarks, Phys.Rev. D87 (2013) 034017, [1211.6966].
- [59] N. Husung, M. Koren, P. Krah and R. Sommer, SU(3) Yang Mills theory at small distances and fine lattices, EPJ Web Conf. 175 (2018) 14024, [1711.01860].

- [60] K.-I. Ishikawa, I. Kanamori, Y. Murakami, A. Nakamura, M. Okawa and R. Ueno, Non-perturbative determination of the Λ-parameter in the pure SU(3) gauge theory from the twisted gradient flow coupling, JHEP 12 (2017) 067, [1702.06289].
- [61] M. Kitazawa, T. Iritani, M. Asakawa, T. Hatsuda and H. Suzuki, Equation of State for SU(3) Gauge Theory via the Energy-Momentum Tensor under Gradient Flow, Phys. Rev. D94 (2016) 114512, [1610.07810].
- [62] F. Karbstein, M. Wagner and M. Weber, Determination of $\Lambda_{\overline{MS}}^{(n_f=2)}$ and analytic parameterization of the static quark-antiquark potential Determination of $\Lambda_{\overline{MS}}^{(n_f=2)}$ and analytic parametrization of the static quark-antiquark potential, Phys. Rev. **D98** (2018) 114506, [1804.10909].
- [63] H. Takaura, T. Kaneko, Y. Kiyo and Y. Sumino, Determination of α_s from static QCD potential with renormalon subtraction, Phys. Lett. B789 (2019) 598–602, [1808.01632].
- [64] H. Takaura, T. Kaneko, Y. Kiyo and Y. Sumino, Determination of α_s from static QCD potential: OPE with renormalon subtraction and Lattice QCD, JHEP 04 (2019) 155, [1808.01643].
- [65] R. J. Hudspith, R. Lewis, K. Maltman and E. Shintani, α_s from the Lattice Hadronic Vacuum Polarisation, 1804.10286.
- [66] K. Nakayama, H. Fukaya and S. Hashimoto, Lattice computation of the Dirac eigenvalue density in the perturbative regime of QCD, Phys. Rev. D98 (2018) 014501, [1804.06695].
- [67] [ALPHA 17] M. Bruno, M. Dalla Brida, P. Fritzsch, T. Korzec, A. Ramos, S. Schaefer et al., QCD Coupling from a Nonperturbative Determination of the Three-Flavor Λ Parameter, Phys. Rev. Lett. 119 (2017) 102001, [1706.03821].
- [68] [ALPHA 16] M. Dalla Brida, P. Fritzsch, T. Korzec, A. Ramos, S. Sint and R. Sommer, Determination of the QCD Λ-parameter and the accuracy of perturbation theory at high energies, Phys. Rev. Lett. 117 (2016) 182001, [1604.06193].
- [69] M. Dalla Brida, P. Fritzsch, T. Korzec, A. Ramos, S. Sint and R. Sommer, Slow running of the Gradient Flow coupling from 200 MeV to 4 GeV in $N_{\rm f}=3$ QCD, Phys. Rev. **D95** (2017) 014507, [1607.06423].
- [70] S. Necco and R. Sommer, The $N_f = 0$ heavy quark potential from short to intermediate distances, Nucl. Phys. **B622** (2002) 328–346, [hep-lat/0108008].
- [71] A. Gonzalez-Arroyo and M. Okawa, The string tension from smeared Wilson loops at large N, Phys. Lett. B718 (2013) 1524–1528, [1206.0049].
- [72] [PNDME 18] R. Gupta, Y.-C. Jang, B. Yoon, H.-W. Lin, V. Cirigliano and T. Bhattacharya, Isovector Charges of the Nucleon from 2+1+1-flavor Lattice QCD, Phys. Rev. D98 (2018) 034503, [1806.09006].

- [73] [CalLat 18] C. C. Chang et al., A per-cent-level determination of the nucleon axial coupling from quantum chromodynamics, Nature (2018), [1805.12130].
- [74] [CalLat 17] E. Berkowitz et al., An accurate calculation of the nucleon axial charge with lattice QCD, 1704.01114.
- [75] [PNDME 16] T. Bhattacharya, V. Cirigliano, S. Cohen, R. Gupta, H.-W. Lin and B. Yoon, Axial, Scalar and Tensor Charges of the Nucleon from 2+1+1-flavor Lattice QCD, Phys. Rev. **D94** (2016) 054508, [1606.07049].
- [76] [PNDME 15A] T. Bhattacharya, V. Cirigliano, S. Cohen, R. Gupta, A. Joseph, H.-W. Lin et al., Iso-vector and Iso-scalar Tensor Charges of the Nucleon from Lattice QCD, Phys. Rev. D92 (2015) 094511, [1506.06411].
- [77] [PNDME 15] T. Bhattacharya, V. Cirigliano, R. Gupta, H.-W. Lin and B. Yoon, Neutron Electric Dipole Moment and Tensor Charges from Lattice QCD, Phys. Rev. Lett. 115 (2015) 212002, [1506.04196].
- [78] [PNDME 13] T. Bhattacharya, S. D. Cohen, R. Gupta, A. Joseph, H.-W. Lin and B. Yoon, Nucleon Charges and Electromagnetic Form Factors from 2+1+1-Flavor Lattice QCD, Phys. Rev. **D89** (2014) 094502, [1306.5435].
- [79] [Mainz 18] K. Ottnad, T. Harris, H. Meyer, G. von Hippel, J. Wilhelm and H. Wittig, Nucleon charges and quark momentum fraction with $N_f=2+1$ Wilson fermions, in Proceedings, 36th International Symposium on Lattice Field Theory (Lattice 2018): East Lansing, MI, United States, July 22-28, 2018, vol. LATTICE2018, p. 129, 2018. 1809.10638. DOI.
- [80] [PACS 18] K.-I. Ishikawa, Y. Kuramashi, S. Sasaki, N. Tsukamoto, A. Ukawa and T. Yamazaki, Nucleon form factors on a large volume lattice near the physical point in 2+1 flavor QCD, Phys. Rev. **D98** (2018) 074510, [1807.03974].
- [81] [χQCD 18] J. Liang, Y.-B. Yang, T. Draper, M. Gong and K.-F. Liu, Quark spins and Anomalous Ward Identity, Phys. Rev. **D98** (2018) 074505, [1806.08366].
- [82] [JLQCD 18] N. Yamanaka, S. Hashimoto, T. Kaneko and H. Ohki, Nucleon charges with dynamical overlap fermions, Phys. Rev. **D98** (2018) 054516, [1805.10507].
- [83] [LHPC 12] J. R. Green, J. W. Negele, A. V. Pochinsky, S. N. Syritsyn, M. Engelhardt and S. Krieg, Nucleon Scalar and Tensor Charges from Lattice QCD with Light Wilson Quarks, Phys. Rev. D86 (2012) 114509, [1206.4527].
- [84] [LHPC 12A] J. R. Green, M. Engelhardt, S. Krieg, J. W. Negele, A. V. Pochinsky and S. N. Syritsyn, Nucleon Structure from Lattice QCD Using a Nearly Physical Pion Mass, Phys. Lett. B734 (2014) 290–295, [1209.1687].
- [85] [LHPC 10] J. D. Bratt et al., Nucleon structure from mixed action calculations using 2+1 flavors of asqtad sea and domain wall valence fermions, Phys.Rev. **D82** (2010) 094502, [1001.3620].

- [86] [RBC/UKQCD 10D] Y. Aoki, T. Blum, H.-W. Lin, S. Ohta, S. Sasaki, R. Tweedie et al., Nucleon isovector structure functions in (2+1)-flavor QCD with domain wall fermions, Phys. Rev. **D82** (2010) 014501, [1003.3387].
- [87] [RBC/UKQCD 09B] T. Yamazaki, Y. Aoki, T. Blum, H.-W. Lin, S. Ohta, S. Sasaki et al., Nucleon form factors with 2+1 flavor dynamical domain-wall fermions, Phys. Rev. **D79** (2009) 114505, [0904.2039].
- [88] [RBC/UKQCD 08B] T. Yamazaki et al., Nucleon axial charge in 2+1 flavor dynamical lattice QCD with domain wall fermions, Phys.Rev.Lett. 100 (2008) 171602, [0801.4016].
- [89] [LHPC 05] R. G. Edwards et al., The nucleon axial charge in full lattice QCD, Phys. Rev. Lett. 96 (2006) 052001, [hep-lat/0510062].
- [90] [Mainz 17] S. Capitani, M. Della Morte, D. Djukanovic, G. M. von Hippel, J. Hua, B. Jäger et al., Iso-vector axial form factors of the nucleon in two-flavor lattice QCD, Int. J. Mod. Phys. A34 (2019) 1950009, [1705.06186].
- [91] [ETM 17] C. Alexandrou et al., Nucleon scalar and tensor charges using lattice QCD simulations at the physical value of the pion mass, Phys. Rev. **D95** (2017) 114514, [1703.08788].
- [92] [ETM 17B] C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, C. Kallidonis, G. Koutsou et al., Nucleon axial form factors using $N_f=2$ twisted mass fermions with a physical value of the pion mass, Phys. Rev. **D96** (2017) 054507, [1705.03399].
- [93] [ETM 15D] A. Abdel-Rehim et al., Nucleon and pion structure with lattice QCD simulations at physical value of the pion mass, Phys. Rev. **D92** (2015) 114513, [1507.04936].
- [94] [RQCD 14] G. S. Bali, S. Collins, B. Glässle, M. Göckeler, J. Najjar, R. H. Rödl et al., Nucleon isovector couplings from $N_f = 2$ lattice QCD, Phys. Rev. **D91** (2015) 054501, [1412.7336].
- [95] [QCDSF 13] R. Horsley, Y. Nakamura, A. Nobile, P. Rakow, G. Schierholz et al., Nucleon axial charge and pion decay constant from two-flavor lattice QCD, Phys. Lett. B732 (2014) 41–48, [1302.2233].
- [96] [Mainz 12] S. Capitani, M. Della Morte, G. von Hippel, B. Jager, A. Jüttner et al., The nucleon axial charge from lattice QCD with controlled errors, Phys. Rev. D86 (2012) 074502, [1205.0180].
- [97] [RBC 08] H.-W. Lin, T. Blum, S. Ohta, S. Sasaki and T. Yamazaki, Nucleon structure with two flavors of dynamical domain-wall fermions, Phys. Rev. D78 (2008) 014505, [0802.0863].
- [98] [QCDSF 06] A. A. Khan, M. Göckeler, P. Hägler, T. Hemmert, R. Horsley et al., Axial coupling constant of the nucleon for two flavours of dynamical quarks in finite and infinite volume, Phys. Rev. **D74** (2006) 094508, [hep-lat/0603028].

- [99] [PNDME 18A] H.-W. Lin, R. Gupta, B. Yoon, Y.-C. Jang and T. Bhattacharya, Quark contribution to the proton spin from 2+1+1-flavor lattice QCD, Phys. Rev. **D98** (2018) 094512, [1806.10604].
- [100] [χ QCD 15] M. Gong, Y.-B. Yang, J. Liang, A. Alexandru, T. Draper and K.-F. Liu, Strange and charm quark spins from the anomalous Ward identity, Phys. Rev. **D95** (2017) 114509, [1511.03671].
- [101] M. Engelhardt, Strange quark contributions to nucleon mass and spin from lattice QCD, Phys. Rev. **D86** (2012) 114510, [1210.0025].
- [102] [ETM 17C] C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, C. Kallidonis, G. Koutsou et al., Nucleon Spin and Momentum Decomposition Using Lattice QCD Simulations, Phys. Rev. Lett. 119 (2017) 142002, [1706.02973].
- [103] [χ QCD 15A] Y.-B. Yang, A. Alexandru, T. Draper, J. Liang and K.-F. Liu, πN and strangeness sigma terms at the physical point with chiral fermions, *Phys. Rev.* **D94** (2016) 054503, [1511.09089].
- [104] [χQCD 13A] M. Gong et al., Strangeness and charmness content of the nucleon from overlap fermions on 2+1-flavor domain-wall fermion configurations, Phys. Rev. D88 (2013) 014503, [1304.1194].
- [105] [JLQCD 12A] H. Ohki, K. Takeda, S. Aoki, S. Hashimoto, T. Kaneko, H. Matsufuru et al., Nucleon strange quark content from $N_f = 2 + 1$ lattice QCD with exact chiral symmetry, Phys. Rev. **D87** (2013) 034509, [1208.4185].
- [106] A. Walker-Loud et al., Light hadron spectroscopy using domain wall valence quarks on an Asqtad sea, Phys. Rev. **D79** (2009) 054502, [0806.4549].
- [107] [ETM 16A] A. Abdel-Rehim, C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, C. Kallidonis et al., Direct Evaluation of the Quark Content of Nucleons from Lattice QCD at the Physical Point, Phys. Rev. Lett. 116 (2016) 252001, [1601.01624].
- [108] [ETM 15A] A. Abdel-Rehim et al., Simulating QCD at the physical point with $N_f = 2$ Wilson twisted mass fermions at maximal twist, Phys. Rev. **D95** (2015) 094515, [1507.05068].
- [109] [RQCD 16] G. S. Bali, S. Collins, D. Richtmann, A. Schäfer, W. Söldner and A. Sternbeck, *Direct determinations of the nucleon and pion σ terms at nearly physical quark masses*, *Phys. Rev.* **D93** (2016) 094504, [1603.00827].
- [110] [MILC 12C] W. Freeman and D. Toussaint, Intrinsic strangeness and charm of the nucleon using improved staggered fermions, Phys. Rev. D88 (2013) 054503, [1204.3866].
- [111] [MILC 09D] D. Toussaint and W. Freeman, The Strange quark condensate in the nucleon in 2+1 flavor QCD, Phys. Rev. Lett. 103 (2009) 122002, [0905.2432].
- [112] S. R. Beane and M. J. Savage, Nucleons in two flavor partially quenched chiral perturbation theory, Nucl. Phys. A709 (2002) 319–344, [hep-lat/0203003].

- [113] B. C. Tiburzi, Baryons with Ginsparg-Wilson quarks in a staggered sea, Phys. Rev. D72 (2005) 094501, [hep-lat/0508019].
- [114] A. Walker-Loud, Octet baryon masses in partially quenched chiral perturbation theory, Nucl. Phys. A747 (2005) 476–507, [hep-lat/0405007].
- [115] S. Steininger, U.-G. Meissner and N. Fettes, On wave function renormalization and related aspects in heavy fermion effective field theories, JHEP **09** (1998) 008, [hep-ph/9808280].
- [116] T. Becher and H. Leutwyler, Baryon chiral perturbation theory in manifestly Lorentz invariant form, Eur. Phys. J. C9 (1999) 643–671, [hep-ph/9901384].
- [117] [QCDSF/UKQCD 03] A. Ali Khan et al., The Nucleon mass in N(f) = 2 lattice QCD: Finite size effects from chiral perturbation theory, Nucl. Phys. **B689** (2004) 175–194, [hep-lat/0312030].
- [118] C. McNeile, A. Bazavov, C. T. H. Davies, R. J. Dowdall, K. Hornbostel, G. P. Lepage et al., Direct determination of the strange and light quark condensates from full lattice QCD, Phys. Rev. **D87** (2013) 034503, [1211.6577].
- [119] [HPQCD 05] Q. Mason, H. D. Trottier, R. Horgan, C. T. H. Davies and G. P. Lepage, High-precision determination of the light-quark masses from realistic lattice QCD, Phys. Rev. **D73** (2006) 114501, [hep-ph/0511160].
- [120] [ETM 14A] C. Alexandrou, V. Drach, K. Jansen, C. Kallidonis and G. Koutsou, Baryon spectrum with $N_f = 2 + 1 + 1$ twisted mass fermions, Phys. Rev. **D90** (2014) 074501, [1406.4310].
- [121] [BMW 15] S. Dürr et al., Lattice computation of the nucleon scalar quark contents at the physical point, Phys. Rev. Lett. 116 (2016) 172001, [1510.08013].
- [122] P. Junnarkar and A. Walker-Loud, Scalar strange content of the nucleon from lattice QCD, Phys. Rev. D87 (2013) 114510, [1301.1114].
- [123] P. E. Shanahan, A. W. Thomas and R. D. Young, Sigma terms from an SU(3) chiral extrapolation, Phys. Rev. D87 (2013) 074503, [1205.5365].
- [124] [QCDSF/UKQCD 11] R. Horsley, Y. Nakamura, H. Perlt, D. Pleiter, P. E. L. Rakow, G. Schierholz et al., Hyperon sigma terms for 2+1 quark flavours, Phys. Rev. D85 (2012) 034506, [1110.4971].
- [125] [BMW 11A] S. Dürr et al., Sigma term and strangeness content of octet baryons, Phys. Rev. D85 (2012) 014509, [1109.4265].
- [126] J. Martin Camalich, L. S. Geng and M. J. Vicente Vacas, The lowest-lying baryon masses in covariant SU(3)-flavor chiral perturbation theory, Phys. Rev. D82 (2010) 074504, [1003.1929].
- [127] [PACS-CS 09] K.-I. Ishikawa et al., SU(2) and SU(3) chiral perturbation theory analyses on baryon masses in 2+1 flavor lattice QCD, Phys. Rev. **D80** (2009) 054502, [0905.0962].

- [128] [QCDSF 12] G. Bali, P. Bruns, S. Collins, M. Deka, B. Glasle et al., Nucleon mass and sigma term from lattice QCD with two light fermion flavors, Nucl. Phys. **B866** (2013) 1–25, [1206.7034].
- [129] [JLQCD 08B] H. Ohki, H. Fukaya, S. Hashimoto, T. Kaneko, H. Matsufuru, J. Noaki et al., Nucleon sigma term and strange quark content from lattice QCD with exact chiral symmetry, Phys. Rev. D78 (2008) 054502, [0806.4744].
- [130] J. Gasser, M. E. Sainio and A. Svarc, Nucleons with Chiral Loops, Nucl. Phys. B307 (1988) 779–853.
- [131] M. Procura, B. U. Musch, T. Wollenweber, T. R. Hemmert and W. Weise, Nucleon mass: From lattice QCD to the chiral limit, Phys. Rev. D73 (2006) 114510, [hep-lat/0603001].
- [132] [BMW 08] S. Dürr et al., Ab-initio determination of light hadron masses, Science **322** (2008) 1224–1227, [0906.3599].
- [133] R. D. Young, D. B. Leinweber, A. W. Thomas and S. V. Wright, *Chiral analysis of quenched baryon masses*, *Phys. Rev.* **D66** (2002) 094507, [hep-lat/0205017].
- [134] W. Bietenholz et al., Flavour blindness and patterns of flavour symmetry breaking in lattice simulations of up, down and strange quarks, Phys. Rev. **D84** (2011) 054509, [1102.5300].
- [135] J. A. Oller, M. Verbeni and J. Prades, Meson-baryon effective chiral lagrangians to $O(q^{**3})$, JHEP **09** (2006) 079, [hep-ph/0608204].
- [136] M. Frink and U.-G. Meissner, On the chiral effective meson-baryon Lagrangian at third order, Eur. Phys. J. A29 (2006) 255–260, [hep-ph/0609256].
- [137] J. Gegelia and G. Japaridze, *Matching heavy particle approach to relativistic theory*, *Phys. Rev.* **D60** (1999) 114038, [hep-ph/9908377].
- [138] T. Fuchs, J. Gegelia, G. Japaridze and S. Scherer, Renormalization of relativistic baryon chiral perturbation theory and power counting, Phys. Rev. D68 (2003) 056005, [hep-ph/0302117].
- [139] M. Procura, T. R. Hemmert and W. Weise, Nucleon mass, sigma term and lattice QCD, Phys. Rev. **D69** (2004) 034505, [hep-lat/0309020].
- [140] G. Colangelo, A. Fuhrer and C. Haefeli, The pion and proton mass in finite volume, Nucl. Phys. Proc. Suppl. 153 (2006) 41–48, [hep-lat/0512002].
- [141] S. R. Beane, Nucleon masses and magnetic moments in a finite volume, Phys. Rev. **D70** (2004) 034507, [hep-lat/0403015].
- [142] [PNDME 18B] R. Gupta, B. Yoon, T. Bhattacharya, V. Cirigliano, Y.-C. Jang and H.-W. Lin, Flavor diagonal tensor charges of the nucleon from (2+1+1)-flavor lattice QCD, Phys. Rev. **D98** (2018) 091501, [1808.07597].