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Abstract

We review lattice results related to pion, kaon, D-meson, B-meson, and nucleon physics
with the aim of making them easily accessible to the nuclear and particle physics com-
munities. More specifically, we report on the determination of the light-quark masses,
the form factor f4(0) arising in the semileptonic K — 7 transition at zero momentum
transfer, as well as the decay constant ratio fx/f, and its consequences for the CKM ma-
trix elements V., and V4. Furthermore, we describe the results obtained on the lattice
for some of the low-energy constants of SU(2); x SU(2)g and SU(3)r, x SU(3)g Chiral
Perturbation Theory. We review the determination of the By parameter of neutral kaon
mixing as well as the additional four B parameters that arise in theories of physics beyond
the Standard Model. For the heavy-quark sector, we provide results for m, and my; as
well as those for the decay constants, form factors, and mixing parameters of charmed
and bottom mesons and baryons. These are the heavy-quark quantities most relevant for
the determination of CKM matrix elements and the global CKM unitarity-triangle fit.
We review the status of lattice determinations of the strong coupling constant ag. We
consider nucleon matrix elements, and review the determinations of the axial, scalar and
tensor bilinears, both isovector and flavor diagonal. Finally, in this review we have added
a new section reviewing determinations of scale-setting quantities.
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1 Introduction

Flavour physics provides an important opportunity for exploring the limits of the Standard
Model of particle physics and for constraining possible extensions that go beyond it.
As the LHC explores a new energy frontier and as experiments continue to extend the
precision frontier, the importance of flavour physics will grow, both in terms of searches
for signatures of new physics through precision measurements and in terms of attempts to
construct the theoretical framework behind direct discoveries of new particles. Crucial to
such searches for new physics is the ability to quantify strong-interaction effects. Large-
scale numerical simulations of lattice QCD allow for the computation of these effects from
first principles. The scope of the Flavour Lattice Averaging Group (FLAG) is to review
the current status of lattice results for a variety of physical quantities that are important
for flavour physics. Set up in November 2007, it comprises experts in Lattice Field Theory,
Chiral Perturbation Theory and Standard Model phenomenology. Our aim is to provide
an answer to the frequently posed question “What is currently the best lattice value for
a particular quantity?” in a way that is readily accessible to those who are not expert in
lattice methods. This is generally not an easy question to answer; different collaborations
use different lattice actions (discretizations of QCD) with a variety of lattice spacings
and volumes, and with a range of masses for the u- and d-quarks. Not only are the
systematic errors different, but also the methodology used to estimate these uncertainties
varies between collaborations. In the present work, we summarize the main features of
each of the calculations and provide a framework for judging and combining the different
results. Sometimes it is a single result that provides the “best” value; more often it is
a combination of results from different collaborations. Indeed, the consistency of values
obtained using different formulations adds significantly to our confidence in the results.

The first four editions of the FLAG review were made public in 2010 [1], 2013 [2],
2016 [3], and 2019 [4] (and will be referred to as FLAG 10, FLAG 13, FLAG 16, and
FLAG 19, respectively). The fourth edition reviewed results related to both light (u-
, d- and s-), and heavy (c- and b-) flavours. The quantities related to pion and kaon
physics were light-quark masses, the form factor f,(0) arising in semileptonic K —
transitions (evaluated at zero momentum transfer), the decay constants fx and f,, the
By parameter from neutral kaon mixing, and the kaon mixing matrix elements of new
operators that arise in theories of physics beyond the Standard Model. Their implications
for the CKM matrix elements V,,; and V,,4 were also discussed. Furthermore, results were
reported for some of the low-energy constants of SU(2), x SU(2)g and SU(3), x SU(3)r
Chiral Perturbation Theory. The quantities related to D- and B-meson physics that
were reviewed were the masses of the charm and bottom quarks together with the decay
constants, form factors, and mixing parameters of B- and D-mesons. These are the
heavy-light quantities most relevant to the determination of CKM matrix elements and
the global CKM unitarity-triangle fit. The current status of lattice results on the QCD
coupling s was reviewed. Last but not least, we reviewed calculations of nucleon matrix
elements of flavor nonsinglet and singlet bilinear operators, including the nucleon axial
charge g4 and the nucleon sigma term. These results are relevant for constraining Vg4,
for searches for new physics in neutron decays and other processes, and for dark matter
searches.

In the present paper we provide updated results for all the above-mentioned quantities,
but also extend the scope of the review by adding a section on scale setting, Sec. 11. The
motivation for adding this section is that uncertainties in the value of the lattice spacing
a are a major source of error for the calculation of a wide range of quantities. Thus we felt
that a systematic compilation of results, comparing the different approaches to setting
the scale, and summarizing the present status, would be a useful resource for the lattice
community. An additional update is the inclusion, in Sec. 6.2, of a brief description of
the status of lattice calculations of K — 7w decay amplitudes. Although some aspects



of these calculations are not yet at the stage to be included in our averages, they are
approaching this stage, and we felt that, given their phenomenological relevance, a brief
review was appropriate.

For the most precisely determined quantities, isospin breaking—both from the up-
down quark mass difference and from QED—must be included. A short review of methods
used to include QED in lattice-QCD simulations is given in Sec. 3.1.3. An important issue
here is that, in the context of a QED+QCD theory, the separation into QED and QCD
contributions to a given physical quantity is ambiguous—there are several ways of defining
such a separation. This issue is discussed from different viewpoints in the section on
quark masses—see Sec. 3.1.1—and that on scale setting—see Sec. 11. We stress, however,
that the physical observable in QCD-+QED is defined unambiguously. Any ambiguity
only arises because we are trying to separate a well-defined, physical quantity into two
unphysical parts that provide useful information for phenomenology.

Our main results are collected in Tabs. 1, 2, 3, 4 and 5. As is clear from the tables,
for most quantities there are results from ensembles with different values for Ny. In most
cases, there is reasonable agreement among results with Ny =2, 241, and 2+ 1+ 1. As
precision increases, we may some day be able to distinguish among the different values of
Ny, in which case, presumably 2+ 1+ 1 would be the most realistic. (If isospin violation
is critical, then 1+1+1 or 14+ 1+ 141 might be desired.) At present, for some quantities
the errors in the Ny = 2 + 1 results are smaller than those with Ny =2+ 1+1 (e.g., for
m.), while for others the relative size of the errors is reversed. Our suggestion to those
using the averages is to take whichever of the Ny =241 or Ny = 2 + 1 4 1 results has
the smaller error. We do not recommend using the Ny = 2 results, except for studies of
the Ny-dependence of condensates and o, as these have an uncontrolled systematic error
coming from quenching the strange quark.

Our plan is to continue providing FLAG updates, in the form of a peer reviewed paper,
roughly on a triennial basis. This effort is supplemented by our more frequently updated
website http://flag.unibe.ch [5], where figures as well as pdf-files for the individual
sections can be downloaded. The papers reviewed in the present edition have appeared
before the closing date 30 April 2021.!

"Working groups were given the option of including papers submitted to arxiv.org before the closing date
but published after this date. This flexibility allows this review to be up-to-date at the time of submission. A
single paper of this type was included.
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This review is organized as follows. In the remainder of Sec. 1 we summarize the
composition and rules of FLAG and discuss general issues that arise in modern lattice
calculations. In Sec. 2, we explain our general methodology for evaluating the robustness
of lattice results. We also describe the procedures followed for combining results from
different collaborations in a single average or estimate (see Sec. 2.2 for our definition of
these terms). The rest of the paper consists of sections, each dedicated to a set of closely
connected physical quantities, or, for the final section, to the determination of the lattice
scale. Each of these sections is accompanied by an Appendix with explicatory notes.?

In previous editions, we have provided, in an appendix, a glossary summarizing some
standard lattice terminology and describing the most commonly used lattice techniques
and methodologies. Since no significant updates in this information have occurred since
our previous edition, we have decided, in the interests of reducing the length of this
review, to omit this glossary, and refer the reader to FLAG 19 for this information [4].
This appendix also contained, in previous versions, a tabulation of the actions used in the
papers that were reviewed. Since this information is available in the discussions in the
separate sections, and is time-consuming to collect from the sections, we have dropped
these tables. We have, however, kept a short appendix, Appendix B.1, describing the
parameterizations of semileptonic form factors that are used in Sec. 8. Moreover, in
Appendix A, we have added a summary and explanations of acronyms introduced in
the manuscript. Collaborations referred to by an acronym can be identified through the
corresponding bibliographic reference.

1.1 FLAG composition, guidelines and rules

FLAG strives to be representative of the lattice community, both in terms of the geo-
graphical location of its members and the lattice collaborations to which they belong. We
aspire to provide the nuclear- and particle-physics communities with a single source of
reliable information on lattice results.

In order to work reliably and efficiently, we have adopted a formal structure and a set
of rules by which all FLAG members abide. The collaboration presently consists of an
Advisory Board (AB), an Editorial Board (EB), and nine Working Groups (WG). The
role of the Advisory Board is to provide oversight of the content, procedures, schedule and
membership of FLAG, to help resolve disputes, to serve as a source of advice to the EB
and to FLAG as a whole, and to provide a critical assessment of drafts. They also give
their approval of the final version of the preprint before it is rendered public. The Edito-
rial Board coordinates the activities of FLAG, sets priorities and intermediate deadlines,
organizes votes on FLAG procedures, writes the introductory sections, and takes care of
the editorial work needed to amalgamate the sections written by the individual working
groups into a uniform and coherent review. The working groups concentrate on writing
the review of the physical quantities for which they are responsible, which is subsequently
circulated to the whole collaboration for critical evaluation.

The current list of FLAG members and their Working Group assignments is:

e Advisory Board (AB): G. Colangelo, M. Golterman, P. Hernandez, T. Onogi,
and R. Van de Water
e Editorial Board (EB): S. Gottlieb, A. Jiittner, S. Hashimoto, S.R. Sharpe,

and U. Wenger
e Working Groups (coordinator listed first):

— Quark masses T. Blum, A. Portelli, and A. Ramos
— Vs, Vaud T. Kaneko, J. N. Simone, S. Simula, and N. Tantalo

2TIn some cases, in order to keep the length of this review within reasonable bounds, we have dropped these
notes for older data, since they can be found in previous FLAG reviews [1-4] .
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— LEC S. Diirr, H. Fukaya, and U.M. Heller

— Bg P. Dimopoulos, X. Feng, and G. Herdoiza
— fB.y: ID(ys BB Y. Aoki, M. Della Morte, and C. Monahan
— b and ¢ semileptonic and radiative decays E. Lunghi, S. Meinel, and C. Pena
— g S. Sint, R. Horsley, and P. Petreczky
— NME R. Gupta, S. Collins, A. Nicholson, and H. Wittig
— Scale setting R. Sommer, N. Tantalo, and U. Wenger

The most important FLAG guidelines and rules are the following:

e the composition of the AB reflects the main geographical areas in which lattice
collaborations are active, with members from America, Asia/Oceania, and Europe;

e the mandate of regular members is not limited in time, but we expect that a certain
turnover will occur naturally;

e whenever a replacement becomes necessary this has to keep, and possibly improve,
the balance in FLAG, so that different collaborations, from different geographical
areas are represented;

e in all working groups the members must belong to different lattice collaborations;

e a paper is in general not reviewed (nor colour-coded, as described in the next section)
by any of its authors;

e lattice collaborations will be consulted on the colour coding of their calculation;
e there are also internal rules regulating our work, such as voting procedures.

As for FLAG 19, for this review we sought the advice of external reviewers once a
complete draft of the review was available. For each review section, we have asked one
lattice expert (who could be a FLAG alumnus/alumna) and one nonlattice phenomenolo-
gist for a critical assessment. The one exception is the scale-setting section, where only a
lattice expert has been asked to provide input. This is similar to the procedure followed
by the Particle Data Group in the creation of the Review of Particle Physics. The re-
viewers provide comments and feedback on scientific and stylistic matters. They are not
anonymous, and enter into a discussion with the authors of the WG. Our aim with this
additional step is to make sure that a wider array of viewpoints enter into the discussions,
so as to make this review more useful for its intended audience.

1.2 Citation policy

We draw attention to this particularly important point. As stated above, our aim is to
make lattice-QCD results easily accessible to those without lattice expertise, and we are
well aware that it is likely that some readers will only consult the present paper and not
the original lattice literature. It is very important that this paper not be the only one
cited when our results are quoted. We strongly suggest that readers also cite the original
sources. In order to facilitate this, in Tabs. 1, 2, 3, 4, and 5, besides summarizing the
main results of the present review, we also cite the original references from which they
have been obtained. In addition, for each figure we make a bibtex file available on our
webpage [5] which contains the bibtex entries of all the calculations contributing to the
FLAG average or estimate. The bibliography at the end of this paper should also make
it easy to cite additional papers. Indeed, we hope that the bibliography will be one of the
most widely used elements of the whole paper.
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1.3 General issues

Several general issues concerning the present review are thoroughly discussed in Sec. 1.1
of our initial 2010 paper [1], and we encourage the reader to consult the relevant pages.
In the remainder of the present subsection, we focus on a few important points. Though
the discussion has been duly updated, it is similar to that of Sec. 1.2 in the previous three
reviews [2-4].

The present review aims to achieve two distinct goals: first, to provide a description
of the relevant work done on the lattice; and, second, to draw conclusions on the basis of
that work, summarizing the results obtained for the various quantities of physical interest.

The core of the information about the work done on the lattice is presented in the form
of tables, which not only list the various results, but also describe the quality of the data
that underlie them. We consider it important that this part of the review represents a
generally accepted description of the work done. For this reason, we explicitly specify the
quality requirements used and provide sufficient details in appendices so that the reader
can verify the information given in the tables.?

On the other hand, the conclusions drawn on the basis of the available lattice results are
the responsibility of FLAG alone. Preferring to err on the side of caution, in several cases
we draw conclusions that are more conservative than those resulting from a plain weighted
average of the available lattice results. This cautious approach is usually adopted when the
average is dominated by a single lattice result, or when only one lattice result is available
for a given quantity. In such cases, one does not have the same degree of confidence in
results and errors as when there is agreement among several different calculations using
different approaches. The reader should keep in mind that the degree of confidence cannot
be quantified, and it is not reflected in the quoted errors.

Each discretization has its merits, but also its shortcomings. For most topics covered
in this review we have an increasingly broad database, and for most quantities lattice
calculations based on totally different discretizations are now available. This is illustrated
by the dense population of the tables and figures in most parts of this review. Those cal-
culations that do satisfy our quality criteria indeed lead, in almost all cases, to consistent
results, confirming universality within the accuracy reached. The consistency between
independent lattice results, obtained with different discretizations, methods, and simula-
tion parameters, is an important test of lattice QCD, and observing such consistency also
provides further evidence that systematic errors are fully under control.

In the sections dealing with heavy quarks and with ag, the situation is not the same.
Since the b-quark mass can barely be resolved with current lattice spacings, most lattice
methods for treating b quarks use effective field theory at some level. This introduces
additional complications not present in the light-quark sector. An overview of the is-
sues specific to heavy-quark quantities is given in the introduction of Sec. 8. For B- and
D-meson leptonic decay constants, there already exists a good number of different inde-
pendent calculations that use different heavy-quark methods, but there are only a few
independent calculations of semileptonic B, Ay, and D form factors and of B — B mixing
parameters. For a, most lattice methods involve a range of scales that need to be resolved
and controlling the systematic error over a large range of scales is more demanding. The
issues specific to determinations of the strong coupling are summarized in Sec. 9.

Number of sea quarks in lattice simulations:

Lattice-QCD simulations currently involve two, three or four flavours of dynamical quarks.
Most simulations set the masses of the two lightest quarks to be equal, while the strange
and charm quarks, if present, are heavier (and tuned to lie close to their respective physi-
cal values). Our notation for these simulations indicates which quarks are nondegenerate,

3We also use terms like “quality criteria”, “rating”, “colour coding”, etc., when referring to the classification

of results, as described in Sec. 2.
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eg., Ne=24+1if my, =mg <mgand Ny =241+ 1if my = mg < ms; < me. Calcula-
tions with Ny = 2, i.e., two degenerate dynamical flavours, often include strange valence
quarks interacting with gluons, so that bound states with the quantum numbers of the
kaons can be studied, albeit neglecting strange sea-quark fluctuations. The quenched ap-
proximation (Ny = 0), in which all sea-quark contributions are omitted, has uncontrolled
systematic errors and is no longer used in modern lattice simulations with relevance to
phenomenology. Accordingly, we will review results obtained with Ny = 2, Ny =2+ 1,
and Ny = 24141, but omit earlier results with Ny = 0. The only exception concerns the
QCD coupling constant a. Since this observable does not require valence light quarks, it
is theoretically well defined also in the Ny = 0 theory, which is simply pure gluodynamics.
The Ny-dependence of as, or more precisely of the related quantity roAgg, is a theoretical
issue of considerable interest; here r( is a quantity with the dimension of length that sets
the physical scale, as discussed in Sec. 11. We stress, however, that only results with
Ny > 3 are used to determine the physical value of o, at a high scale.

Lattice actions, simulation parameters, and scale setting:

The remarkable progress in the precision of lattice calculations is due to improved al-
gorithms, better computing resources, and, last but not least, conceptual developments.
Examples of the latter are improved actions that reduce lattice artifacts and actions that
preserve chiral symmetry to very good approximation. A concise characterization of the
various discretizations that underlie the results reported in the present review is given in
Appendix A.1 of FLAG 19.

Physical quantities are computed in lattice simulations in units of the lattice spacing
so that they are dimensionless. For example, the pion decay constant that is obtained
from a simulation is fra, where a is the spacing between two neighboring lattice sites.
(All simulations with results quoted in this review use hypercubic lattices, i.e., with the
same spacing in all four Euclidean directions.) To convert these results to physical units
requires knowledge of the lattice spacing a at the fixed values of the bare QCD parameters
(quark masses and gauge coupling) used in the simulation. This is achieved by requir-
ing agreement between the lattice calculation and experimental measurement of a known
quantity, which thus “sets the scale” of a given simulation. Given the central importance
of this procedure, we include in this edition of FLAG a dedicated section, Sec. 11, dis-
cussing the issues and results.

Renormalization and scheme dependence:

Several of the results covered by this review, such as quark masses, the gauge coupling,
and B-parameters, are for quantities defined in a given renormalization scheme and at
a specific renormalization scale. The schemes employed (e.g., regularization-independent
MOM schemes) are often chosen because of their specific merits when combined with
the lattice regularization. For a brief discussion of their properties, see Appendix A.3 of
FLAG 19. The conversion of the results obtained in these so-called intermediate schemes
to more familiar regularization schemes, such as the MS-scheme, is done with the aid
of perturbation theory. It must be stressed that the renormalization scales accessible in
simulations are limited, because of the presence of an ultraviolet (UV) cutoff of ~ 7/a.
To safely match to MS, a scheme defined in perturbation theory, Renormalization Group
(RG) running to higher scales is performed, either perturbatively or nonperturbatively
(the latter using finite-size scaling techniques).

Extrapolations:

Because of limited computing resources, lattice simulations are often performed at unphys-
ically heavy pion masses, although results at the physical point have become increasingly
common. Further, numerical simulations must be done at nonzero lattice spacing, and
in a finite (four-dimensional) volume. In order to obtain physical results, lattice data
are obtained at a sequence of pion masses and a sequence of lattice spacings, and then
extrapolated to the physical pion mass and to the continuum limit. In principle, an ex-
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trapolation to infinite volume is also required. However, for most quantities discussed in
this review, finite-volume effects are exponentially small in the linear extent of the lattice
in units of the pion mass, and, in practice, one often verifies volume independence by
comparing results obtained on a few different physical volumes, holding other parameters
fixed. To control the associated systematic uncertainties, these extrapolations are guided
by effective theories. For light-quark actions, the lattice-spacing dependence is described
by Symanzik’s effective theory [121, 122]; for heavy quarks, this can be extended and/or
supplemented by other effective theories such as Heavy-Quark Effective Theory (HQET).
The pion-mass dependence can be parameterized with Chiral Perturbation Theory (xPT),
which takes into account the Nambu-Goldstone nature of the lowest excitations that oc-
cur in the presence of light quarks. Similarly, one can use Heavy-Light Meson Chiral
Perturbation Theory (HMyPT) to extrapolate quantities involving mesons composed of
one heavy (b or ¢) and one light quark. One can combine Symanzik’s effective theory with
xPT to simultaneously extrapolate to the physical pion mass and the continuum; in this
case, the form of the effective theory depends on the discretization. See Appendix A.4 of
FLAG 19 for a brief description of the different variants in use and some useful references.
Finally, xPT can also be used to estimate the size of finite-volume effects measured in
units of the inverse pion mass, thus providing information on the systematic error due to
finite-volume effects in addition to that obtained by comparing simulations at different
volumes.

Ezcited-state contamination:

In all the hadronic matrix elements discussed in this review, the hadron in question is
the lightest state with the chosen quantum numbers. This implies that it dominates the
required correlation functions as their extent in Euclidean time is increased. Excited-state
contributions are suppressed by e *FA7 where AF is the gap between the ground and
excited states, and A7 the relevant separation in Euclidean time. The size of AE depends
on the hadron in question, and in general is a multiple of the pion mass. In practice, as
discussed at length in Sec. 10, the contamination of signals due to excited-state contribu-
tions is a much more challenging problem for baryons than for the other particles discussed
here. This is in part due to the fact that the signal-to-noise ratio drops exponentially for
baryons, which reduces the values of A7 that can be used.

Critical slowing down:

The lattice spacings reached in recent simulations go down to 0.05 fm or even smaller. In
this regime, long autocorrelation times slow down the sampling of the configurations [123—
132]. Many groups check for autocorrelations in a number of observables, including the
topological charge, for which a rapid growth of the autocorrelation time is observed with
decreasing lattice spacing. This is often referred to as topological freezing. A solution to
the problem consists in using open boundary conditions in time [133], instead of the more
common antiperiodic ones. More recently, two other approaches have been proposed, one
based on a multiscale thermalization algorithm [134, 135] and another based on defining
QCD on a nonorientable manifold [136]. The problem is also touched upon in Sec. 9.2.1,
where it is stressed that attention must be paid to this issue. While large scale simula-
tions with open boundary conditions are already far advanced [137], few results reviewed
here have been obtained with any of the above methods. It is usually assumed that the
continuum limit can be reached by extrapolation from the existing simulations, and that
potential systematic errors due to the long autocorrelation times have been adequately
controlled. Partially or completely frozen topology would produce a mixture of different
0 vacua, and the difference from the desired 6§ = 0 result may be estimated in some cases
using chiral perturbation theory, which gives predictions for the #-dependence of the phys-
ical quantity of interest [138, 139]. These ideas have been systematically and successfully
tested in various models in [140, 141], and a numerical test on MILC ensembles indicates
that the topology dependence for some of the physical quantities reviewed here is small,

19



consistent with theoretical expectations [142].

Simulation algorithms and numerical errors:

Most of the modern lattice-QCD simulations use exact algorithms such as those of Refs. [143,
144], which do not produce any systematic errors when exact arithmetic is available. In
reality, one uses numerical calculations at double (or in some cases even single) precision,
and some errors are unavoidable. More importantly, the inversion of the Dirac operator is
carried out iteratively and it is truncated once some accuracy is reached, which is another
source of potential systematic error. In most cases, these errors have been confirmed to be
much less than the statistical errors. In the following we assume that this source of error
is negligible. Some of the most recent simulations use an inexact algorithm in order to
speed up the computation, though it may produce systematic effects. Currently available
tests indicate that errors from the use of inexact algorithms are under control [145].

2 Quality criteria, averaging and error estimation

The essential characteristics of our approach to the problem of rating and averaging
lattice quantities have been outlined in our first publication [1]. Our aim is to help the
reader assess the reliability of a particular lattice result without necessarily studying the
original article in depth. This is a delicate issue, since the ratings may make things appear
simpler than they are. Nevertheless, it safeguards against the possibility of using lattice
results, and drawing physics conclusions from them, without a critical assessment of the
quality of the various calculations. We believe that, despite the risks, it is important to
provide some compact information about the quality of a calculation. We stress, however,
the importance of the accompanying detailed discussion of the results presented in the
various sections of the present review.

2.1 Systematic errors and colour code

The major sources of systematic error are common to most lattice calculations. These
include, as discussed in detail below, the chiral, continuum, and infinite-volume extrap-
olations. To each such source of error for which systematic improvement is possible we
assign one of three coloured symbols: green star, unfilled green circle (which replaced
in Ref. [2] the amber disk used in the original FLAG review [1]) or red square. These
correspond to the following ratings:
the parameter values and ranges used to generate the data sets allow for a satisfac-
tory control of the systematic uncertainties;
the parameter values and ranges used to generate the data sets allow for a reasonable
attempt at estimating systematic uncertainties, which however could be improved;
m the parameter values and ranges used to generate the data sets are unlikely to allow
for a reasonable control of systematic uncertainties.
The appearance of a red tag, even in a single source of systematic error of a given lattice
result, disqualifies it from inclusion in the global average.

Note that in the first two editions [1, 2], FLAG used the three symbols in order to rate
the reliability of the systematic errors attributed to a given result by the paper’s authors.
Starting with FLAG 16 [3] the meaning of the symbols has changed slightly—they now
rate the quality of a particular simulation, based on the values and range of the chosen
parameters, and its aptness to obtain well-controlled systematic uncertainties. They do
not rate the quality of the analysis performed by the authors of the publication. The
latter question is deferred to the relevant sections of the present review, which contain
detailed discussions of the results contributing (or not) to each FLAG average or estimate.

For most quantities the colour-coding system refers to the following sources of system-
atic errors: (i) chiral extrapolation; (ii) continuum extrapolation; (iii) finite volume. As
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we will see below, renormalization is another source of systematic uncertainties in several
quantities. This we also classify using the three coloured symbols listed above, but now
with a different rationale: they express how reliably these quantities are renormalized,
from a field-theoretic point of view (namely, nonperturbatively, or with 2-loop or 1-loop
perturbation theory).

Given the sophisticated status that the field has attained, several aspects, besides those
rated by the coloured symbols, need to be evaluated before one can conclude whether a
particular analysis leads to results that should be included in an average or estimate. Some
of these aspects are not so easily expressible in terms of an adjustable parameter such
as the lattice spacing, the pion mass or the volume. As a result of such considerations,
it sometimes occurs, albeit rarely, that a given result does not contribute to the FLAG
average or estimate, despite not carrying any red tags. This happens, for instance, when-
ever aspects of the analysis appear to be incomplete (e.g., an incomplete error budget), so
that the presence of inadequately controlled systematic effects cannot be excluded. This
mostly refers to results with a statistical error only, or results in which the quoted error
budget obviously fails to account for an important contribution.

Of course, any colour coding has to be treated with caution; we emphasize that the
criteria are subjective and evolving. Sometimes, a single source of systematic error domi-
nates the systematic uncertainty and it is more important to reduce this uncertainty than
to aim for green stars for other sources of error. In spite of these caveats, we hope that
our attempt to introduce quality measures for lattice simulations will prove to be a useful
guide. In addition, we would like to stress that the agreement of lattice results obtained
using different actions and procedures provides further validation.

2.1.1 Systematic effects and rating criteria

The precise criteria used in determining the colour coding are unavoidably time-dependent;
as lattice calculations become more accurate, the standards against which they are mea-
sured become tighter. For this reason FLAG reassesses criteria with each edition and as
a result some of the quality criteria (the one on chiral extrapolation for instance) have
been tightened up over time [1-4].

In the following, we present the rating criteria used in the current report. While these
criteria apply to most quantities without modification there are cases where they need
to be amended or additional criteria need to be defined. For instance, when discussing
results obtained in the e-regime of chiral perturbation theory in Sec. 5 the finite volume
criterion listed below for the p-regime is no longer appropriate.* Similarly, the discussion
of the strong coupling constant in Sec. 9 requires tailored criteria for renormalization,
perturbative behaviour, and continuum extrapolation. Finally, in the section on nuclear
matrix elements, Sec. 10, the chiral extrapolation criterion is made slightly stronger, and
a new criterion is adopted for excited-state contributions. In such cases, the modified
criteria are discussed in the respective sections. Apart from only a few exceptions the
following colour code applies in the tables:

e Chiral extrapolation:
My min < 200 MeV, with three or more pion masses used in the extrapolation
or two values of M, with one lying within 10 MeV of 135MeV (the physical
neutral pion mass) and the other one below 200 MeV
200 MeV < My min < 400 MeV, with three or more pion masses used in the
extrapolation
or two values of M, with My nin < 200 MeV
or a single value of M, lying within 10 MeV of 135 MeV (the physical neutral
pion mass)

*We refer to Sec. 5.1 for an explanation of the various regimes of chiral perturbation theory.
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m otherwise

This criterion is unchanged from FLAG 19. In Sec. 10 the upper end of the range
for My min in the green circle criterion is lowered to 300 MeV, as in FLAG 19.

e Continuum extrapolation:

at least three lattice spacings and at least two points below 0.1 fm and a range
of lattice spacings satisfying [amax/@min]> > 2
at least two lattice spacings and at least one point below 0.1 fm and a range of
lattice spacings satisfying [amax/@min]? > 1.4
m otherwise
It is assumed that the lattice action is O(a)-improved (i.e., the discretization er-
rors vanish quadratically with the lattice spacing); otherwise this will be explicitly
mentioned. For unimproved actions an additional lattice spacing is required. This
condition is unchanged from FLAG 19.

e Finite-volume effects:

The finite-volume colour code used for a result is chosen to be the worse of the QCD
and the QED codes, as described below. If only QCD is used the QED colour code
is ignored.
— For QCD:

[Mir min/My 5a)? exp{4 — My min[L(My min)|max} < 1, or at least three volumes

(M min/Myr 5] exp{3 — Mz min[L(My min)|max} < 1, or at least two volumes

m otherwise

where we have introduced [L(My min)]max, which is the maximum box size used in
the simulations performed at the smallest pion mass My min, as well as a fiducial
pion mass My fq, which we set to 200 MeV (the cutoff value for a green star in the
chiral extrapolation). It is assumed here that calculations are in the p-regime of
chiral perturbation theory, and that all volumes used exceed 2 fm. The rationale
for this condition is as follows. Finite volume effects contain the universal factor
exp{—L M}, and if this were the only contribution a criterion based on the values
of My minL would be appropriate. However, as pion masses decrease, one must
also account for the weakening of the pion couplings. In particular, 1-loop chiral
perturbation theory [146] reveals a behaviour proportional to M2 exp{—L M,}. Our
condition includes this weakening of the coupling, and ensures, for example, that
simulations with My min = 135 MeV and L M nin = 3.2 are rated equivalently to
those with M min = 200 MeV and L My min = 4.
— For QED (where applicable):

1/([Mz min L( Mz min)]max)™™® < 0.02, or at least four volumes

1/([Mz min L(Mz min)]max)™™* < 0.04, or at least three volumes

m otherwise

Because of the infrared-singular structure of QED, electromagnetic finite-volume
effects decay only like a power of the inverse spatial extent. In several cases like
mass splittings [147, 148] or leptonic decays [149], the leading corrections are known
to be universal, i.e., independent of the structure of the involved hadrons. In such
cases, the leading universal effects can be directly subtracted exactly from the lattice
data. We denote ny;, the smallest power of % at which such a subtraction cannot be
done. In the widely used finite-volume formulation QED; , one always has npyi, < 3
due to the nonlocality of the theory [150]. The QED criteria are used here only in
Sec. 3. Both QCD and QED criteria are unchanged from FLAG 19.

e Tsospin breaking effects (where applicable):

all leading isospin breaking effects are included in the lattice calculation
isospin breaking effects are included using the electro-quenched approximation
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m otherwise

This criterion is used for quantities which are breaking isospin symmetry or which
can be determined at the sub-percent accuracy where isospin breaking effects, if not
included, are expected to be the dominant source of uncertainty. In the current
edition, this criterion is only used for the up- and down-quark masses, and related
quantities (e, @2 and R?). The criteria for isospin breaking effects are unchanged
from FLAG 19.

e Renormalization (where applicable):

nonperturbative
1-loop perturbation theory or higher with a reasonable estimate of truncation
errors

m otherwise

In Ref. [1], we assigned a red square to all results which were renormalized at 1-loop
in perturbation theory. In FLAG 13 [2], we decided that this was too restrictive,
since the error arising from renormalization constants, calculated in perturbation
theory at 1-loop, is often estimated conservatively and reliably. These criteria have
remained unchanged since then.

e Renormalization Group (RG) running (where applicable):

For scale-dependent quantities, such as quark masses or By, it is essential that con-
tact with continuum perturbation theory can be established. Various different meth-
ods are used for this purpose (cf. Appendix A.3 in FLAG 19 [4]): Regularization-
independent Momentum Subtraction (RI/MOM), the Schrodinger functional, and
direct comparison with (resummed) perturbation theory. Irrespective of the par-
ticular method used, the uncertainty associated with the choice of intermediate
renormalization scales in the construction of physical observables must be brought
under control. This is best achieved by performing comparisons between nonper-
turbative and perturbative running over a reasonably broad range of scales. These
comparisons were initially only made in the Schrodinger functional approach, but
are now also being performed in RI/MOM schemes. We mark the data for which
information about nonperturbative running checks is available and give some details,
but do not attempt to translate this into a colour code.

The pion mass plays an important role in the criteria relevant for chiral extrapolation
and finite volume. For some of the regularizations used, however, it is not a trivial matter
to identify this mass. In the case of twisted-mass fermions, discretization effects give rise
to a mass difference between charged and neutral pions even when the up- and down-quark
masses are equal: the charged pion is found to be the heavier of the two for twisted-mass
Wilson fermions (cf. Ref. [151]). In early works, typically referring to Ny = 2 simulations
(e.g., Refs. [151] and [87]), chiral extrapolations are based on chiral perturbation theory
formulae which do not take these regularization effects into account. After the importance
of accounting for isospin breaking when doing chiral fits was shown in Ref. [152], later
works, typically referring to Ny = 2 4+ 1 + 1 simulations, have taken these effects into
account [7]. We use M+ for My min in the chiral-extrapolation rating criterion. On the
other hand, we identify My min with the root mean square (RMS) of M, +, M- and Mo
in the finite-volume rating criterion.

In the case of staggered fermions, discretization effects give rise to several light states
with the quantum numbers of the pion.> The mass splitting among these “taste” partners
represents a discretization effect of O(a?), which can be significant at large lattice spacings
but shrinks as the spacing is reduced. In the discussion of the results obtained with
staggered quarks given in the following sections, we assume that these artifacts are under

SWe refer the interested reader to a number of reviews on the subject [153-157].
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control. We conservatively identify My min with the root mean square (RMS) average
of the masses of all the taste partners, both for chiral-extrapolation and finite-volume
criteria.

In some of the simulations, the fermion formulations employed for the valence quarks
are different from those used for the sea quarks. Even when the fermion formulations are
the same, there are cases where the sea and valence quark masses differ. In such cases, we
use the smaller of the valence-valence and valence-sea M, . values in the finite-volume
criteria, since either of these channels may give the leading contribution depending on
the quantity of interest at the one-loop level of chiral perturbation theory. For the chiral-
extrapolation criteria, on the other hand, we use the unitary point, where the sea and
valence quark masses are the same, to define M, .

The strong coupling «; is computed in lattice QCD with methods differing substan-
tially from those used in the calculations of the other quantities discussed in this review.
Therefore, we have established separate criteria for a; results, which will be discussed in
Sec. 9.2.1.

In the section on nuclear matrix elements, Sec. 10, an additional criterion is used.
This concerns the level of control over contamination from excited states, which is a more
challenging issue for nucleons than for mesons. In response to an improved understanding
of the impact of this contamination, the excited-state contamination criterion has been
made more stringent compared to that in FLAG 19.

2.1.2 Heavy-quark actions

For the b quark, the discretization of the heavy-quark action follows a very different
approach from that used for light flavours. There are several different methods for treating
heavy quarks on the lattice, each with its own issues and considerations. Most of these
methods use Effective Field Theory (EFT) at some point in the computation, either via
direct simulation of the EFT, or by using EFT as a tool to estimate the size of cutoff
errors, or by using EFT to extrapolate from the simulated lattice quark masses up to
the physical b-quark mass. Because of the use of an EFT, truncation errors must be
considered together with discretization errors.

The charm quark lies at an intermediate point between the heavy and light quarks. In
our earlier reviews, the calculations involving charm quarks often treated it using one of
the approaches adopted for the b quark. Since FLAG 16 [3], however, most calculations
simulate the charm quark using light-quark actions. This has become possible thanks to
the increasing availability of dynamical gauge field ensembles with fine lattice spacings.
But clearly, when charm quarks are treated relativistically, discretization errors are more
severe than those of the corresponding light-quark quantities.

In order to address these complications, the heavy-quark section adds an additional,
bipartite, treatment category to the rating system. The purpose of this criterion is to
provide a guideline for the level of action and operator improvement needed in each
approach to make reliable calculations possible, in principle.

A description of the different approaches to treating heavy quarks on the lattice can
be found in Appendix A.1.3 of FLAG 19 [4]. For truncation errors we use HQET power
counting throughout, since this review is focused on heavy-quark quantities involving B
and D mesons rather than bottomonium or charmonium quantities. Here we describe the
criteria for how each approach must be implemented in order to receive an acceptable
rating (V') for both the heavy-quark actions and the weak operators. Heavy-quark im-
plementations without the level of improvement described below are rated not acceptable
(m). The matching is evaluated together with renormalization, using the renormaliza-
tion criteria described in Sec. 2.1.1. We emphasize that the heavy-quark implementations
rated as acceptable and described below have been validated in a variety of ways, such as
via phenomenological agreement with experimental measurements, consistency between
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independent lattice calculations, and numerical studies of truncation errors. These tests
are summarized in Sec. 8.

Relativistic heavy-quark actions:

at least tree-level O(a) improved action and weak operators
This is similar to the requirements for light-quark actions. All current implementations
of relativistic heavy-quark actions satisfy this criterion.

NRQCD:

tree-level matched through O(1/my,) and improved through O(a?)
The current implementations of NRQCD satisfy this criterion, and also include tree-level
corrections of O(1/m?) in the action.
HQET:

tree-level matched through O(1/my,) with discretization errors starting at O(a?)
The current implementation of HQET by the ALPHA collaboration satisfies this criterion,
since both action and weak operators are matched nonperturbatively through O(1/my,).
Calculations that exclusively use a static-limit action do not satisfy this criterion, since
the static-limit action, by definition, does not include 1/m;, terms. We therefore include
static computations in our final estimates only if truncation errors (in 1/my,) are discussed
and included in the systematic uncertainties.

Light-quark actions for heavy quarks:
discretization errors starting at O(a?) or higher

This applies to calculations that use the twisted-mass Wilson action, a nonperturbatively
improved Wilson action, domain wall fermions or the HISQ action for charm-quark quan-
tities. It also applies to calculations that use these light quark actions in the charm region
and above together with either the static limit or with an HQET-inspired extrapolation to
obtain results at the physical b-quark mass. In these cases, the continuum-extrapolation
criteria described earlier must be applied to the entire range of heavy-quark masses used
in the calculation.

2.1.3 Conventions for the figures

For a coherent assessment of the present situation, the quality of the data plays a key
role, but the colour coding cannot be carried over to the figures. On the other hand,
simply showing all data on equal footing might give the misleading impression that the
overall consistency of the information available on the lattice is questionable. Therefore,
in the figures we indicate the quality of the data in a rudimentary way, using the following
symbols:
B corresponds to results included in the average or estimate (i.e., results that con-
tribute to the black square below);
[J corresponds to results that are not included in the average but pass all quality
criteria;
U corresponds to all other results;
B corresponds to FLAG averages or estimates; they are also highlighted by a gray
vertical band.
The reason for not including a given result in the average is not always the same: the result
may fail one of the quality criteria; the paper may be unpublished; it may be superseded
by newer results; or it may not offer a complete error budget.
Symbols other than squares are used to distinguish results with specific properties and
are always explained in the caption.’

SFor example, for quark-mass results we distinguish between perturbative and nonperturbative renormal-
ization, for low-energy constants we distinguish between the p- and e-regimes, and for heavy-flavour results we
distinguish between those from leptonic and semi-leptonic decays.
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Often, nonlattice data are also shown in the figures for comparison. For these we use
the following symbols:

® corresponds to nonlattice results;

A corresponds to Particle Data Group (PDG) results.

2.2 Averages and estimates

FLAG results of a given quantity are denoted either as averages or as estimates. Here we
clarify this distinction. To start with, both averages and estimates are based on results
without any red tags in their colour coding. For many observables there are enough
independent lattice calculations of good quality, with all sources of error (not merely
those related to the colour-coded criteria), as analyzed in the original papers, appearing
to be under control. In such cases, it makes sense to average these results and propose
such an average as the best current lattice number. The averaging procedure applied to
this data and the way the error is obtained is explained in detail in Sec. 2.3. In those
cases where only a sole result passes our rating criteria (colour coding), we refer to it
as our FLAG average, provided it also displays adequate control of all other sources of
systematic uncertainty.

On the other hand, there are some cases in which this procedure leads to a result that,
in our opinion, does not cover all uncertainties. Systematic errors are by their nature often
subjective and difficult to estimate, and may thus end up being underestimated in one or
more results that receive green symbols for all explicitly tabulated criteria. Adopting a
conservative policy, in these cases we opt for an estimate (or a range), which we consider
as a fair assessment of the knowledge acquired on the lattice at present. This estimate is
not obtained with a prescribed mathematical procedure, but reflects what we consider the
best possible analysis of the available information. The hope is that this will encourage
more detailed investigations by the lattice community.

There are two other important criteria that also play a role in this respect, but that
cannot be colour coded, because a systematic improvement is not possible. These are: i)
the publication status, and %) the number of sea-quark flavours Ny. As far as the former
criterion is concerned, we adopt the following policy: we average only results that have
been published in peer-reviewed journals, i.e., they have been endorsed by referee(s). The
only exception to this rule consists in straightforward updates of previously published
results, typically presented in conference proceedings. Such updates, which supersede the
corresponding results in the published papers, are included in the averages. Note that
updates of earlier results rely, at least partially, on the same gauge-field-configuration
ensembles. For this reason, we do not average updates with earlier results. Nevertheless,
all results are listed in the tables,” and their publication status is identified by the following
symbols:

e Publication status:
A published or plain update of published results
P preprint
C conference contribution

In the present edition, the publication status on the 30th of April 2021 is relevant. If
the paper appeared in print after that date, this is accounted for in the bibliography, but
does not affect the averages.®

As noted above, in this review we present results from simulations with Ny = 2,
Ny =241 and Ny = 2+ 14 1 (except for roAyg where we also give the Ny = 0
result). We are not aware of an a priori way to quantitatively estimate the difference

"Whenever figures turn out to be overcrowded, older, superseded results are omitted. However, all the most
recent results from each collaboration are displayed.
8 As noted above in footnote 1, one exception to this deadline was made, Ref. [61].
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between results produced in simulations with a different number of dynamical quarks.
We therefore average results at fixed Ny separately; averages of calculations with different
Ny are not provided.

To date, no significant differences between results with different values of Ny have
been observed in the quantities listed in Tabs. 1, 2, 3, 4, and 5. In particular, differences
between results from simulations with Ny = 2 and Ny = 2 4+ 1 would reflect Zweig-
rule violations related to strange-quark loops. Although not of direct phenomenological
relevance, the size of such violations is an interesting theoretical issue per se, and one
that can be quantitatively addressed only with lattice calculations. It remains to be
seen whether the status presented here will change in the future, since this will require
dedicated Ny = 2 and Ny = 2 + 1 calculations, which are not a priority of present lattice
work.

The question of differences between results with Ny =2+ 1 and Ny =2+ 1+ 1is
more subtle. The dominant effect of including the charm sea quark is to shift the lattice
scale, an effect that is accounted for by fixing this scale nonperturbatively using physical
quantities. For most of the quantities discussed in this review, it is expected that residual
effects are small in the continuum limit, suppressed by a,(m.) and powers of A2/m?2. Here
A is a hadronic scale that can only be roughly estimated and depends on the process under
consideration. Note that the A?/m? effects have been addressed in Refs. [158-162], and
found to be small for the quantities considered. Assuming that such effects are generically
small, it might be reasonable to average the results from Ny =2+ 1and Ny =24+1+1
simulations, although we do not do so here.

2.3 Averaging procedure and error analysis

In the present report, we repeatedly average results obtained by different collaborations,
and estimate the error on the resulting averages. Here we provide details on how averages
are obtained.

2.3.1 Averaging — generic case

We follow the procedure of the previous two editions [2, 3], which we describe here in full
detail.

One of the problems arising when forming averages is that not all of the data sets are
independent. In particular, the same gauge-field configurations, produced with a given
fermion discretization, are often used by different research teams with different valence-
quark lattice actions, obtaining results that are not really independent. Our averaging
procedure takes such correlations into account.

Consider a given measurable quantity ), measured by M distinct, not necessarily un-
correlated, numerical experiments (simulations). The result of each of these measurement
is expressed as

where z; is the value obtained by the i*"" experiment (i = 1,---, M) and al(a) (for a =
1,--+, E) are the various errors. Typically 02(1) stands for the statistical error and JZ(“)

(o > 2) are the different systematic errors from various sources. For each individual result,
we estimate the total error o; by adding statistical and systematic errors in quadrature:

Qi = z*o;,

04
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With the weight factor of each total error estimated in standard fashion,

o2

Wi = w ) (3)
i=1%

the central value of the average over all simulations is given by

M
LTav = Z-Tzwz (4)
i=1

The above central value corresponds to a x2 weighted average, evaluated by adding
statistical and systematic errors in quadrature. If the fit is not of good quality (x2,;,/dof >
1), the statistical and systematic error bars are stretched by a factor S = /x?/dof.
Next, we examine error budgets for individual calculations and look for potentially
correlated uncertainties. Specific problems encountered in connection with correlations
between different data sets are described in the text that accompanies the averaging. If
there is reason to believe that a source of error is correlated between two calculations, a
100% correlation is assumed. The correlation matrix C;; for the set of correlated lattice
results is estimated by a prescription due to Schmelling [163]. This consists in defining

7 = 2 [ 9

[e3

with Z; running only over those errors of z; that are correlated with the corresponding
errors of the measurement x;. This expresses the part of the uncertainty in z; that is
correlated with the uncertainty in x;. If no such correlations are known to exist, then we
take 0;,; = 0. The diagonal and off-diagonal elements of the correlation matrix are then
taken to be

Ci' = 0'2 (7':1’7M) )
Cij = 04505 (i #7J) - (6)

Finally, the error of the average is estimated by

M M
or = .Y wiw;Cyj (7)
i=1 j=1
and the FLAG average is
Qav = Tay £ Oay . (8)

2.3.2 Nested averaging

We have encountered one case where the correlations between results are more involved,
and a nested averaging scheme is required. This concerns the B-meson bag parameters
discussed in Sec. 8.2. In the following, we describe the details of the nested averaging
scheme. This is an updated version of the section added in the web update of the FLAG
16 report.

The issue arises for a quantity @ that is given by a ratio, Q = Y/Z. In most simula-
tions, both Y and Z are calculated, and the error in () can be obtained in each simulation
in the standard way. However, in other simulations only Y is calculated, with Z taken
from a global average of some type. The issue to be addressed is that this average value
Z has errors that are correlated with those in Q.
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In the example that arises in Sec. 8.2, Q = Bp, Y = Bpf and Z = f3. In one
of the simulations that contribute to the average, Z is replaced by Z, the PDG average
for f% [164] (obtained with an averaging procedure similar to that used by FLAG). This
simulation is labeled with ¢ = 1, so that

Q== (9)

The other simulations have results labeled (), with j > 2. In this set up, the issue is that
Z is correlated with the Q;, j > 2.9
We begin by decomposing the error in ()1 in the same schematic form as above,

) (B)
o o o Yo~
Q=m0 B ... g B 4 2197
7 Z 7 7

(10)

Here the last term represents the error propagating from that in Z, while the others arise
from errors in Y;. For the remaining @Q; (j > 2) the decomposition is as in Eq. (1). The
total error of Q1 then reads

ONE @)\ 2 (B)\ 2 2
Oy, Oy, Oy, Yy
() () e () Y o

while that for the Q; (j > 2) is

sz- = <0;1)>2 + (05»2))2 4+ (O’ﬁE))Z . (12)

Correlations between @Q; and Qy, (j,k > 2) are taken care of by Schmelling’s prescription,
as explained above. What is new here is how the correlations between @1 and Q; (j > 2)
are taken into account.

To proceed, we recall from Eq. (7) that o5 is given by

M
027: Z wlZyw[Z];C[Z] . (13)

i.3'=1

Here the indices ¢ and j' run over the M’ simulations that contribute to Z, which, in
general, are different from those contributing to the results for ). The weights w[Z] and
correlation matrix C[Z] are given an explicit argument Z to emphasize that they refer
to the calculation of this quantity and not to that of Q. C[Z] is calculated using the
Schmelling prescription [Egs. (5)—(7)] in terms of the errors, J[Z]l(-,a), taking into account
the correlations between the different calculations of Z.

We now generalize Schmelling’s prescription for o;;;, Eq. (5), to that for oy, (k > 2),
i.e., the part of the error in ()1 that is correlated with Q. We take

1 / (a) 2 }/12 M/
o =\ = O[]+ D wlzlewlZ) ClZlon (14)

The first term under the square root sums those sources of error in Y7 that are correlated
with Q. Here we are using a more explicit notation from that in Eq. (5), with () < &

9There is also a small correlation between Y; and Z, but we follow the original Ref. [73] and do not take this
into account. Thus, the error in @Q; is obtained by simple error propagation from those in Y; and Z. Ignoring
this correlation is conservative, because, as in the calculation of By, the correlations between Bpf3 and f3
tend to lead to a cancelation of errors. By ignoring this effect we are making a small overestimate of the error
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indicating that the sum is restricted to the values of « for which the error Ug,?) is correlated

with Q. The second term accounts for the correlations within Z with Qy, and is the
nested part of the present scheme. The new matrix C[Z]; j ) is a restriction of the full
correlation matrix C[Z], and is defined as follows. Its diagonal elements are given by

ClZliiresk = (0[Z]ier)? (@=1--- M), (15)
(@[Zver)? = D (0l2]5)2, (16)
() 63k

(@)

where the summation Z/(a) 1 over () is restricted to those o[Z];;" that are correlated

with Q. The off-diagonal elements are

ClZlijrosk = 0lZlinjorolZ]jiek (@ #3), (17)
/
o Zvgon = | > (alZ]5)2, (18)
(a)>j'k

where the summation Z/(a) ok Over (a) is restricted to U[Z]E,O‘) that are correlated with
both Zj/ and Qk-
The last quantity that we need to define is oy;;.

T (19)

where the summation Z/(a) 1 Is restricted to those 0,(60‘) that are correlated with one of

the terms in Eq. (11).

In summary, we construct the correlation matrix C;; using Eq. (6), as in the generic
case, except the expressions for o1, and o1 are now given by Egs. (14) and (19), respec-
tively. All other o;,; are given by the original Schmelling prescription, Eq. (5). In this
way we extend the philosophy of Schmelling’s approach while accounting for the more
involved correlations.
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3 Quark masses

Authors: T. Blum, A. Portelli, A. Ramos

Quark masses are fundamental parameters of the Standard Model. An accurate de-
termination of these parameters is important for both phenomenological and theoretical
applications. The bottom- and charm-quark masses, for instance, are important sources
of parametric uncertainties in several Higgs decay modes. The up-, down- and strange-
quark masses govern the amount of explicit chiral symmetry breaking in QCD. From a
theoretical point of view, the values of quark masses provide information about the flavour
structure of physics beyond the Standard Model. The Review of Particle Physics of the
Particle Data Group contains a review of quark masses [165], which covers light as well as
heavy flavours. Here we also consider light- and heavy-quark masses, but focus on lattice
results and discuss them in more detail. We do not discuss the top quark, however, be-
cause it decays weakly before it can hadronize, and the nonperturbative QCD dynamics
described by present day lattice simulations is not relevant. The lattice determination
of light- (up, down, strange), charm- and bottom-quark masses is considered below in
Secs. 3.1, 3.2, and 3.3, respectively.

Quark masses cannot be measured directly in experiment because quarks cannot be
isolated, as they are confined inside hadrons. From a theoretical point of view, in QCD
with Ny flavours, a precise definition of quark masses requires one to choose a particu-
lar renormalization scheme. This renormalization procedure introduces a renormalization
scale i, and quark masses depend on this renormalization scale according to the Renor-
malization Group (RG) equations. In mass-independent renormalization schemes the RG
equations read

T — ). (20)

where the function 7(g) is the anomalous dimension, which depends only on the value
of the strong coupling oy = g?/(47). Note that in QCD 7(g) is the same for all quark
flavours. The anomalous dimension is scheme dependent, but its perturbative expansion

_\ g—0
~

7(9) — 7 (do+dig*+...) (21)

has a leading coefficient dy = 8/(47)?, which is scheme independent.!’ Equation (20),
being a first order differential equation, can be solved exactly by using Eq. (21) as the
boundary condition. The formal solution of the RG equation reads

9(n) (z
My = 1) 20y )] /2 exp {— [ s } e

where by = (11 — 2N;/3)/(4m)? is the universal leading perturbative coefficient in the
expansion of the 3-function, 3(g) = dg?/dlog u?, which governs the running of the strong
coupling constant near the scale p. The renormalization group invariant (RGI) quark
masses M; are formally integration constants of the RG Eq. (20). They are scale indepen-
dent, and due to the universality of the coefficient dy, they are also scheme independent.
Moreover, they are nonperturbatively defined by Eq. (22). They only depend on the num-
ber of flavours Ny, making them a natural candidate to quote quark masses and compare
determinations from different lattice collaborations. Nevertheless, it is customary in the
phenomenology community to use the MS scheme at a scale 1 = 2 GeV to compare dif-
ferent results for light-quark masses, and use a scale equal to its own mass for the charm
and bottom quarks. In this review, we will quote the final averages of both quantities.

1We follow the conventions of Gasser and Leutwyler [166].
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Results for quark masses are always quoted in the four-flavour theory. Ny =241
results have to be converted to the four-flavour theory. Fortunately, the charm quark is
heavy (Aqcp /m¢)? < 1, and this conversion can be performed in perturbation theory
with negligible (~ 0.2%) perturbative uncertainties. Nonperturbative corrections in this
matching are more difficult to estimate. Since these effects are suppressed by a factor of
1/N¢, and a factor of the strong coupling at the scale of the charm mass, naive power
counting arguments would suggest that the effects are ~ 1%. In practice, numerical non-
perturbative studies [158, 160, 167] have found this power counting argument to be an
overestimate by one order of magnitude in the determination of simple hadronic quan-
tities or the A-parameter. Moreover, lattice determinations do not show any significant
deviation between the Ny = 2+ 1 and Ny = 2+ 1 + 1 simulations. For example, the
difference in the final averages for the mass of the strange quark m, between Ny =241
and Ny =2+ 1+ 1 determinations is about 1.3%, or about one standard deviation.

We quote all final averages at 2 GeV in the MS scheme and also the RGI values (in
the four-flavour theory). We use the exact RG Eq. (22). Note that to use this equation
we need the value of the strong coupling in the MS scheme at a scale i = 2 GeV. All our
results are obtained from the RG equation in the MS scheme and the 5-loop beta function
together with the value of the A-parameter in the four-flavour theory A% = 294(12) MeV
obtained in this review (see Sec. 9). In the uncertainties of the RGI masses we separate
the contributions from the determination of the quark masses and the propagation of the
uncertainty of A%. These are identified with the subscripts m and A, respectively.

Conceptually, all lattice determinations of quark masses contain three basic ingredi-
ents:

1. Tuning the lattice bare-quark masses to match the experimental values of some
quantities. Pseudo-scalar meson masses provide the most common choice, since they
have a strong dependence on the values of quark masses. In pure QCD with N; quark
flavours these values are not known, since the electromagnetic interactions affect
the experimental values of meson masses. Therefore, pure QCD determinations use
model/lattice information to determine the location of the physical point. This is
discussed at length in Sec. 3.1.1.

2. Renormalization of the bare-quark masses. Bare-quark masses determined with the
above-mentioned criteria have to be renormalized. Many of the latest determinations
use some nonperturbatively defined scheme. One can also use perturbation theory
to connect directly the values of the bare-quark masses to the values in the MS
scheme at 2 GeV. Experience shows that 1-loop calculations are unreliable for the
renormalization of quark masses: usually at least two loops are required to have
trustworthy results.

3. If quark masses have been nonperturbatively renormalized, for example, to some
MOM/SF scheme, the values in this scheme must be converted to the phenomeno-
logically useful values in the MS scheme (or to the scheme/scale independent RGI
masses). Either option requires the use of perturbation theory. The larger the en-
ergy scale of this matching with perturbation theory, the better, and many recent
computations in MOM schemes do a nonperturbative running up to 3-4 GeV. Com-
putations in the SF scheme allow us to perform this running nonperturbatively over
large energy scales and match with perturbation theory directly at the electro-weak
scale ~ 100 GeV.

Note that many lattice determinations of quark masses make use of perturbation theory
at a scale of a few GeV.

We mention that lattice-QCD calculations of the b-quark mass have an additional
complication which is not present in the case of the charm and light quarks. At the
lattice spacings currently used in numerical simulations the direct treatment of the b
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quark with the fermionic actions commonly used for light quarks is very challenging.
Only two determinations of the b-quark mass use this approach, reaching the physical
b-quark mass region at two lattice spacings with aM ~ 1. There are a few widely used
approaches to treat the b quark on the lattice, which have been already discussed in the
FLAG 13 review (see Sec. 8 of Ref. [2]). Those relevant for the determination of the
b-quark mass will be briefly described in Sec. 3.3.

3.1 Masses of the light quarks

Light-quark masses are particularly difficult to determine because they are very small (for
the up and down quarks) or small (for the strange quark) compared to typical hadronic
scales. Thus, their impact on typical hadronic observables is minute, and it is difficult to
isolate their contribution accurately.

Fortunately, the spontaneous breaking of SU(3)y, x SU(3)g chiral symmetry provides
observables which are particularly sensitive to the light-quark masses: the masses of the
resulting Nambu-Goldstone bosons (NGB), i.e., pions, kaons, and eta. Indeed, the Gell-
Mann-Oakes-Renner relation [168] predicts that the squared mass of a NGB is directly
proportional to the sum of the masses of the quark and antiquark which compose it,
up to higher-order mass corrections. Moreover, because these NGBs are light, and are
composed of only two valence particles, their masses have a particularly clean statistical
signal in lattice-QCD calculations. In addition, the experimental uncertainties on these
meson masses are negligible. Thus, in lattice calculations, light-quark masses are typically
obtained by renormalizing the input quark mass and tuning them to reproduce NGB
masses, as described above.

3.1.1 The physical point and isospin symmetry

As mentioned in Sec. 2.1, the present review relies on the hypothesis that, at low energies,
the Lagrangian Lqcp + Lqrp describes nature to a high degree of precision. However,
most of the results presented below are obtained in pure QCD calculations, which do
not include QED. Quite generally, when comparing QCD calculations with experiment,
radiative corrections need to be applied. In pure QCD simulations, where the parameters
are fixed in terms of the masses of some of the hadrons, the electromagnetic contributions
to these masses must be discussed. How the matching is done is generally ambiguous
because it relies on the unphysical separation of QCD and QED contributions. In this
section, and in the following, we discuss this issue in detail. A related discussion, in the
context of scale setting, is given in Sec. 11.3. Of course, once QED is included in lattice
calculations, the subtraction of electromagnetic contributions is no longer necessary.

Let us start from the unambiguous case of QCD+QED. As explained in the introduc-
tion of this section, the physical quark masses are the parameters of the Lagrangian such
that a given set of experimentally measured, dimensionful hadronic quantities are repro-
duced by the theory. Many choices are possible for these quantities, but in practice many
lattice groups use pseudoscalar meson masses, as they are easily and precisely obtained
both by experiment, and through lattice simulations. For example, in the four-flavour
case, one can solve the system

Mot (M M, mis, M, ) M7, (23)
M+ (M, ma, ms, me, ) = MY, (24)
Mpco (M, ma, ms, me, ) = MZJ", (25)
Mpo(my, ma, mg,me, o) = M7ZP", (26)

where we assumed that
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e all the equations are in the continuum and infinite-volume limits;

e the overall scale has been set to its physical value, generally through some lattice-
scale setting procedure involving a fifth dimensionful input (see the discussion in
Sec. 11.3);

e the quark masses m, are assumed to be renormalized from the bare, lattice ones in
some given continuum renormalization scheme;

e o= % is the fine-structure constant expressed as function of the positron charge e,

generally set to the Thomson limit o = 0.007297352... [165];

e the mass Mj (my, mg, ms, me, ) of the meson h is a function of the quark masses
and «. The functional dependence is generally obtained by choosing an appropriate
parameterization and performing a global fit to the lattice data;

e the superscript exp. indicates that the mass is an experimental input, lattice groups
use in general the values in the Particle Data Group review [165].

However, ambiguities arise with simulations of QCD only. In that case, there is no
experimentally measurable quantity that emerges from the strong interaction only. The
missing QED contribution is tightly related to isospin-symmetry breaking effects. Isospin
symmetry is explicitly broken by the differences between the up- and down-quark masses
om = my, — myg, and electric charges 6Q) = @, — Q4. These effects are, respectively,
of order O(dm/Aqcp) and O(«), and are expected to be O(1%) of a typical isospin-
symmetric hadronic quantity. Strong and electromagnetic isospin-breaking effects are
of the same order and therefore cannot, in principle, be evaluated separately without
introducing strong ambiguities. Because these effects are small, they can be treated as a
perturbation,

X(mu, Mg, Ms, Mec, a) = X(muda ms, mc) + 5mAX(muda ms, mc) +aBx (mud> ms, mc) s

(27)
for a given hadronic quantity X, where m,q = %(mu—i—md) is the average light-quark mass.
There are several things to notice here. Firstly, the neglected higher-order O(dm?, adm, a?)
corrections are expected to be O(10~%) relatively to X, which at the moment is way be-
yond the relative statistical accuracy that can be delivered by a lattice calculation. Sec-
ondly, this is not strictly speaking an expansion around the isospin-symmetric point, the
electromagnetic interaction has also symmetric contributions. From this last expression
the previous statements about ambiguities become clearer. Indeed, the only unambiguous
prediction one can perform is to solve Eqgs. (23)—(26) and use the resulting parameters to
obtain a prediction for X, which is represented by the left-hand side of Eq. (27). This pre-
diction will be the sum of the QCD isospin-symmetric part X, the strong isospin-breaking
effects X5V = §mAx, and the electromagnetic effects X7 = aBx. Obtaining any of
these terms individually requires extra, unphysical conditions to perform the separation.
To be consistent with previous editions of FLAG, we also define X =X + X5U® to be
the o — 0 limit of X.

With pure QCD simulations, one typically solves Egs. (23)—(26) by equating the QCD
isospin-symmetric part of a hadron mass M, result of the simulations, with its experi-
mental value M, . This will result in an O(dm, o) mis-tuning of the theory parameters
which will propagate as an error on predicted quantities. Because of this, in general,
one cannot predict hadronic quantities with a relative accuracy higher than O(1%) from
pure QCD simulations, independently on how the target X is sensitive to isospin-breaking
effects. If one performs a complete lattice prediction of the physical value of X, it can
be of phenomenological interest to define in some way X, X5U®) and X7. If we keep
Mayd, Ms and m. at their physical values in physical units, for a given renormalization
scheme and scale, then these three quantities can be extracted by setting successively and
simultaneously « and ém to 0. This is where the ambiguity lies: in general the dm = 0

34



point will depend on the renormalization scheme used for the quark masses. In the next
section, we give more details on that particular aspect and discuss the order of scheme
ambiguities.

3.1.2 Ambiguities in the separation of isospin-breaking contributions

In this section, we discuss the ambiguities that arise in the individual determination
of the QED contribution X7 and the strong-isospin correction X5V defined in the
previous section. Throughout this section, we assume that the isospin-symmetric quark
masses Myq, Mms and m, are always kept fixed in physical units to the values they take
at the QCD+4QED physical point in some given renormalization scheme. Let us assume
that both up and down masses have been renormalized in an identical mass-independent
scheme which depends on some energy scale u. We also assume that the renormalization
procedure respects chiral symmetry so that quark masses renormalize multiplicatively.
The renormalization constants of the quark masses are identical for & = 0 and therefore
the renormalized mass of a quark has the general form

Ma(1) = Zm ()1 + aQ20 6% (1) + aQuor. Qu0S (1) + @ Q2P (W)mgo,  (28)

up to O(a?) corrections, where my ¢ is the bare-quark mass, Qor. and Q% are the sum of
all quark charges and squared charges, respectively, and @ is the quark charge, all in units
of in units of the positron charge e. Throughout this section, a subscript ud generally
denotes the average between up and down quantities and § the difference between the
up and the down quantities. The source of the ambiguities described in the previous
section is the mixing of the isospin-symmetric mass m,q and the difference ém through
renormalization. Using Eq. (28) one can make this mixing explicit at leading order in «:

(?ﬁ(&ﬁ) = Zm(W[1 + Oéont,(;g)) () + aM(l)(M) + OZM(Q)(,u)] (”;;%0) (29)

with the mixing matrices

1 2 1512
MO =000 (S 5C) a0 =020 (Tt 1)
30)
where Quq = %(Qu + Qq) and 6Q = @, — Qg are the average and difference of the up
and down charges, and similarly Q2 = %(Q% +Q?) and 0Q* = Q% — Q2 for the squared
charges. Now let us assume that for the purpose of determining the different components
in Eq. (27), one starts by tuning the bare masses to obtain equal up and down masses,
for some small coupling «g at some scale g, i.e., dm(up) = 0. At this specific point, one
can extract the pure QCD, and the QED corrections to a given quantity X by studying
the slope of a in Eq. (27). From these quantities the strong-isospin contribution can then
readily be extracted using a nonzero value of dm(ug). However, if now the procedure is

repeated at another coupling o and scale p with the same bare masses, it appears from
Eq. (29) that dm(p) # 0. More explicitly,

Smn(4) = o) 508 210~ a0 ()] (1)
with
Az(1) = Quor. QDY (1) +0Q755 (). (2)

up to higher-order corrections in & and «g. In other words, the definitions of X, X5V (),
and X7 depend on the renormalization scale at which the separation was made. This
dependence, of course, has to cancel in the physical sum X. One can notice that at
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no point did we mention the renormalization of « itself, which, in principle, introduces
similar ambiguities. However, the corrections coming from the running of a are O(a?)
relatively to X, which, as justified above, can be safely neglected. Finally, important
information is provided by Eq. (31): the scale ambiguities are O(am,q). For physical
quark masses, one generally has m,q >~ dm. So by using this approximation in the first-
order expansion Eq. (27), it is actually possible to define unambiguously the components
of X up to second-order isospin-breaking corrections. Therefore, in the rest of this review,
we will not keep track of the ambiguities in determining pure QCD or QED quantities.
However, in the context of lattice simulations, it is crucial to notice that m.,gq ~ dm is
only accurate at the physical point. In simulations at larger-than-physical pion masses,
scheme ambiguities in the separation of QCD and QED contributions are generally large.
Once more, the argument made here assumes that the isospin-symmetric quark masses
Mayd, Mg, and m, are kept fixed to their physical value in a given scheme while varying «.
Outside of this assumption there is an additional isospin-symmetric O(amy) ambiguity
between X and X".

Such separation in lattice QCD4+QED simulation results appeared for the first time
in RBC 07 [169] and Blum 10 [170], where the scheme was implicitly defined around
the xPT expansion. In that setup, the dm(up) = 0 point is defined in pure QCD, i.e.,
o = 0 in the previous discussion. The QCD part of the kaon-mass splitting from the first
FLAG review [1] is used as an input in RM123 11 [171], which focuses on QCD isospin
corrections only. It therefore inherits from the convention that was chosen there, which
is also to set dm(pg) = 0 at zero QED coupling. The same convention was used in the
follow-up works RM123 13 [172] and RM123 17 [19]. The BMW collaboration was the
first to introduce a purely hadronic scheme in its electro-quenched study of the baryon
octet mass splittings [173]. In this work, the quark mass difference dm(u) is swapped with
the mass splitting AM? between the connected @u and dd pseudoscalar masses. Although
unphysical, this quantity is proportional [174] to dm(u) up to O(am,q) chiral corrections.
In this scheme, the quark masses are assumed to be equal at AM? = 0, and the O(am,q)
corrections to this statement are analogous to the scale ambiguities mentioned previously.
The same scheme was used for the determination of light-quark masses in BMW 16 [20]
and in the recent BMW prediction of the leading hadronic contribution to the muon
magnetic moment [115]. The BMW collaboration used a different hadronic scheme for
its determination of the nucleon-mass splitting in BMW 14 [147] using full QCD+QED
simulations. In this work, the dm = 0 point was fixed by imposing the baryon splitting
M+ — Mx,— to cancel. This scheme is quite different from the other ones presented here,
in the sense that its intrinsic ambiguity is not O(am,q). What motivates this choice
here is that My+ — My- = 0 in the limit where these baryons are point particles, so the
scheme ambiguity is suppressed by the compositeness of the ¥ baryons. This may sound
like a more difficult ambiguity to quantify, but this scheme has the advantage of being
defined purely by measurable quantities. Moreover, it has been demonstrated numerically
in BMW 14 [147] that, within the uncertainties of this study, the My+ —Msx- = 0 scheme is
equivalent to the AM? = 0 one, explicitly My+ — My- = —0.18(12)(6) MeV at AM? = 0.
The calculation QCDSF/UKQCD 15 [175] uses a “Dashen scheme,” where quark masses
are tuned such that flavour-diagonal mesons have equal masses in QCD and QCD+QED.
Although not explicitly mentioned by the authors of the paper, this scheme is simply
a reformulation of the AM? = 0 scheme mentioned previously. Finally, MILC 18 [21]
also used the AM? = 0 scheme and noticed its connection to the “Dashen scheme” from
QCDSF/UKQCD 15.

Before the previous edition of this review, the contributions X, X5V and X7 were
given for pion and kaon masses based on phenomenological information. Considerable
progress has been achieved by the lattice community to include isospin-breaking effects in
calculations, and it is now possible to determine these quantities precisely directly from a
lattice calculation. However, these quantities generally appear as intermediate products of
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a lattice analysis, and are rarely directly communicated in publications. These quantities,
although unphysical, have a phenomenological interest, and we encourage the authors of
future calculations to quote them explicitly.

3.1.3 Inclusion of electromagnetic effects in lattice-QCD simulations

Electromagnetism on a lattice can be formulated using a naive discretization of the
Maxwell action S[A4,] = 1 [d*z 2 0uAu(z) — 9,A,(z)]>. Even in its noncompact
form, the action remains gauge invariant. This is not the case for non-Abelian theories
for which one uses the traditional compact Wilson gauge action (or an improved version of
it). Compact actions for QED feature spurious photon-photon interactions which vanish
only in the continuum limit. This is one of the main reason why the noncompact action
is the most popular so far. It was used in all the calculations presented in this review.
Gauge-fixing is necessary for noncompact actions because of the usual infinite measure
of equivalent gauge orbits which contribute to the path integral. It was shown [176, 177]
that gauge-fixing is not necessary with compact actions, including in the construction of
interpolating operators for charged states.

Although discretization is straightforward, simulating QED in a finite volume is more
challenging. Indeed, the long range nature of the interaction suggests that important
finite-size effects have to be expected. In the case of periodic boundary conditions, the
situation is even more critical: a naive implementation of the theory features an isolated
zero-mode singularity in the photon propagator. It was first proposed in [178] to fix the
global zero-mode of the photon field A4,,(x) in order to remove it from the dynamics. This
modified theory is generally named QEDy;. Although this procedure regularizes the
theory and has the right classical infinite-volume limit, it is nonlocal because of the zero-
mode fixing. As first discussed in [147], the nonlocality in time of QED; prevents the
existence of a transfer matrix, and therefore a quantum-mechanical interpretation of the
theory. Another prescription named QEDy,, proposed in [179], is to remove the zero-mode
of A, (x) independently for each time slice. This theory, although still nonlocal in space, is
local in time and has a well-defined transfer matrix. Whether these nonlocalities constitute
an issue to extract infinite-volume physics from lattice-QCD+QED;, simulations is, at
the time of this review, still an open question. However, it is known through analytical
calculations of electromagnetic finite-size effects at O(«) in hadron masses [147, 148, 150,
172, 179-181], meson leptonic decays [181], and the hadronic vacuum polarization [182]
that QED;, does not suffer from a problematic (e.g., UV divergent) coupling of short-
and long-distance physics due to its nonlocality. Another strategy, first proposed in [183]
and used by the QCDSF collaboration, is to bound the zero-mode fluctuations to a finite
range. Although more minimal, it is still a nonlocal modification of the theory and
so far finite-size effects for this scheme have not been investigated. More recently, two
proposals for local formulations of finite-volume QED emerged. The first one described
in [184] proposes to use massive photons to regulate zero-mode singularities, at the price
of (softly) breaking gauge invariance. The second one presented in [177], based on earlier
works [185, 186], avoids the zero-mode issue by using anti-periodic boundary conditions for
A, (x). In this approach, gauge invariance requires the fermion field to undergo a charge
conjugation transformation over a period, breaking electric charge conservation. These
local approaches have the potential to constitute cleaner approaches to finite-volume QED.
All the calculations presented in this review used QED;, or QEDy,, with the exception
of QCDSF.

Once a finite-volume theory for QED is specified, there are various ways to compute
QED effects themselves on a given hadronic quantity. The most direct approach, first
used in [178], is to include QED directly in the lattice simulations and assemble corre-
lation functions from charged quark propagators. Another approach proposed in [172],
is to exploit the perturbative nature of QED, and compute the leading-order corrections
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directly in pure QCD as matrix elements of the electromagnetic current. Both approaches
have their advantages and disadvantages and as shown in [19], are not mutually exclusive.
A critical comparative study can be found in [187].

Finally, most of the calculations presented here made the choice of computing electro-
magnetic corrections in the electro-quenched approximation. In this limit, one assumes
that only valence quarks are charged, which is equivalent to neglecting QED corrections to
the fermionic determinant. This approximation reduces dramatically the cost of lattice-
QCD+QED calculations since it allows the reuse of previously generated QCD configura-
tions. If QED is introduced pertubatively through current insertions, the electro-quenched
approximation avoids computing disconnected contributions coming from the electromag-
netic current in the vacuum, which are generally challenging to determine precisely. The
electromagnetic contributions from sea quarks to hadron-mass splittings are known to be
flavour-SU (3) and large-N, suppressed, thus electro-quenched simulations are expected
to have an O(10%) accuracy for the leading electromagnetic effects. This suppression is
in principle rather weak and results obtained from electro-quenched simulations might
feature uncontrolled systematic errors. For this reason, the use of the electro-quenched
approximation constitutes the difference between # and © in the FLAG criterion for the
inclusion of isospin-breaking effects.

3.1.4 Lattice determination of my and m,q

We now turn to a review of the lattice calculations of the light-quark masses and begin
with mg, the isospin-averaged up- and down-quark mass m.q, and their ratio. Most
groups quote only m,q, not the individual up- and down-quark masses. We then discuss
the ratio m, /mg and the individual determinations of m,, and mg.

Quark masses have been calculated on the lattice since the mid-nineties. However,
early calculations were performed in the quenched approximation, leading to unquantifi-
able systematics. Thus, in the following, we only review modern, unquenched calculations,
which include the effects of light sea quarks.

Tables 6 and 7 list the results of Ny = 241 and Ny = 2+1+1 lattice calculations of m,
and m,q4. These results are given in the MS scheme at 2 GeV, which is standard nowadays,
though some groups are starting to quote results at higher scales (e.g., Ref. [188]). The
tables also show the colour coding of the calculations leading to these results. As indicated
earlier in this review, we treat calculations with different numbers, Ny, of dynamical
quarks separately.

Ny =241 lattice calculations

We turn now to Ny = 2 4 1 calculations. These and the corresponding results for
myq and mg are summarized in Tab. 6. Given the very high precision of a number of
the results, with total errors on the order of 1%, it is important to consider the effects
neglected in these calculations. Isospin-breaking and electromagnetic effects are small on
mqyq and mg, and have been approximately accounted for in the calculations that will be
retained for our averages. We have already commented that the effect of the omission of
the charm quark in the sea is expected to be small, below our current precision, and we
do not add any additional uncertainty due to these effects in the final averages.

The only new computation since the previous FLAG edition is the determination of
light-quark masses by the ALPHA collaboration [18]. This work uses nonperturbatively
O(a) improved Wilson fermions (a subset of the CLS ensembles [137]). The renormaliza-
tion is performed nonperturbatively in the SF scheme from 200 MeV up to the electroweak
scale ~ 100 GeV [203]. This nonperturbative running over such large energy scales avoids
any use of perturbation theory at low energy scales, but adds a cost in terms of uncer-
tainty: the running alone propagates to &~ 1% of the error in quark masses. This turns
out to be one of the dominant pieces of uncertainty for the case of mg. On the other
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hand, for the case of m,q4, the uncertainty is dominated by the chiral extrapolations. The
ensembles used include four values of the lattice spacing below 0.09 fm, which qualifies for
a Y in the continuum extrapolation, and pion masses down to 200 MeV. This value lies
just at the boundary of the % rating, but since the chiral extrapolation is a substantial

source of systematic uncertainty, we opted to rate the work with a ©o. In any case, this
work enters in the average and their results show a reasonable agreement with the FLAG
average.

We now comment in some detail on previous works that also contribute to the averages.

RBC/UKQCD 14 [8] significantly improves on their RBC/UKQCD 12B [188] work by
adding three new domain wall fermion simulations to three used previously. Two of the
new simulations are performed at essentially physical pion masses (M, ~ 139 MeV) on
lattices of about 5.4fm in size and with lattice spacings of 0.114fm and 0.084 fm. It is
complemented by a third simulation with M, ~ 371 MeV, a ~ 0.063 fm and a rather small
L ~ 2.0fm. Altogether, this gives them six simulations with six unitary (mgea = Myal)
M’s in the range of 139 to 371 MeV, and effectively three lattice spacings from 0.063 to
0.114 fm. They perform a combined global continuum and chiral fit to all of their results
for the m and K masses and decay constants, the 2 baryon mass and two Wilson-flow
parameters. Quark masses in these fits are renormalized and run nonperturbatively in the
RI-SMOM scheme. This is done by computing the relevant renormalization constant for
a reference ensemble, and determining those for other simulations relative to it by adding
appropriate parameters in the global fit. This calculation passes all of our selection
criteria.

Ny = 2+ 1 MILC results for light-quark masses go back to 2004 [197, 198]. They
use rooted staggered fermions. By 2009 their simulations covered an impressive range of
parameter space, with lattice spacings going down to 0.045 fm, and valence-pion masses
down to approximately 180 MeV [15]. The most recent MILC Ny = 2 + 1 results, i.e.,
MILC 10A [12] and MILC 09A [15], feature large statistics and 2-loop renormalization.
Since these data sets subsume those of their previous calculations, these latest results are
the only ones that need to be kept in any world average.

The BMW 104, 10B [9, 10] calculation still satisfies our stricter selection criteria. They
reach the physical up- and down-quark mass by interpolation instead of by extrapolation.
Moreover, their calculation was performed at five lattice spacings ranging from 0.054 to
0.116 fm, with full nonperturbative renormalization and running and in volumes of up
to (6 fm)3, guaranteeing that the continuum limit, renormalization, and infinite-volume
extrapolation are controlled. It does neglect, however, isospin-breaking effects, which are
small on the scale of their error bars.

Finally, we come to another calculation which satisfies our selection criteria, HPQCD 10
[11]. Tt updates the staggered-fermions calculation of HPQCD 09A [27]. In these papers,
the renormalized mass of the strange quark is obtained by combining the result of a precise
calculation of the renormalized charm-quark mass, m., with the result of a calculation
of the quark-mass ratio, m¢/ms. As described in Ref. [202] and in Sec. 3.2, HPQCD de-
termines m, by fitting Euclidean-time moments of the ¢c pseudoscalar density two-point
functions, obtained numerically in lattice QCD, to fourth-order, continuum perturbative
expressions. These moments are normalized and chosen so as to require no renormaliza-
tion with staggered fermions. Since m./ms requires no renormalization either, HPQCD’s
approach displaces the problem of lattice renormalization in the computation of ms to
one of computing continuum perturbative expressions for the moments. To calculate m,4
HPQCD 10 [11] use the MILC 09 determination of the quark-mass ratio ms/myq [157].

HPQCD 09A [27] obtains m./ms; = 11.85(16) [27] fully nonperturbatively, with a
precision slightly larger than 1%. HPQCD 10’s determination of the charm-quark mass,
me(m.) = 1.268(6),'! is even more precise, achieving an accuracy better than 0.5%.

"To obtain this number, we have used the conversion from = 3 GeV to m. given in Ref. [202].

39



This discussion leaves us with five results for our final average for ms: ALPHA 19 [18],
MILC 09A [15], BMW 104, 10B [9, 10], HPQCD 10 [11] and RBC/UKQCD 14 [g].
Assuming that the result from HPQCD 10 is 100% correlated with that of MILC 09A, as
it is based on a subset of the MILC 09A configurations, we find ms = 92.2(1.1) MeV with
a x2/dof = 1.65.

For the light-quark mass m,g, the results satisfying our criteria are ALPHA 19,
RBC/UKQCD 14B, BMW 10A, 10B, HPQCD 10, and MILC 10A. For the error, we
include the same 100% correlation between statistical errors for the latter two as for the
strange case, resulting in the following (at scale 2 GeV in the MS scheme, and x?/dof=1.4),

Mud = 3.381(40) MeV Refs. [8-12, 18],

Ny=2+1: ms = 92.2(1.0) MeV Refs. [s-11, 15, 18], %7
and the RGI values
N1, MEP'S 695650 MY Refs (12,18, o
[ : MSRGI = 128.1(1.4),,(1.5) MeV Refs. [8-11, 15, 18].

Ny =2+ 1+1 lattice calculations

Since the previous review a new computation of ms, m,q has appeared, ETM 21 A [204].
Using twisted-mass fermions with an added clover-term to suppress O(a?) effects between
the neutral and charged pions, this work represents a significant improvement over ETM
14 [7]. Renormalization is performed nonperturbatively in the RI-MOM scheme. Their
ensembles comprise three lattice spacings (0.095, 0.082, and 0.069 fm), two volumes for
the finest lattice spacings with pion masses reaching down to the physical point in the
two finest lattices allowing a controlled chiral extrapolation. Their volumes are large,
with m,L between four and five. These characteristics of their ensembles pass the most
stringent FLAG criteria in all categories. This work extracts quark masses from two
different quantities, one based on the meson spectrum and the other based on the baryon
spectrum. Results obtained with these two methods agree within errors. The latter
agrees well with the FLAG average while the former is high in comparison (there is good
agreement with their previous results, ETM 14 [7]). Since ETM 21A was not published
by the FLAG deadline, it is not included in the averages.

There are three other works that enter in light-quark mass averages: FNAL/MILC/
TUMQCD 18 [6] (which contributes both to the average of m,q and myg), and the myq
determinations in HPQCD 18 [13] and HPQCD 14A [14].

While the results of HPQCD 14A and HPQCD 18 agree well (using different methods),
there are several tensions in the determination of ms. The most significant discrepancy
is between ETM 21A and the FLAG average. But also two recent and very precise
determinations (HPQCD 18 and FNAL/MILC/TUMQCD 18) show a tension. Overall
there is a rough agreement between the different determinations with x?/dof = 1.7 (that
we apply to our average according to the standard FLAG averaging procedure). In the
case of m,q on the other hand only two works contribute to the average: ETM 14 and
FNAL/MILC/TUMQCD 18. They disagree, with the FNAL/MILC/TUMQCD 18 value
basically matching the Ny = 2 + 1 result. The large x?/dof ~ 1.7 increases significantly
the error of the average. These large values of the x? are difficult to understand in terms
of a statistical fluctuation. On the other hand the Ny =241 and Ny = 2+14-1 averages
show a good agreement, which increases our confidence in the averages quoted below.

The Ny = 2+ 1+ 1 results are summarized in Tab. 7. Note that the results of
Ref. [14] are reported as m (2 GeV; Ny = 3) and those of Ref. [7] as myq(5)(2 GeV; Ny =
4). We convert the former to Ny = 4 and obtain ms(2GeV; Ny = 4) = 93.7(8)MeV.
The average of FNAL/MILC/TUMQCD 18, HPQCD 18, ETM 14 and HPQCD 14A
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is 93.43(70)MeV with x?/dof = 1.7. For the light-quark average we use ETM 14 and
FNAL/MILC/TUMQCD 18 with an average 3.410(43)MeV and a x2/dof = 1.7. We
note these x? values are large. For the case of the light-quark masses this is mostly
due to ETM 14 masses lying significantly above the rest, but in the case of mg there
is also some tension between the recent and very precise results of HPQCD 18 and
FNAL/MILC/TUMQCD 18. Also note that the 2+1-flavour values are consistent with
the four-flavour ones, so in all cases we have decided to simply quote averages according
to FLAG rules, including stretching factors for the errors based on x? values of our fits:

Myq = 3.410(43) MeV Refs. [6, 7],
Ny=2+1+41:
f=2tls ms = 93.40(57) MeV Refs. [6, 7, 13, 14], (35)
and the RGI values
Np=24141: MEST = 4.736(60), (55) o, MV Refs. [6, 7], 36)

MR =129.7(0.8),,(1.5) A MeV Refs. [6, 7, 13, 14].

In Figs. 1 and 2 the lattice results listed in Tabs. 6 and 7 and the FLAG averages
obtained at each value of Ny are presented and compared with various phenomenological
results.

3.1.5 Lattice determinations of mg/m,q4

The lattice results for mg/m,q are summarized in Tab. 8. In the ratio ms/myq, one of
the sources of systematic error—the uncertainties in the renormalization factors—drops
out. Also other systematic effects (like the effect of the scale setting) are reduced in these
ratios. This might explain that despite the discrepancies that are present in the individual
quark mass determinations, the ratios show an overall very good agreement.

Ny =2+ 1 lattice calculations

ALPHA 19 [18], discussed already, is the only new result for this section. The other
works contributing to this average are RBC/UKQCD 14B, which replaces RBC/UKQCD
12 (see Sec. 3.1.4), and the results of MILC 09A and BMW 10A, 10B.

The results show very good agreement with a y2/dof = 0.14. The final uncertainty
(= 0.5%) is smaller than the ones of the quark masses themselves. At this level of precision,
the uncertainties in the electromagnetic and strong isospin-breaking corrections might not
be completely negligible. Nevertheless, we decided not to add any uncertainty associated
with this effect. The main reason is that most recent determinations try to estimate this
uncertainty themselves and found an effect smaller than naive power counting estimates
(see Ny =241+ 1 section),

Ny=2+41:  my/muq=2742(12)  Refs. [8-10, 15, 18]. (37)

Ny =241+1 lattice calculations

For Ny = 24+1+1 there are three results, MILC 17 [16], ETM 14 [7] and FNAL/MILC
14A [17], all of which satisfy our selection criteria.

All these works have been discussed in the previous FLAG edition [4], except the new
result ETM 21A, that we have already examined (and anyway does not appear in the
average because it was unpublished at the deadline). The fit has x?/dof ~ 2.5, and the
result shows reasonable agreement with the Ny = 2 4- 1 result.

Ny=241+41:  my/mus=2723(10)  Refs. [7, 16, 17], (38)
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Figure 1: MS mass of the strange quark (at 2 GeV scale) in MeV. The upper two panels show
the lattice results listed in Tabs. 6 and 7, while the bottom panel collects sum rule results [205—
209]. Diamonds and squares represent results based on perturbative and nonperturbative
renormalization, respectively. The black squares and the grey bands represent our averages
(33) and (35). The significance of the colours is explained in Sec. 2.

which corresponds to an overall uncertainty equal to 0.4%. It is worth noting that [16]
estimates the EM effects in this quantity to be ~ 0.18% (or 0.049 which is less than the
quoted error above).

All the lattice results listed in Tab. 8 as well as the FLAG averages for each value of
Ny are reported in Fig. 3 and compared with xPT and sum rules.

3.1.6 Lattice determination of m, and my

In addition to reviewing computations of individual m, and mg quark masses, we will
also determine FLAG averages for the parameter € related to the violations of Dashen’s
theorem AL — AN
Mz — AM=)7
€= ( K 7T> , (39)
AM?

where AM2 = M2, — M2, and AM} = M3, — M7, are the pion and kaon squared mass
splittings, respectively. The superscript 7, here and in the following, denotes corrections
that arise from electromagnetic effects only. This parameter is often a crucial intermediate
quantity in the extraction of the individual light-quark masses. Indeed, it can be shown,
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shows results based on sum rules [205, 208, 210] (for more details see Fig. 1).

using the G-parity symmetry of the pion triplet, that AM2 does not receive O(dm)
isospin-breaking corrections. In other words

(AME)"

AMﬁ = (AZ\47.2|_)’y and €= T]M?r

-1, (40)
at leading-order in the isospin-breaking expansion. The difference (AM2)3U(?) was esti-
mated in previous editions of FLAG through the ¢,, parameter. However, consistent with
our leading-order truncation of the isospin-breaking expansion, it is simpler to ignore
this term. Once known, € allows one to consistently subtract the electromagnetic part of
the kaon-mass splitting to obtain the QCD splitting (AMIQ()SU(Q). In contrast with the
pion, the kaon QCD splitting is sensitive to m, and, in particular, proportional to it at
leading order in xPT. Therefore, the knowledge of € allows for the determination of dm
from a chiral fit to lattice-QCD data. Originally introduced in another form in [216], €
vanishes in the SU(3) chiral limit, a result known as Dashen’s theorem. However, in the
1990’s numerous phenomenological papers pointed out that e might be an O(1) number,
indicating a significant failure of SU(3) xPT in the description of electromagnetic effects
on light-meson masses. However, the phenomenological determinations of € feature some
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Figure 3: Results for the ratio ms/m,q. The upper part indicates the lattice results listed in
Tab. 8 together with the FLAG averages for each value of Ny. The lower part shows results
obtained from xPT and sum rules [208, 212-215].

level of controversy, leading to the rather imprecise estimate e = 0.7(5) given in the first
edition of FLAG. Starting with the FLAG 19 edition of the review, we quote more precise
averages for €, directly obtained from lattice-QCD+QED simulations. We refer the reader
to earlier editions of FLAG and to the review [217] for discusions of the phenomenological
determinations of e.

The quality criteria regarding finite-volume effects for calculations including QED are
presented in Sec. 2.1.1. Due to the long-distance nature of the electromagnetic interaction,
these effects are dominated by a power law in the lattice spatial size. The coefficients of
this expansion depend on the chosen finite-volume formulation of QED. For QEDy,, these
effects on the squared mass M? of a charged meson are given by [147, 148, 150]

c1 2cq1 1
with ¢; ~ —2.83730. It has been shown in [147] that the two first orders in this expan-
sion are exactly known for hadrons, and are equal to the pointlike case. However, the
O[1/(ML)3] term and higher orders depend on the structure of the hadron. The universal
corrections for QEDpy, can also be found in [147]. In all this part, for all computations
using such universal formulae, the QED finite-volume quality criterion has been applied
with ngmin = 3, otherwise ny;, = 1 was used.

Since FLAG 19, six new results have been reported for nondegenerate light-quark
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masses. In the Ny =2+ 1+ 1 sector, MILC 18 [21] computed € using Ny = 2+ 1 asqtad
electro-quenched QCD+QED~, simulations and extracted the ratio m,,/mg from a new
set of Ny = 2+ 1+ 1 HISQ QCD simulations. Although € comes from Ny = 2 +1
simulations, (AMZ)5Y(®) which is about three times larger than (AMZ%)?, has been
determined in the Ny = 2 4 1 4 1 theory. We therefore chose to classify this result
as a four-flavour one. This result is explicitly described by the authors as an update of
MILC 17 [16]. In MILC 17 [16], m,,/mq is determined as a side-product of a global analysis
of heavy-meson decay constants, using a preliminary version of € from MILC 18 [21]. In
FNAL/MILC/TUMQCD 18 [6] the ratio m,/mg from MILC 17 [16] is used to determine
the individual masses m,, and mq from a new calculation of m,4. The work RM123 17 [19]
is the continuation of the Ny = 2 work named RM123 13 [172] in the previous edition of
FLAG. This group now uses Ny = 2+ 1+ 1 ensembles from ETM 10 [218], however, still
with a rather large minimum pion mass of 270 MeV, leading to the rating for chiral
extrapolations. In the Ny = 241 sector, BMW 16 [20] reuses the data set produced from
their determination of the light-baryon octet-mass splittings [173] using electro-quenched
QCD+QED~, smeared clover fermion simulations. Finally, MILC 16 [219], which is a
preliminary result for the value of € published in MILC 18 [21], also provides a Ny = 2+1
computation of the ratio m, /mgq.

MILC 09A [15] uses the mass difference between K° and K+, from which they sub-
tract electromagnetic effects using Dashen’s theorem with corrections, as discussed in
the introduction of this section. The up and down sea quarks remain degenerate in
their calculation, fixed to the value of m,q obtained from M, 0. To determine m,/mg,
BMW 10A, 10B [9, 10] follow a slightly different strategy. They obtain this ratio from
their result for ms/m,q combined with a phenomenological determination of the isospin-
breaking quark-mass ratio @ = 22.3(8), from 1 — 37 decays [220] (the decay n — 3«
is very sensitive to QCD isospin breaking, but fairly insensitive to QED isospin break-
ing). Instead of subtracting electromagnetic effects using phenomenology, RBC 07 [169]
and Blum 10 [170] actually include a quenched electromagnetic field in their calculation.
This means that their results include corrections to Dashen’s theorem, albeit only in the
presence of quenched electromagnetism. Since the up and down quarks in the sea are
treated as degenerate, very small isospin corrections are neglected, as in MILC’s calcula-
tion. PACS-CS 12 [190] takes the inclusion of isospin-breaking effects one step further.
Using reweighting techniques, it also includes electromagnetic and m, —mgq effects in the
sea. However, they do not correct for the large finite-volume effects coming from elec-
tromagnetism in their ML ~ 2 simulations, but provide rough estimates for their size,
based on Ref. [179]. QCDSF/UKQCD 15 [221] uses QCD+QED dynamical simulations
performed at the SU(3)-flavour-symmetric point, but at a single lattice spacing, so they
do not enter our average. The smallest partially quenched (Mmgea 7# Mya1) pion mass is
greater than 200 MeV, so our chiral-extrapolation criteria require a © rating. Concern-
ing finite-volume effects, this work uses three spatial extents L of 1.6 fm, 2.2 fm, and
3.3 fm. QCDSF/UKQCD 15 claims that the volume dependence is not visible on the two
largest volumes, leading them to assume that finite-size effects are under control. As a
consequence of that, the final result for quark masses does not feature a finite-volume
extrapolation or an estimation of the finite-volume uncertainty. However, in their work
on the QED corrections to the hadron spectrum [221] based on the same ensembles, a vol-
ume study shows some level of compatibility with the QEDy, finite-volume effects derived
in [148]. We see two issues here. Firstly, the analytical result quoted from [148] predicts
large, O(10%) finite-size effects from QED on the meson masses at the values of M L
considered in QCDSF/UKQCD 15, which is inconsistent with the statement made in the
paper. Secondly, it is not known that the zero-mode regularization scheme used here has
the same volume scaling as QED;,. We therefore chose to assign the m rating for finite
volume to QCDSF/UKQCD 15. Finally, for Ny =2+1+1, ETM 14 [7] uses simulations
in pure QCD, but determines m,, —mg from the slope M2 /Om,,q and the physical value
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Figure 4: Lattice results and FLAG averages at Ny = 2+1 and 2+41+1 for the up-down-quark
masses ratio m,,/mg, together with the current PDG estimate.

for the QCD kaon-mass splitting taken from the phenomenological estimate in FLAG 13.

Lattice results for m,,, mq and m, /mg are summarized in Tab. 9. The colour coding
is specified in detail in Sec. 2.1. Considering the important progress in the last years on
including isospin-breaking effects in lattice simulations, we are now in a position where
averages for m, and mgy can be made without the need of phenomenological inputs.
Therefore, lattice calculations of the individual quark masses using phenomenological
inputs for isospin-breaking effects will be coded m.

We start by recalling the Ny = 2 FLAG average for the light-quark masses, entirely
coming from RM123 13 [172],

My = 2.40(23) MeV Ref. [172],
Ny =2: mg = 4.80(23) MeV Ref. [172], (42)
My, /mg = 0.50(4) Ref. [172],

with errors of roughly 10%, 5% and 8%, respectively. In these results, the errors are
obtained by combining the lattice statistical and systematic errors in quadrature. For
Ny = 2+ 1, the only result, which qualifies for entering the FLAG average for quark

46



masses, is BMW 16 [20],

My = 2.27(9) MeV Ref. [20],
Ny=2+1: ma = 4.67(9) MeV Ref. [20], (43)
My /mg = 0.485(19) Ref. [20],

with errors of roughly 4%, 2% and 4%, respectively. This estimate is slightly more precise
than in the previous edition of FLAG. More importantly, it now comes entirely from
a lattice-QCD+QED calculation, whereas phenomenological input was used in previous
editions. These numbers result in the following RGI averages

MRGI
Nf=2+1: M(?GI

= 3.15(12),,(4) A MeV Ref. [20],
= 6.49(12),, (7)A MeV Ref. [20]. (44)

Finally, for N; = 2+ 1+ 1, RM123 17 [19] and FNAL/MILC/TUMQCD 18 [6] enter
the average for the individual m,, and mg masses, and RM123 17 [19] and MILC 18 [21]
enter the average for the ratio m,/my, giving

My = 2.14(8) MeV Ref. [6, 19],
Ny=2+1+1: mg = 4.70(5) MeV Ref. [6, 19], (45)
M /Mg = 0.465(24) Ref. [19, 21].

with errors of roughly 4%, 1% and 5%, respectively. One can observe some marginal
discrepancies between results coming from the MILC collaboration and RM123 17 [19].
More specifically, adding all sources of uncertainties in quadrature, one obtains a 1.70
discrepancy between RM123 17 [19] and MILC 18 [21] for m,, /mg, and a 2.20 discrepancy
between RM123 17 [19] and FNAL/MILC/TUMQCD 18 [6] for m,,. However, the values
of mgy and € are in very good agreement between the two groups. These discrepancies
are presently too weak to constitute evidence for concern, and will be monitored as more
lattice groups provide results for these quantities. The RGI averages for m,, and mgy are

MEST = 2.97(11),,,(3) A MeV Ref. [6, 19],
Ny=2+1+1: MRS = 6.53(7)m(8)a MeV Ref. [6,19].  (46)

Every result for m, and mg used here to produce the FLAG averages relies on electro-
quenched calculations, so there is some interest to comment on the size of quenching
effects. Considering phenomenology and the lattice results presented here, it is reasonable
for a rough estimate to use the value (AMZ)Y ~ 2000 MeV? for the QED part of the
kaon-mass splitting. Using the arguments presented in Sec. 3.1.3, one can assume that the
QED sea contribution represents O(10%) of (AM3% ). Using SU(3) PQxPT+QED [174,
223] gives a ~ 5% effect. Keeping the more conservative 10% estimate and using the
experimental value of the kaon-mass splitting, one finds that the QCD kaon-mass splitting
(AM3%)SY?) guffers from a reduced 3% quenching uncertainty. Considering that this
splitting is proportional to m, —mg at leading order in SU(3) xPT, we can estimate that
a similar error will propagate to the quark masses. So the individual up and down masses
look mildly affected by QED quenching. However, one notices that ~ 3% is the level of
error in the new FLAG averages, and increasing significantly this accuracy will require
using fully unquenched calculations.

In view of the fact that a massless up quark would solve the strong CP problem, many
authors have considered this an attractive possibility, but the results presented above
exclude this possibility: the value of m, in Eq. (43) differs from zero by 26 standard
deviations. We conclude that nature solves the strong CP problem differently.
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Finally, we conclude this section by giving the FLAG averages for € defined in Eq. (39).
For Ny =2+ 1+ 1, we average the results of RM123 17 [19] and MILC 18 [21] with the
value of (AMZ)” from BMW 14 [147] combined with Eq. (40), giving

Ny=241+1: e =0.79(6) Ref. [19, 21, 147]. (47)

Although BMW 14 [147] focuses on hadron masses and did not extract the light-quark
masses, they are the only fully unquenched QCD+QED calculation to date that qualifies
to enter a FLAG average. With the exception of renormalization, which is not discussed
in the paper, this work has a + rating for every FLAG criterion considered for the m,,
and mg quark masses. For Ny = 2 + 1 we use the results from BMW 16 [20],

Ny=2+1: e = 0.73(17) Ref. [20]. (48)

It is important to notice that the € uncertainties from BMW 16 and RM123 17 are
dominated by estimates of the QED quenching effects. Indeed, in contrast with the
quark masses, € is expected to be rather sensitive to the sea-quark QED contributions.
Using the arguments presented in Sec. 3.1.3, if one conservatively assumes that the QED
sea contributions represent O(10%) of (AM%)7, then Eq. (40) implies that e will have
a quenching error of ~ 0.15 for (AM%)” ~ 2000 MeV?, representing a large ~ 20%
relative error. It is interesting to observe that such a discrepancy does not appear between
BMW 15 and RM123 17, although the ~ 10% accuracy of both results might not be
sufficient to resolve these effects. On the other hand, in the context of SU(3) chiral
perturbation theory, Bijnens and Danielsson [174] show that the QED quenching effects
on € do not depend on unknown LECs at NLO and are therefore computable at that
order. In that approach, MILC 18 finds the effect at NLO to be only 5%. To conclude,
although the controversy around the value of € has been significantly reduced by lattice-
Q