
Y. Aoki et al. FLAG Review 2021 2111.09849

9 The strong coupling αs

Authors1 : R. Horsley, P. Petreczky, S. Sint

9.1 Introduction

The strong coupling ḡs(µ) defined at scale µ, plays a key role in the understanding of QCD
and in its application to collider physics. For example, the parametric uncertainty from αs is
one of the dominant sources of uncertainty in the Standard-Model prediction for the H → bb̄
partial width, and the largest source of uncertainty for H → gg. Thus higher precision
determinations of αs are needed to maximize the potential of experimental measurements at
the LHC, and for high-precision Higgs studies at future colliders and the study of the stability
of the vacuum [2–9]. The value of αs also yields one of the essential boundary conditions for
completions of the Standard Model at high energies.

In order to determine the running coupling at scale µ

αs(µ) =
ḡ2s(µ)

4π
, (317)

we should first “measure” a short-distance quantity Q at scale µ either experimentally or
by lattice calculations, and then match it to a perturbative expansion in terms of a running
coupling, conventionally taken as αMS(µ),

Q(µ) = c1αMS(µ) + c2αMS(µ)
2 + · · · . (318)

The essential difference between continuum determinations of αs and lattice determinations
is the origin of the values of Q in Eq. (318).

The basis of continuum determinations are experimentally measurable cross sections or
decay widths from whichQ is defined. These cross sections have to be sufficiently inclusive and
at sufficiently high scales such that perturbation theory can be applied. Often hadronization
corrections have to be used to connect the observed hadronic cross sections to the perturbative
ones. Experimental data at high µ, where perturbation theory is progressively more precise,
usually have increasing experimental errors, and it is not easy to find processes that allow one
to follow the µ-dependence of a single Q(µ) over a range where αs(µ) changes significantly
and precision is maintained.

In contrast, in lattice gauge theory, one can design Q(µ) as Euclidean short-distance
quantities that are not directly related to experimental observables. This allows us to follow
the µ-dependence until the perturbative regime is reached and nonperturbative “corrections”
are negligible. The only experimental input for lattice computations of αs is the hadron
spectrum which fixes the overall energy scale of the theory and the quark masses. Therefore
experimental errors are completely negligible and issues such as hadronization do not occur.
We can construct many short-distance quantities that are easy to calculate nonperturbatively
in lattice simulations with small statistical uncertainties. We can also simulate at parameter
values that do not exist in nature (for example, with unphysical quark masses between bottom

1There is a strong overlap with the FLAG 19 report’s section on αs, authored by R. Horsley, T. Onogi and
R. Sommer [1]. In particular the introduction, and the description of methods without new data have been
taken over almost unchanged.
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and charm) to help control systematic uncertainties. These features mean that precise results
for αs can be achieved with lattice-gauge-theory computations. Further, as in the continuum,
the different methods available to determine αs in lattice calculations with different associated
systematic uncertainties enable valuable cross-checks. Practical limitations are discussed in
the next section, but a simple one is worth mentioning here. Experimental results (and
therefore the continuum determinations) of course have all quarks present, while in lattice
gauge theories in practice only the lighter ones are included and one is then forced to use the
matching at thresholds, as discussed in the following subsection.

It is important to keep in mind that the dominant source of uncertainty in most present
day lattice-QCD calculations of αs are from the truncation of continuum/lattice perturbation
theory and from discretization errors. Perturbative truncation errors are of particular concern
because they often cannot easily be estimated from studying the data itself. Further, the size
of higher-order coefficients in the perturbative series can sometimes turn out to be larger
than naive expectations based on power counting from the behaviour of lower-order terms.
We note that perturbative truncation errors are also the dominant source of uncertainty in
several of the phenomenological determinations of αs.

The various phenomenological approaches to determining the running coupling constant,

α
(5)

MS
(MZ) are summarized by the Particle Data Group [10]. The PDG review lists five cat-

egories of phenomenological results used to obtain the running coupling: using hadronic τ
decays, hadronic final states of e+e− annihilation, deep inelastic lepton–nucleon scattering,
electroweak precision data, and high energy hadron collider data. Excluding lattice results,
the PDG quotes the weighted average as

α
(5)

MS
(MZ) = 0.1176(11) , PDG 20 [10] (319)

compared to α
(5)

MS
(MZ) = 0.1174(16) of the older PDG 2018 [11]. For a general overview of

the various phenomenological and lattice approaches see, e.g., Ref. [12]. The extraction of αs

from τ data, which is one of the most precise and thus has a large impact on the nonlattice
average in Eq. (319), is especially sensitive to the treatment of higher-order perturbative
terms as well as the treatment of nonperturbative effects. This is important to keep in mind

when comparing our chosen range for α
(5)

MS
(MZ) from lattice determinations in Eq. (396) with

the nonlattice average from the PDG.

9.1.1 Scheme and scale dependence of αs and ΛQCD

Despite the fact that the notion of the QCD coupling is initially a perturbative concept, the
associated Λ parameter is nonperturbatively defined

Λ ≡ µφs(ḡs(µ)),

φs(ḡs) = (b0ḡ
2
s)

−b1/(2b20)e−1/(2b0ḡ2s) exp

[
−
∫ ḡs

0
dx

(
1

β(x)
+

1

b0x3
− b1
b20x

)]
,

(320)

where β(ḡs) = µ∂ḡs(µ)
∂µ is the full renormalization group function in the scheme which de-

fines ḡs, and b0 and b1 are the first two scheme-independent coefficients of the perturbative
expansion

β(x) ∼ −b0x3 − b1x
5 + . . . , (321)
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with

b0 =
1

(4π)2

(
11− 2

3
Nf

)
, b1 =

1

(4π)4

(
102− 38

3
Nf

)
. (322)

Thus the Λ parameter is renormalization-scheme-dependent but in an exactly computable
way, and lattice gauge theory is an ideal method to relate it to the low-energy properties of
QCD. In the MS scheme presently bnl

up to nl = 4 are known [13–17].
The change in the coupling from one scheme S to another (taken here to be the MS

scheme) is perturbative,

g2
MS

(µ) = g2S(µ)(1 + c(1)g g2S(µ) + . . .) , (323)

where c
(i)
g , i ≥ 1 are finite renormalization coefficients. The scale µmust be taken high enough

for the error in keeping only the first few terms in the expansion to be small. On the other
hand, the conversion to the Λ parameter in the MS scheme is given exactly by

ΛMS = ΛS exp
[
c(1)g /(2b0)

]
. (324)

The fact that ΛMS can be obtained exactly from ΛS in any scheme S where c
(1)
g is known

together with the high-order knowledge (5-loop by now) of βMS means that the errors in
αMS(mZ) are dominantly due to the errors of ΛS . We will therefore mostly discuss them
in that way. Starting from Eq. (320), we have to consider (i) the error of ḡ2S(µ) (denoted
as
(
∆Λ
Λ

)
∆αS

) and (ii) the truncation error in βS (denoted as
(
∆Λ
Λ

)
trunc

). Concerning (ii),

note that knowledge of c
(nl)
g for the scheme S means that βS is known to nl + 1 loop order;

bnl
is known. We thus see that in the region where perturbation theory can be applied, the

following errors of ΛS (or consequently ΛMS) have to be considered(
∆Λ

Λ

)
∆αS

=
∆αS(µ)

8πb0α2
S(µ)

× [1 +O(αS(µ))] , (325)(
∆Λ

Λ

)
trunc

= kαnl
S (µ) +O(αnl+1

S (µ)) , (326)

where k depends on bnl+1 and in typical good schemes such as MS it is numerically of order
one. Statistical and systematic errors such as discretization effects contribute to ∆αS(µ). In
the above we dropped a scheme subscript for the Λ-parameters because of Eq. (324).

By convention αMS is usually quoted at a scale µ = MZ where the appropriate effective

coupling is the one in the 5-flavour theory: α
(5)

MS
(MZ). In order to obtain it from a result with

fewer flavours, one connects effective theories with different number of flavours as discussed
by Bernreuther and Wetzel [18]. For example, one considers the MS scheme, matches the
3-flavour theory to the 4-flavour theory at a scale given by the charm-quark mass [19–21],
runs with the 5-loop β-function [13–17] of the 4-flavour theory to a scale given by the b-quark
mass, and there matches to the 5-flavour theory, after which one runs up to µ = MZ with
the 5-loop β function. For the matching relation at a given quark threshold we use the mass
m⋆ which satisfies m⋆ = mMS(m⋆), where m is the running mass (analogous to the running
coupling). Then

ḡ2Nf−1(m⋆) = ḡ2Nf
(m⋆)× [1 + 0× ḡ2Nf

(m⋆) +
∑
n≥2

tn ḡ
2n
Nf

(m⋆)] (327)
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with [19, 21, 22]

t2 =
1

(4π2)2
11

72
, (328)

t3 =
1

(4π2)3

[
−82043

27648
ζ3 +

564731

124416
− 2633

31104
(Nf − 1)

]
, (329)

t4 =
1

(4π2)4
[
5.170347− 1.009932(Nf − 1)− 0.021978 (Nf − 1)2

]
, (330)

(where ζ3 is the Riemann zeta-function) provides the matching at the thresholds in the MS
scheme. Often the package RunDec is used for quark-threshold matching and running in the
MS-scheme [23, 24].

While t2, t3, t4 are numerically small coefficients, the charm-threshold scale is also rela-
tively low and so there are nonperturbative uncertainties in the matching procedure, which
are difficult to estimate but which we assume here to be negligible. Obviously there is no
perturbative matching formula across the strange “threshold”; here matching is entirely non-
perturbative. Model dependent extrapolations of ḡ2Nf

from Nf = 0, 2 to Nf = 3 were done in
the early days of lattice gauge theory. We will include these in our listings of results but not
in our estimates, since such extrapolations are based on untestable assumptions.

9.1.2 Overview of the review of αs

We begin by explaining lattice-specific difficulties in Sec. 9.2.1 and the FLAG criteria designed
to assess whether the associated systematic uncertainties can be controlled and estimated in
a reasonable manner. These criteria are taken over unchanged from the FLAG 19 report,
as there has not yet been sufficiently broad progress to make these criteria more stringent.
We would also like to point to a recent review [25] of lattice methodology and systematic
uncertainties for αs. There, a systematic scale variation is advocated to assess systematic
errors due to the truncation of the perturbative series and such a procedure may indeed be
incorporated into future FLAG criteria, as it can be applied without change to most lattice
approaches.

We then discuss, in Sec. 9.3 – Sec. 9.9, the various lattice approaches and results from
calculations with Nf = 0, 2, 2+1, and 2+1+1 flavours.

Besides new results and upgrades of previous works, a new strategy of nonperturbative
renormalization by decoupling has been proposed by the ALPHA collaboration [26], which
shifts the perspective on results with unphysical flavour numbers, in particular for Nf = 0.
As these can be nonperturbatively related to Nf > 0 results by a nonperturbative matching
calculation, it becomes very important to obtain precise and controlled Nf = 0 results, with
obvious implications for this and future FLAG reports. A short account of the decoupling
strategy is given in Sec. 9.4.

In Sec. 9.11, we present averages together with our best estimates for α
(5)

MS
. These are

currently determined from 3- and 4-flavour QCD simulations only, however, in the near future
the decoupling strategy is expected to link e.g. 3-flavour simulations with the pure gauge
theory simulations. Therefore, for the Λ parameter, we also give results for other numbers of
flavours, including Nf = 0 and Nf = 2.
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9.1.3 Additions with respect to the FLAG 19 report

The additional papers since the FLAG 19 report are:

Dalla Brida 19 [27] and Nada 20 [28] from step-scaling methods (Sec. 9.3).

ALPHA 19A [26] from the decoupling method (Sec. 9.4).

TUMQCD 19 [29] and Ayala 20 [30] and Husung 20 [31] from the static quark potential
(Sec. 9.5).

Cali 20 [32] from (light-quark) vacuum polarization in position space (Sec. 9.6).

Petreczky 20 [33], Petreczky 19 [34], and Boito 20 [35, 36] from heavy-quark current
two-point functions (Sec. 9.8).

Zafeiropoulos 19 [37] from QCD vertices (Sec. 9.9).

9.2 General issues

9.2.1 Discussion of criteria for computations entering the averages

As in the PDG review, we only use calculations of αs published in peer-reviewed journals,
and that use NNLO or higher-order perturbative expansions, to obtain our final range in
Sec. 9.11. We also, however, introduce further criteria designed to assess the ability to con-
trol important systematics, which we describe here. Some of these criteria, e.g., that for the
continuum extrapolation, are associated with lattice-specific systematics and have no con-
tinuum analogue. Other criteria, e.g., that for the renormalization scale, could in principle
be applied to nonlattice determinations. Expecting that lattice calculations will continue to
improve significantly in the near future, our goal in reviewing the state-of-the-art here is to
be conservative and avoid prematurely choosing an overly small range.

In lattice calculations, we generally take Q to be some combination of physical amplitudes
or Euclidean correlation functions which are free from UV and IR divergences and have a well-
defined continuum limit. Examples include the force between static quarks and two-point
functions of quark-bilinear currents.

In comparison to values of observables Q determined experimentally, those from lattice
calculations require two more steps. The first step concerns setting the scale µ in GeV,
where one needs to use some experimentally measurable low-energy scale as input. Ideally
one employs a hadron mass. Alternatively convenient intermediate scales such as

√
t0, w0,

r0, r1, [38–41] can be used if their relation to an experimental dimensionful observable is
established. The low-energy scale needs to be computed at the same bare parameters where
Q is determined, at least as long as one does not use the step-scaling method (see below).
This induces a practical difficulty given present computing resources. In the determination of
the low-energy reference scale the volume needs to be large enough to avoid finite-size effects.
On the other hand, in order for the perturbative expansion of Eq. (318) to be reliable, one
has to reach sufficiently high values of µ, i.e., short enough distances. To avoid uncontrollable
discretization effects the lattice spacing a has to be accordingly small. This means

L≫ hadron size ∼ Λ−1
QCD and 1/a≫ µ , (331)
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(where L is the box size) and therefore

L/a≫ µ/ΛQCD . (332)

The currently available computer power, however, limits L/a, typically to L/a = 32 − 96.
Unless one accepts compromises in controlling discretization errors or finite-size effects, this
means one needs to set the scale µ according to

µ≪ L/a× ΛQCD ∼ 10− 30GeV . (333)

(Here ≪ or ≫ means at least one order of magnitude smaller or larger.) Therefore, µ can
be 1−3GeV at most. This raises the concern whether the asymptotic perturbative expansion
truncated at 1-loop, 2-loop, or 3-loop in Eq. (318) is sufficiently accurate. There is a finite-size
scaling method, usually called step-scaling method, which solves this problem by identifying
µ = 1/L in the definition of Q(µ), see Sec. 9.3.

For the second step after setting the scale µ in physical units (GeV), one should compute
Q on the lattice, Qlat(a, µ) for several lattice spacings and take the continuum limit to obtain
the left hand side of Eq. (318) as

Q(µ) ≡ lim
a→0

Qlat(a, µ) with µ fixed . (334)

This is necessary to remove the discretization error.
Here it is assumed that the quantity Q has a continuum limit, which is regularization-

independent. The method discussed in Sec. 9.7, which is based on the perturbative expansion
of a lattice-regulated, divergent short-distance quantity Wlat(a) differs in this respect and
must be treated separately.

In summary, a controlled determination of αs needs to satisfy the following:

1. The determination of αs is based on a comparison of a short-distance quantity Q at scale
µ with a well-defined continuum limit without UV and IR divergences to a perturbative
expansion formula in Eq. (318).

2. The scale µ is large enough so that the perturbative expansion in Eq. (318) is precise
to the order at which it is truncated, i.e., it has good asymptotic convergence.

3. If Q is defined by physical quantities in infinite volume, one needs to satisfy Eq. (332).

Nonuniversal quantities need a separate discussion, see Sec. 9.7.

Conditions 2. and 3. give approximate lower and upper bounds for µ respectively. It is
important to see whether there is a window to satisfy 2. and 3. at the same time. If it exists,
it remains to examine whether a particular lattice calculation is done inside the window or
not.

Obviously, an important issue for the reliability of a calculation is whether the scale µ
that can be reached lies in a regime where perturbation theory can be applied with confi-
dence. However, the value of µ does not provide an unambiguous criterion. For instance,
the Schrödinger Functional, or SF-coupling (Sec. 9.3) is conventionally taken at the scale
µ = 1/L, but one could also choose µ = 2/L. Instead of µ we therefore define an effective
αeff . For schemes such as SF (see Sec. 9.3) or qq (see Sec. 9.5) this is directly the coupling
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of the scheme. For other schemes such as the vacuum polarization we use the perturbative
expansion Eq. (318) for the observable Q to define

αeff = Q/c1 . (335)

If there is an αs-independent term it should first be subtracted. Note that this is nothing but
defining an effective, regularization-independent coupling, a physical renormalization scheme.

Let us now comment further on the use of the perturbative series. Since it is only an
asymptotic expansion, the remainder Rn(Q) = Q −

∑
i≤n ciα

i
s of a truncated perturbative

expression Q ∼
∑

i≤n ciα
i
s cannot just be estimated as a perturbative error k αn+1

s . The error
is nonperturbative. Often one speaks of “nonperturbative contributions”, but nonperturbative
and perturbative cannot be strictly separated due to the asymptotic nature of the series (see,
e.g., Ref. [42]).

Still, we do have some general ideas concerning the size of nonperturbative effects. The
known ones such as instantons or renormalons decay for large µ like inverse powers of µ and
are thus roughly of the form

exp(−γ/αs) , (336)

with some positive constant γ. Thus we have, loosely speaking,

Q = c1αs + c2α
2
s + . . .+ cnα

n
s +O(αn+1

s ) +O(exp(−γ/αs)) . (337)

For small αs, the exp(−γ/αs) is negligible. Similarly the perturbative estimate for the mag-
nitude of relative errors in Eq. (337) is small; as an illustration for n = 3 and αs = 0.2 the
relative error is ∼ 0.8% (assuming coefficients |cn+1/c1| ∼ 1).

For larger values of αs nonperturbative effects can become significant in Eq. (337). An
instructive example comes from the values obtained from τ decays, for which αs ≈ 0.3. Here,
different applications of perturbation theory (fixed order and contour improved) each look
reasonably asymptotically convergent 2 but the difference does not seem to decrease much
with the order (see, e.g., the contribution of Pich in Ref. [44]). In addition nonperturbative
terms in the spectral function may be nonnegligible even after the integration up to mτ (see,
e.g., Refs. [45], [46]). All of this is because αs is not really small.

Since the size of the nonperturbative effects is very hard to estimate one should try to
avoid such regions of the coupling. In a fully controlled computation one would like to verify
the perturbative behaviour by changing αs over a significant range instead of estimating the
errors as ∼ αn+1

s . Some computations try to take nonperturbative power ‘corrections’ to the
perturbative series into account by including such terms in a fit to the µ-dependence. We
note that this is a delicate procedure, both because the separation of nonperturbative and
perturbative is theoretically not well defined and because in practice a term like, e.g., αs(µ)

3

is hard to distinguish from a 1/µ2 term when the µ-range is restricted and statistical and
systematic errors are present. We consider it safer to restrict the fit range to the region where
the power corrections are negligible compared to the estimated perturbative error.

The above considerations lead us to the following special criteria for the determination of
αs:

• Renormalization scale

2See, however, the recent discussion in [43].
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⋆ all points relevant in the analysis have αeff < 0.2

◦ all points have αeff < 0.4 and at least one αeff ≤ 0.25

■ otherwise

• Perturbative behaviour

⋆ verified over a range of a factor 4 change in αnl
eff without power corrections or

alternatively αnl
eff ≤ 1

2∆αeff/(8πb0α
2
eff) is reached

◦ agreement with perturbation theory over a range of a factor (3/2)2 in αnl
eff possibly

fitting with power corrections or alternatively αnl
eff ≤ ∆αeff/(8πb0α

2
eff) is reached

■ otherwise

Here ∆αeff is the accuracy cited for the determination of αeff and nl is the loop order to
which the connection of αeff to the MS scheme is known. Recall the discussion around
Eqs. (325,326); the β-function of αeff is then known to nl + 1 loop order.3

• Continuum extrapolation

At a reference point of αeff = 0.3 (or less) we require

⋆ three lattice spacings with µa < 1/2 and full O(a) improvement,
or three lattice spacings with µa ≤ 1/4 and 2-loop O(a) improvement,
or µa ≤ 1/8 and 1-loop O(a) improvement

◦ three lattice spacings with µa < 3/2 reaching down to µa = 1 and full O(a)
improvement,
or three lattice spacings with µa ≤ 1/4 and 1-loop O(a) improvement

■ otherwise

We also need to specify what is meant by µ. Here are our choices:

step-scaling : µ = 1/L ,

heavy quark-antiquark potential : µ = 2/r ,

observables in position space : µ = 1/|x| ,
observables in momentum space : µ = q ,

moments of heavy-quark currents : µ = 2m̄c ,

eigenvalues of the Dirac operator : µ = λMS (338)

where |x| is the Euclidean norm of the 4-vector x, q is the magnitude of the momentum, m̄c

is the heavy-quark mass (in the MS scheme) and usually taken around the charm-quark mass
and λMS is the eigenvalue of the Dirac operator, see Sec. 9.10. We note again that the above
criteria cannot be applied when regularization dependent quantities Wlat(a) are used instead
of Q(µ). These cases are specifically discussed in Sec. 9.7.

3Once one is in the perturbative region with αeff , the error in extracting the Λ parameter due to the
truncation of perturbation theory scales like α

nl
eff , as discussed around Eq. (326). In order to detect/control

such corrections properly, one needs to change the correction term significantly; we require a factor of four for
a ⋆ and a factor (3/2)2 for a ◦ . An exception to the above is the situation where the correction terms are
small anyway, i.e., α

nl
eff ≈ (∆Λ/Λ)trunc < (∆Λ/Λ)∆α ≈ ∆αeff/(8πb0α

2
eff) is reached.
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In principle one should also account for electro-weak radiative corrections. However, both
in the determination of αs at intermediate scales µ and in the running to high scales, we
expect electro-weak effects to be much smaller than the presently reached precision. Such
effects are therefore not further discussed.

The attentive reader will have noticed that bounds such as µa < 3/2 or at least one
value of αeff ≤ 0.25 which we require for a ◦ are not very stringent. There is a considerable
difference between ◦ and ⋆. We have chosen the above bounds, unchanged as compared
to FLAG 16 and FLAG 19, since not too many computations would satisfy more stringent
ones at present. Nevertheless, we believe that the ◦ criteria already give reasonable bases
for estimates of systematic errors. An exception may be Cali 20, which is discussed in detail
in Sec. 9.6. In the future, we expect that we will be able to tighten our criteria for inclusion
in the average, and that many more computations will reach the present ⋆ rating in one or
more categories.

In addition to our explicit criteria, the following effects may influence the precision of
results:

Topology sampling: In principle a good way to improve the quality of determinations of αs

is to push to very small lattice spacings thus enabling large µ. It is known that the sampling of
field space becomes very difficult for the HMC algorithm when the lattice spacing is small and
one has the standard periodic boundary conditions. In practice, for all known discretizations
the topological charge slows down dramatically for a ≈ 0.05 fm and smaller [47–53]. Open
boundary conditions solve the problem [54] but are not frequently used. Since the effect of
the freezing on short distance observables is not known, we also do need to pay attention to
this issue. Remarks are added in the text when appropriate.

Quark-mass effects: We assume that effects of the finite masses of the light quarks (in-
cluding strange) are negligible in the effective coupling itself where large, perturbative, µ is
considered.

Scale setting: The scale does not need to be very precise, since using the lowest-order
β-function shows that a 3% error in the scale determination corresponds to a ∼ 0.5% error in
αs(MZ). As long as systematic errors from chiral extrapolation and finite-volume effects are
well below 3% we do not need to be concerned about those at the present level of precision
in αs(MZ). This may change in the future.

9.2.2 Physical scale

Since FLAG 19, a new FLAG working group on scale setting has been established. We refer
to Sec. 11 for definitions and the current status. Note that the error from scale setting is
sub-dominant for current αs determinations.

A popular scale choice has been the intermediate r0 scale, and its variant r1, which
both derive from the force between static quarks, see Eq.(358). One should bear in mind
that their determination from physical observables also has to be taken into account. The
phenomenological value of r0 was originally determined as r0 ≈ 0.49 fm through potential
models describing quarkonia [40]. Of course the quantity is precisely defined, independently
of such model considerations. But a lattice computation with the correct sea-quark content is
needed to determine a completely sharp value. When the quark content is not quite realistic,
the value of r0 may depend to some extent on which experimental input is used to determine
(actually define) it.

The latest determinations from two-flavour QCD are r0 = 0.420(14)–0.450(14) fm by the
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ETM collaboration [55, 56], using as input fπ and fK and carrying out various continuum ex-
trapolations. On the other hand, the ALPHA collaboration [57] determined r0 = 0.503(10) fm
with input from fK , and the QCDSF collaboration [58] cites 0.501(10)(11) fm from the mass
of the nucleon (no continuum limit). Recent determinations from three-flavour QCD are con-
sistent with r1 = 0.313(3) fm and r0 = 0.472(5) fm [59–61]. Due to the uncertainty in these
estimates, and as many results are based directly on r0 to set the scale, we shall often give
both the dimensionless number r0ΛMS, as well as ΛMS. In the cases where no physical r0 scale
is given in the original papers or we convert to the r0 scale, we use the value r0 = 0.472 fm. In
case r1ΛMS is given in the publications, we use r0/r1 = 1.508 [61], to convert, which remains
well consistent with the update [52] neglecting the error on this ratio. In some, mostly early,
computations the string tension,

√
σ was used. We convert to r0 using r20σ = 1.65 − π/12,

which has been shown to be an excellent approximation in the relevant pure gauge theory
[62, 63].

The new scales t0, w0 based on the gradient flow are very attractive alternatives to r0 but
their discretization errors are still under discussion [64–67] and their values at the physical
point are not yet determined with great precision. We remain with r0 as our main reference
scale for now. A general discussion of the various scales is given in [68] and in the scale-setting
section of this FLAG report, cf. Sec. 11.

9.2.3 Studies of truncation errors of perturbation theory

As discussed previously, we have to determine αs in a region where the perturbative expansion
for the β-function, Eq. (321) in the integral Eq. (320), is reliable. In principle this must be
checked, however, this is difficult to achieve as we need to reach up to a sufficiently high scale.
A frequently used recipe to estimate the size of truncation errors of the perturbative series
is to vary the renormalization-scale dependence around the chosen ‘optimal’ scale µ∗, of an
observable evaluated at a fixed order in the coupling from µ = µ∗/2 to 2µ∗. For examples,
see Ref. [25].

Alternatively, or in addition, the renormalization scheme chosen can be varied, which
investigates the perturbative conversion of the chosen scheme to the perturbatively defined
MS scheme and in particular ‘fastest apparent convergence’ when the ‘optimal’ scale is chosen
so that the O(α2

s) coefficient vanishes.
The ALPHA collaboration in Ref. [69] and ALPHA 17 [70], within the SF approach defined

a set of ν-schemes for which the 3-loop (scheme-dependent) coefficient of the β-function for
Nf = 2+ 1 flavours was computed to be bν2 = −(0.064(27) + 1.259(1)ν)/(4π)3. The standard

SF scheme has ν = 0. For comparison, bMS
2 = 0.324/(4π)3. A range of scales from about

4GeV to 128GeV was investigated. It was found that while the procedure of varying the
scale by a factor 2 up and down gave a correct estimate of the residual perturbative error for
ν ≈ 0 . . . 0.3, for negative values, e.g., ν = −0.5, the estimated perturbative error is much too
small to account for the mismatch in the Λ-parameter of ≈ 8% at αs = 0.15. This mismatch,
however, did, as expected, still scale with αnl

s with nl = 2. In the schemes with negative ν,
the coupling αs has to be quite small for scale-variations of a factor 2 to correctly signal the
perturbative errors.

For a systematic study of renormalization scale variations as a measure of perturbative
truncation errors in various lattice determinations of αs we refer to the recent review by Del
Debbio and Ramos [25].
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9.3 αs from Step-Scaling Methods

9.3.1 General considerations

The method of step-scaling functions avoids the scale problem, Eq. (331). It is in principle
independent of the particular boundary conditions used and was first developed with periodic
boundary conditions in a two-dimensional model [71].

The essential idea of the step-scaling strategy is to split the determination of the running
coupling at large µ and of a hadronic scale into two lattice calculations and connect them
by ‘step-scaling’. In the former part, we determine the running coupling constant in a finite-
volume scheme in which the renormalization scale is set by the inverse lattice size µ = 1/L.
In this calculation, one takes a high renormalization scale while keeping the lattice spacing
sufficiently small as

µ ≡ 1/L ∼ 10 . . . 100GeV , a/L≪ 1 . (339)

In the latter part, one chooses a certain ḡ2max = ḡ2(1/Lmax), typically such that Lmax is
around 0.5–1 fm. With a common discretization, one then determines Lmax/a and (in a large
volume L ≥ 2–3 fm) a hadronic scale such as a hadron mass,

√
t0/a or r0/a at the same

bare parameters. In this way one gets numbers for, e.g., Lmax/r0 and by changing the lattice
spacing a carries out a continuum limit extrapolation of that ratio.

In order to connect ḡ2(1/Lmax) to ḡ2(µ) at high µ, one determines the change of the
coupling in the continuum limit when the scale changes from L to L/s, starting from L = Lmax

and arriving at µ = sk/Lmax. This part of the strategy is called step-scaling. Combining these
results yields ḡ2(µ) at µ = sk (r0/Lmax) r

−1
0 , where r0 stands for the particular chosen hadronic

scale. Most applications use a scale factor s = 2.
At present most applications in QCD use Schrödinger functional boundary conditions [72,

73] and we discuss this below in a little more detail. (However, other boundary conditions are
also possible, such as twisted boundary conditions and the discussion also applies to them.)
An important reason is that these boundary conditions avoid zero modes for the quark fields
and quartic modes [74] in the perturbative expansion in the gauge fields. Furthermore the
corresponding renormalization scheme is well studied in perturbation theory [75–77] with the
3-loop β-function and 2-loop cutoff effects (for the standard Wilson regularization) known.

In order to have a perturbatively well-defined scheme, the SF scheme uses Dirichlet bound-
ary conditions at time t = 0 and t = T . These break translation invariance and permit
O(a) counter terms at the boundary through quantum corrections. Therefore, the lead-
ing discretization error is O(a). Improving the lattice action is achieved by adding counter
terms at the boundaries whose coefficients are denoted as ct, c̃t. In practice, these coefficients
are computed with 1-loop or 2-loop perturbative accuracy. A better precision in this step
yields a better control over discretization errors, which is important, as can be seen, e.g., in
Refs. [62, 78].

Also computations with Dirichlet boundary conditions do in principle suffer from the
insufficient change of topology in the HMC algorithm at small lattice spacing. However, in
a small volume the weight of nonzero charge sectors in the path integral is exponentially
suppressed [79] 4 and in a Monte Carlo run of typical length very few configurations with
nontrivial topology should appear. Considering the issue quantitatively Ref. [80] finds a

4We simplify here and assume that the classical solution associated with the used boundary conditions has
charge zero. In practice this is the case.

11

http://arxiv.org/abs/2111.09849


Y. Aoki et al. FLAG Review 2021 2111.09849

strong suppression below L ≈ 0.8 fm. Therefore the lack of topology change of the HMC is
not a serious issue for the high energy regime in step-scaling studies. However, the matching
to hadronic observables requires volumes where the problem cannot be ignored. Therefore,
Ref. [81] includes a projection to zero topology into the definition of the coupling. We note
also that a mix of Dirichlet and open boundary conditions is expected to remove the topology
issue entirely [82] and may be considered in the future.

Apart from the boundary conditions, the very definition of the coupling needs to be
chosen. We briefly discuss in turn, the two schemes used at present, namely, the ‘Schrödinger
Functional’ (SF) and ‘Gradient Flow’ (GF) schemes.

The SF scheme is the first one, which was used in step-scaling studies in gauge theories
[72]. Inhomogeneous Dirichlet boundary conditions are imposed in time,

Ak(x)|x0=0 = Ck , Ak(x)|x0=L = C ′
k , (340)

for k = 1, 2, 3. Periodic boundary conditions (up to a phase for the fermion fields) with period
L are imposed in space. The matrices

LCk = idiag
(
η − π/3,−η/2,−η/2 + π/3

)
,

LC ′
k = idiag

(
− (η + π), η/2 + π/3, η/2 + 2π/3

)
,

just depend on the dimensionless parameter η. The coupling ḡSF is obtained from the η-
derivative of the effective action,

⟨∂ηS|η=0⟩ =
12π

ḡ2SF
. (341)

For this scheme, the finite c
(i)
g , Eq. (323), are known for i = 1, 2 [76, 77].

More recently, gradient-flow couplings have been used frequently because of their small
statistical errors at large couplings (in contrast to ḡSF, which has small statistical errors at
small couplings). The gradient flow is introduced as follows [38, 83]. Consider the flow gauge
field Bµ(t, x) with the flow time t, which is a one parameter deformation of the bare gauge
field Aµ(x), where Bµ(t, x) is the solution to the gradient-flow equation

∂tBµ(t, x) = DνGνµ(t, x) ,

Gµν = ∂µBν − ∂νBµ + [Bµ, Bν ] , (342)

with initial condition Bµ(0, x) = Aµ(x). The renormalized coupling is defined by [38]

ḡ2GF(µ) = N t2⟨E(t, x)⟩
∣∣
µ=1/

√
8t
, (343)

with N = 16π2/3 +O((a/L)2) and where E(t, x) is the action density given by

E(t, x) =
1

4
Ga

µν(t, x)G
a
µν(t, x). (344)

In a finite volume, one needs to specify additional conditions. In order not to introduce two
independent scales one sets

√
8t = cL , (345)
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for some fixed number c [84]. Schrödinger functional boundary conditions [85] or twisted
boundary conditions [86, 87] have been employed. Matching of the GF coupling to the MS-
scheme coupling is known to 1-loop for twisted boundary conditions with zero quark flavours
and SU(3) group [87] and to 2-loop with SF boundary conditions with zero quark flavours
[88]. The former is based on a MC evaluation at small couplings5 and the latter on numerical
stochastic perturbation theory.

9.3.2 Discussion of computations

In Tab. 60 we give results from various determinations of the Λ parameter. For a clear
assessment of the Nf -dependence, the last column also shows results that refer to a common
hadronic scale, r0. As discussed above, the renormalization scale can be chosen large enough
such that αs < 0.2 and the perturbative behaviour can be verified. Consequently only ⋆ is
present for these criteria except for early work where the nl = 2 loop correction to MS was
not yet known and we assigned a ■ concerning the renormalization scale. With dynamical
fermions, results for the step-scaling functions are always available for at least a/L = µa =
1/4, 1/6, 1/8. All calculations have a nonperturbatively O(a) improved action in the bulk.
For the discussed boundary O(a) terms this is not so. In most recent calculations 2-loop
O(a) improvement is employed together with at least three lattice spacings.6 This means a
⋆ for the continuum extrapolation. In other computations only 1-loop ct was available and
we arrive at ◦ . We note that the discretization errors in the step-scaling functions of the
SF coupling are usually found to be very small, at the percent level or below. However, the
overall desired precision is very high as well, and the results in CP-PACS 04 [78] show that
discretization errors at the below percent level cannot be taken for granted. In particular
with staggered fermions (unimproved except for boundary terms) few percent effects are seen
in Perez 10 [91].

In the work by PACS-CS 09A [93], the continuum extrapolation in the scale setting
is performed using a constant function in a and with a linear function. Potentially the
former leaves a considerable residual discretization error. We here use, as discussed with the
collaboration, the continuum extrapolation linear in a, as given in the second line of PACS-CS
09A [93] results in Tab. 60. After perturbative conversion from a three-flavour result to five
flavours (see Sec. 9.2.1), they obtain

α
(5)

MS
(MZ) = 0.118(3) . (346)

In Ref. [92], the ALPHA collaboration determined Λ
(3)

MS
combining step-scaling in ḡ2GF in

the lower scale region µhad ≤ µ ≤ µ0, and step-scaling in ḡ2SF for higher scales µ0 ≤ µ ≤ µPT.
Both schemes are defined with SF boundary conditions. For ḡ2GF a projection to the sector of
zero topological charge is included, Eq. (344) is restricted to the magnetic components, and
c = 0.3. The scales µhad, µ0, and µPT are defined by ḡ2GF(µhad) = 11.3, ḡ2SF(µ0) = 2.012, and
µPT = 16µ0 which are roughly estimated as

1/Lmax ≡ µhad ≈ 0.2 GeV, µ0 ≈ 4 GeV , µPT ≈ 70 GeV . (347)

5For a variant of the twisted periodic finite volume scheme the 1-loop matching has been computed analyt-
ically [89].

6With 2-loop O(a) improvement we here mean ct including the g40 term and c̃t with the g20 term. For gluonic
observables such as the running coupling this is sufficient for cutoff effects being suppressed to O(g6a).
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Collaboration Ref. Nf pu
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scale ΛMS[MeV] r0ΛMS

ALPHA 10A [90] 4 A ⋆ ⋆ ⋆ only running of αs in Fig. 4
Perez 10 [91] 4 C ⋆ ⋆ ◦ only step-scaling function in Fig. 4

ALPHA 17 [92] 2+1 A ⋆ ⋆ ⋆
√
8t0 = 0.415 fm 341(12) 0.816(29)

PACS-CS 09A [93] 2+1 A ⋆ ⋆ ◦ mρ 371(13)(8)(+0
−27)

# 0.888(30)(18)(+0
−65)

†

A ⋆ ⋆ ◦ mρ 345(59)## 0.824(141)†

ALPHA 12∗ [57] 2 A ⋆ ⋆ ⋆ fK 310(20) 0.789(52)

ALPHA 04 [94] 2 A ■ ⋆ ⋆ r0 = 0.5 fm§ 245(16)(16)§ 0.62(2)(2)§

ALPHA 01A [95] 2 A ⋆ ⋆ ⋆ only running of αs in Fig. 5

Nada 20 [28] 0 A ⋆ ⋆ ⋆ consistency checks for [27], same gauge configurations
Dalla Brida 19 [27] 0 A ⋆ ⋆ ⋆ r0 = 0.5fm 260.5(4.4) 0.660(11)

Ishikawa 17 [87] 0 A ⋆ ⋆ ⋆ r0, [
√
σ] 253(4)(+13

−2 )† 0.606(9)(+31
−5 )+

CP-PACS 04& [78] 0 A ⋆ ⋆ ◦ only tables of g2SF
ALPHA 98†† [96] 0 A ⋆ ⋆ ◦ r0 = 0.5fm 238(19) 0.602(48)

Lüscher 93 [75] 0 A ⋆ ◦ ◦ r0 = 0.5fm 233(23) 0.590(60)§§

# Result with a constant (in a) continuum extrapolation of the combination Lmaxmρ.
† In conversion from ΛMS to r0ΛMS and vice versa, r0 is taken to be 0.472 fm.

## Result with a linear continuum extrapolation in a of the combination Lmaxmρ.
∗ Supersedes ALPHA 04.
§ The Nf = 2 results were based on values for r0/a which have later been found to be too small by [57].

The effect will be of the order of 10–15%, presumably an increase in Λr0. We have taken this into
account by a ■ in the renormalization scale.

& This investigation was a precursor for PACS-CS 09A and confirmed two step-scaling functions as well
as the scale setting of ALPHA 98.

†† Uses data of Lüscher 93 and therefore supersedes it.
§§ Converted from αMS(37r

−1
0 ) = 0.1108(25).

+ Also ΛMS/
√
σ = 0.532(8)(+27

−5 ) is quoted.

Table 60: Results for the Λ parameter from computations using step-scaling of the SF-
coupling. Entries without values for Λ computed the running and established perturbative
behaviour at large µ.

Step-scaling is carried out with an O(a)-improved Wilson quark action [97] and Lüscher-
Weisz gauge action [98] in the low-scale region and an O(a)-improved Wilson quark action
[99] and Wilson gauge action in the high-energy part. For the step-scaling using steps of
L/a → 2L/a, three lattice sizes L/a = 8, 12, 16 were simulated for ḡ2GF and four lattice sizes
L/a = (4, ) 6, 8, 12 for ḡ2SF. The final results do not use the small lattices given in parenthesis.
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The parameter Λ
(3)

MS
is then obtained via

Λ
(3)

MS
=

Λ
(3)

MS

µPT︸ ︷︷ ︸
perturbation theory

× µPT
µhad︸ ︷︷ ︸

step−scaling

× µhad
fπK︸ ︷︷ ︸

large volume simulation

× fπK︸︷︷︸
experimental data

, (348)

where the hadronic scale fπK is fπK = 1
3(2fK + fπ) = 147.6(5) MeV. The first factor on

the right hand side of Eq. (348) is obtained from αSF(µPT) which is the output from SF
step-scaling using Eq. (320) with αSF(µPT) ≈ 0.1 and the 3-loop β-function and the exact
conversion to the MS-scheme. The second factor is essentially obtained from step-scaling in
the GF scheme and the measurement of ḡ2SF(µ0) (except for the trivial scaling factor of 16 in
the SF running). The third factor is obtained from a measurement of the hadronic quantity
at large volume.

A large-volume simulation is done for three lattice spacings with sufficiently large volume
and reasonable control over the chiral extrapolation so that the scale determination is precise
enough. The step-scaling results in both schemes satisfy renormalization criteria, perturbation
theory criteria, and continuum limit criteria just as previous studies using step-scaling. So
we assign green stars for these criteria.

The dependence of Λ, Eq. (320) with 3-loop β-function, on αs and on the chosen scheme
is discussed in [69]. This investigation provides a warning on estimating the truncation error
of perturbative series. Details are explained in Sec. 9.2.3.

The result for the Λ parameter is Λ
(3)

MS
= 341(12) MeV, where the dominant error comes

from the error of αSF(µPT) after step-scaling in the SF scheme. Using 4-loop matching at the
charm and bottom thresholds and 5-loop running one finally obtains

α
(5)

MS
(MZ) = 0.11852(84) . (349)

Several other results do not have a sufficient number of quark flavours or do not yet contain
the conversion of the scale to physical units (ALPHA 10A [90], Perez 10 [91]). Thus no value

for α
(5)

MS
(MZ) is quoted.

The computation of Ishikawa et al. [87] is based on the gradient flow coupling with twisted
boundary conditions [86] (TGF coupling) in the pure gauge theory. Again they use c = 0.3.
Step-scaling with a scale factor s = 3/2 is employed, covering a large range of couplings from
αs ≈ 0.5 to αs ≈ 0.1 and taking the continuum limit through global fits to the step-scaling
function on L/a = 12, 16, 18 lattices with between 6 and 8 parameters. Systematic errors
due to variations of the fit functions are estimated. Two physical scales are considered: r0/a
is taken from [62] and σa2 from [100] and [101]. As the ratio ΛTGF/ΛMS has not yet been
computed analytically, Ref. [87] determines the 1-loop relation between ḡSF and ḡTGF from
MC simulations performed in the weak coupling region and then uses the known ΛSF/ΛMS.
Systematic errors due to variations of the fit functions dominate the overall uncertainty.

Since FLAG 19 two new and quite extensive Nf = 0 step-scaling studies have been carried
out in Dalla Brida 19 [27] and by Nada and Ramos [28]. They use different strategies for
the running from mid to high energies, but use the same gauge configurations and share
the running at low energies and matching to the hadronic scales. These results are therefore
correlated. However, given the comparatively high value for r0ΛMS, it is re-assuring that these
conceptually different approaches yield perfectly compatible results within errors of similar
size of around 1.5% for

√
8t0ΛMS = 0.6227(98), or, alternatively r0ΛMS = 0.660(11).
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In Dalla Brida 19 [27] two GF-coupling definitions with SF-boundary conditions are con-
sidered, corresponding to (colour-) magnetic and electric components of the action density
respectively. The coupling definitions include the projection to Q = 0, as was also done
in [92]. The flow time parameter is set to c = 0.3, and both Zeuthen and Wilson flow are
measured. Lattice sizes range from L/a = 8 to L/a = 48, covering up to a factor of 3 in
lattice spacings for the step-scaling function, where both L/a and 2L/a are needed. Lattice
effects in the step-scaling function are visible but can be extrapolated using global fits with
a2 errors. Some remnant O(a) effects from the boundaries are expected, as their perturbative
cancellation is incomplete. These O(a) contaminations are treated as a systematic error on
the data, following [92] and are found to be subdominant. An intermediate reference scale
µref is defined where α = 0.2, and the scales above and below are analyzed separately. Again
this is similar to [92], except that here GF coupling data is available also at high energy scales.
The GF β-functions are then obtained by fitting to the continuum extrapolated data for the
step-scaling functions. In addition, a nonperturbative matching to the standard SF coupling
is performed above µref for a range of couplings covering a factor 2. The nonperturbative
β-function for the SF scheme can thus be inferred from the GF β-function. It turns out that
GF schemes are very slow to reach the perturbative regime. Particularly the Λ-parameter
for the magnetic GF coupling shows a large slope in α2, which is the parametric uncertainty
with known 3-loop β-function. Also, convincing contact with the 3-loop β-function is barely
seen down to α = 0.08. This is likely to be related to the rather large 3-loop β-function
coefficients, especially for the magnetic GF scheme [88]. In contrast, once the GF couplings
are matched nonperturbatively to the SF scheme the contact to perturbative running can be
safely made. It is also re-assuring that in all cases the extrapolations (linear in α2) to α = 0
for the Λ-parameters agree very well, and the authors argue in favour of such extrapolations.
Their data confirms that this procedure yields consistent results with the SF scheme for ν = 0,
where such an extrapolation is not required.

The low energy regime between µref and a hadronic scale µhad is covered again using the
nonperturbative step-scaling function and the derived β-function. Finally, contact between
µhad and hadronic scales t0 and r0 is established using 5 lattice spacings covering a factor up to
2.7. The multitude of cross checks of both continuum limit and perturbative truncation errors
make this a study which passes all current FLAG criteria by some margin. The comparatively
high value for r0ΛMS found in this study must therefore be taken very seriously.

In Nada 20 [28], Nada and Ramos provide further consistency checks of [27] for scales larger
than µref . The step scaling function for c = 0.2 is constructed in 2 steps, by determining first
the relation between couplings for c = 0.2 and c = 0.4 at the same L and then increasing
L to 2L keeping the flow time fixed (in units of the lattice spacing), so that one arrives
again at c = 0.2 on the 2L volume. The authors demonstrate that the direct construction
of the step-scaling function for c = 0.2 would require much larger lattices in order to control
the continuum limit at the same level of precision. The consistency with [27] for the Λ-
parameter is therefore a highly non-trivial check on the systematic effects of the continuum
extrapolations. The study obtains results for the Λ-parameter (again extrapolating to α = 0)
with a similar error as in [27]. using the low-energy running and matching to the hadronic
scale from that reference. For this reason and since gauge configurations are shared between
both papers, these results are not independent of [27], so Dalla Brida 19 will be taken as
representative for both works.
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9.4 The decoupling method

The ALPHA collaboration has proposed a new strategy to compute the Λ parameter in QCD
with Nf ≥ 3 flavours based on simultaneous decoupling of Nf ≥ 3 heavy quarks with RGI
mass M [26]. We refer to [102] for a pedagogical introduction and to [103] for recent results.
Generically, a running coupling in a mass-dependent renormalization scheme

ḡ2(µ,M)(Nf ) = ḡ2(µ)(Nf=0) +O
(
M−k

)
(350)

can be represented by the corresponding Nf = 0 coupling, up to power corrections in 1/M .
The leading power is usually k = 2, however renormalization schemes in finite volume may
have k = 1, depending on the set-up. For example, this is the case with standard SF or open
boundary conditions in combination with a standard mass term. In practice one may try
to render such boundary contributions numerically small by a careful choice of the scheme’s
parameters. In principle, power corrections can be either (µ/M)k or (Λ/M)k. Fixing µ = µdec,
e.g. by prescribing a value for the mass-independent coupling, such that µdec/Λ = O(1) thus
helps to reduce the need for very large M . Defining ḡ2(µdec,M) = uM at fixed ḡ2(µdec,M =
0), Eq. (350) translates to a relation between Λ-parameters, which can be cast in the form,

Λ
(Nf )

MS

µdec
P

 M

µdec

µdec

Λ
(Nf )

MS

 =
Λ
(0)

MS

Λ
(0)
s

φ
(Nf=0)
s (

√
uM) +O(M−k) ,

(351)

with the function φs as defined in Eq. (320), for scheme s and Nf = 0. A crucial observation

is that the function P , which gives the ratios of Λ-parameters Λ
(0)

MS
/Λ

(Nf )

MS
, can be evaluated

perturbatively to a very good approximation [104, 105]. Eq. (350) also implies a relation
between the couplings in mass-independent schemes, in the theories with Nf and zero flavours,
respectively. In the MS scheme this relation is analogous to Eq. (327),

ḡ2
MS

(m⋆)
(Nf=0) = ḡ2

MS
(m⋆)

(Nf ) × C
(
ḡ
MS

(m⋆)
(Nf )

)
(352)

and the function C(g) is also known up to to 4-loop order [19–22, 106]. The function P (y),

with y ≡M/Λ
(Nf )

MS
can therefore be evaluated perturbatively in the MS scheme, as the ratio

P (y) =
φ
(Nf=0)

MS

(
g⋆(y)

√
C(g⋆(y))

)
φ
(Nf )

MS
(g⋆(y))

, g⋆(y) = ḡ
(Nf )

MS
(m⋆) . (353)

Hence, perturbation theory is only required at the scale set by the heavy-quark mass, which
works the better the larger M can be chosen. Once P is known, the LHS of (351) can be
inferred from a Nf = 0 computation of the RHS in the scheme s, assuming the ratio ΛMS/Λs

is known from a 1-loop calculation.
To put the decoupling strategy into practice, the ALPHA collaboration uses Nf = 3, so

that information from [92] can be used. Using the massless GF coupling in finite volume
from this project, µdec is defined through ḡ2GF(µdec) = 3.95, and thus known in physical units,
µdec = 789(15)MeV. Varying L/a between 12 and 32 (five lattice spacings) defines a range of
values for the bare coupling along a line of constant µdec and for vanishing quark mass. Next,
a mass-dependent GF coupling is defined at constant µdec, using the available information
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on nonperturbative mass renormalization [107] and O(a) improvement. In order to obtain a
larger suppression of the leading 1/M boundary correction term, the time extent T is here
set to 2L, so as to maximize the distance to the time boundaries. Choosing 4 values of
z = M/µdec within the range from 2 to 8, with up to 5 lattice spacings7 and using precision

results for Nf = 0 from [27] then leads to the result for Λ
(Nf=3)

MS
, up to power corrections

in 1/z, expected to be predominantly of order 1/z2. Figure 39, taken from [26] shows the
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Figure 39: Illustration of the decoupling method, taken from ref. [26].

continuum extrapolated results obtained for Λ
(3)

MS
/µdec at different values of z, together with

the FLAG 19 average for three-flavour QCD.While the authors of [26] stopped short of quoting

an extrapolated value for the three-flavour Λ-parameter, the result Λ
(3)

MS
= 332(10)(2) MeV

is now given in the 2021 lattice conference proceedings [103], compatible with ALPHA 17
albeit with a somewhat smaller error. Despite some common elements with ALPHA 17,
the authors emphasize that the decoupling method is largely independent, with the overlap
in squared error amounting to ca. 40 percent. This is due to the fact that the error in
ALPHA 17 is dominated by the Nf = 3 step scaling procedure at high energy, and this part is
completely replaced by the Nf = 0 result by Dalla Brida 19 [27]. The decoupling method thus
seems to offer scope for a further error reduction, the major challenges being the continuum
extrapolation for the GF coupling at fixed and large RGI masses, followed by the large M
limit.

It is important to note that this new method relies on new precision results for Nf = 0
which have appeared in the last two years [27, 28]. Therefore, the pure gauge theory acquires
new relevance for αs results, beyond its traditional rôle as a test bed for the study of systematic
errors. FLAG will take account of this development by continuing to carefully monitor Nf = 0
results. It is hoped that this will encourage more groups to undertake precision studies with
Nf = 0.

9.5 αs from the potential at short distances

9.5.1 General considerations

The basic method was introduced in Ref. [108] and developed in Ref. [109]. The force or
potential between an infinitely massive quark and antiquark pair defines an effective coupling

7At the largest mass, z = 8, only the 2-3 finest lattice spacings are useful in a linear extrapolation in a2.

18

http://arxiv.org/abs/2111.09849


Y. Aoki et al. FLAG Review 2021 2111.09849

constant via

F (r) =
dV (r)

dr
= CF

αqq(r)

r2
. (354)

The coupling can be evaluated nonperturbatively from the potential through a numerical dif-
ferentiation, see below. In perturbation theory one also defines couplings in different schemes
αV̄ , αV via

V (r) = −CF
αV̄ (r)

r
, or Ṽ (Q) = −CF

αV (Q)

Q2
, (355)

where one fixes the unphysical constant in the potential by limr→∞ V (r) = 0 and Ṽ (Q) is the
Fourier transform of V (r). Nonperturbatively, the subtraction of a constant in the potential
introduces an additional renormalization constant, the value of V (rref) at some distance rref .
Perturbatively, it is believed to entail a renormalon ambiguity. In perturbation theory, the
different definitions are all simply related to each other, and their perturbative expansions
are known including the α4

s, α
4
s logαs and α5

s logαs, α
5
s(logαs)

2 terms [110–117].
The potential V (r) is determined from ratios of Wilson loops, W (r, t), which behave as

⟨W (r, t)⟩ = |c0|2e−V (r)t +
∑
n̸=0

|cn|2e−Vn(r)t , (356)

where t is taken as the temporal extension of the loop, r is the spatial one and Vn are
excited-state potentials. To improve the overlap with the ground state, and to suppress the
effects of excited states, t is taken large. Also various additional techniques are used, such
as a variational basis of operators (spatial paths) to help in projecting out the ground state.
Furthermore some lattice-discretization effects can be reduced by averaging over Wilson loops
related by rotational symmetry in the continuum.

In order to reduce discretization errors it is of advantage to define the numerical derivative
giving the force as

F (rI) =
V (r)− V (r − a)

a
, (357)

where rI is chosen so that at tree level the force is the continuum force. F (rI) is then a
‘tree-level improved’ quantity and similarly the tree-level improved potential can be defined
[118].

Lattice potential results are in position space, while perturbation theory is naturally
computed in momentum space at large momentum. Usually, the Fourier transform of the
perturbative expansion is then matched to lattice data.

Finally, as was noted in Sec. 9.2.1, a determination of the force can also be used to
determine the scales r0, r1, by defining them from the static force by

r20F (r0) = 1.65 , r21F (r1) = 1 . (358)

9.5.2 Discussion of computations

In Tab. 61, we list results of determinations of r0ΛMS (together with ΛMS using the scale
determination of the authors).
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scale ΛMS[MeV] r0ΛMS

Ayala 20 [30] 2+1 A ◦ ⋆ ◦ r1 = 0.3106(17) fmc 338(13) 0.802(31)
TUMQCD 19 [29] 2+1 A ◦ ⋆ ◦ r1 = 0.3106(17) fmc 314+16

−8 0.745(+38
−19)

Takaura 18 [119, 120] 2+1 A ■ ◦ ◦ √
t0 = 0.1465(25)fma 334(10)(+20

−18)
b 0.799(51)+

Bazavov 14 [121] 2+1 A ◦ ⋆ ◦ r1 = 0.3106(17) fmc 315(+18
−12)

d 0.746(+42
−27)

Bazavov 12 [122] 2+1 A ◦† ◦ ◦# r0 = 0.468 fm 295(30) ⋆ 0.70(7)⋆⋆

Karbstein 18 [123] 2 A ◦ ◦ ◦ r0 = 0.420(14) fme 302(16) 0.643(34)
Karbstein 14 [124] 2 A ◦ ◦ ◦ r0 = 0.42 fm 331(21) 0.692(31)

ETM 11C [125] 2 A ◦ ◦ ◦ r0 = 0.42 fm 315(30)§ 0.658(55)

Husung 20 [31] 0 C ◦ ⋆ ⋆ no quoted value for ΛMS

Husung 17 [126] 0 C ◦ ⋆ ⋆ r0 = 0.50 fm 232(6) 0.590(16)

Brambilla 10 [127] 0 A ◦ ⋆ ◦†† 266(13)+ 0.637(+32
−30)

††

UKQCD 92 [109] 0 A ⋆ ◦++
■

√
σ = 0.44 GeV 256(20) 0.686(54)

Bali 92 [128] 0 A ⋆ ◦++
■

√
σ = 0.44 GeV 247(10) 0.661(27)

a Scale determined from t0 in Ref. [39].

b α
(5)

MS
(MZ) = 0.1179(7)(+13

−12).
c Determination on lattices with mπL = 2.2− 2.6. Scale from r1 [52] as determined from fπ in Ref. [60].
d α

(3)

MS
(1.5GeV) = 0.336(+12

−8 ), α
(5)

MS
(MZ) = 0.1166(+12

−8 ).
e Scale determined from fπ, see [55].
† Since values of αeff within our designated range are used, we assign a ◦ despite values of αeff up to

αeff = 0.5 being used.
# Since values of 2a/r within our designated range are used, we assign a ◦ although only values of

2a/r ≥ 1.14 are used at αeff = 0.3.
⋆ Using results from Ref. [61].

⋆⋆ α
(3)

MS
(1.5GeV) = 0.326(19), α

(5)

MS
(MZ) = 0.1156(+21

−22).
§ Both potential and r0/a are determined on a small (L = 3.2r0) lattice.

†† Uses lattice results of Ref. [62], some of which have very small lattice spacings where according to more
recent investigations a bias due to the freezing of topology may be present.

+ Our conversion using r0 = 0.472 fm.
++ We give a ◦ because only a NLO formula is used and the error bars are very large; our criterion does

not apply well to these very early calculations.

Table 61: Short-distance potential results.

Since the last review, FLAG 19, there have been three new publications, namely, TUMQCD
19 [29], Ayala 20 [30] and Husung 20 [31].

The first determinations in the three-colour Yang Mills theory are by UKQCD 92 [109]
and Bali 92 [128] who used αqq as explained above, but not in the tree-level improved form.
Rather a phenomenologically determined lattice-artifact correction was subtracted from the
lattice potentials. The comparison with perturbation theory was on a more qualitative level
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on the basis of a 2-loop β-function (nl = 1) and a continuum extrapolation could not be
performed as yet. A much more precise computation of αqq with continuum extrapolation
was performed in Refs. [62, 118]. Satisfactory agreement with perturbation theory was found
[118] but the stability of the perturbative prediction was not considered sufficient to be able
to extract a Λ parameter.

In Brambilla 10 [127] the same quenched lattice results of Ref. [118] were used and a
fit was performed to the continuum potential, instead of the force. Perturbation theory to
nl = 3 loop was used including a resummation of terms α3

s(αs lnαs)
n and α4

s(αs lnαs)
n. Close

agreement with perturbation theory was found when a renormalon subtraction was performed.
Note that the renormalon subtraction introduces a second scale into the perturbative formula
which is absent when the force is considered.

Bazavov 14 [121] updates Bazavov 12 [122] and modifies this procedure somewhat. They
consider the perturbative expansion for the force. They set µ = 1/r to eliminate logarithms
and then integrate the force to obtain an expression for the potential. The resulting integration
constant is fixed by requiring the perturbative potential to be equal to the nonperturbative
one exactly at a reference distance rref and the two are then compared at other values of r.
As a further check, the force is also used directly.

For the quenched calculation of Brambilla 10 [127] very small lattice spacings, a ∼
0.025 fm, were available from Ref. [118]. For ETM 11C [125], Bazavov 12 [122], Karbstein
14 [124] and Bazavov 14 [121] using dynamical fermions such small lattice spacings are not
yet realized (Bazavov 14 reaches down to a ∼ 0.041 fm). They all use the tree-level improved
potential as described above. We note that the value of ΛMS in physical units by ETM 11C
[125] is based on a value of r0 = 0.42 fm. This is at least 10% smaller than the large majority
of other values of r0. Also the values of r0/a on the finest lattices in ETM 11C [125] and r1/a
for Bazavov 14 [121] come from rather small lattices with mπL ≈ 2.4, 2.2 respectively.

Instead of the procedure discussed previously, Karbstein 14 [124] reanalyzes the data of
ETM 11C [125] by first estimating the Fourier transform Ṽ (p) of V (r) and then fitting the
perturbative expansion of Ṽ (p) in terms of αMS(p). Of course, the Fourier transform requires
some modelling of the r-dependence of V (r) at short and at large distances. The authors
fit a linearly rising potential at large distances together with string-like corrections of order
r−n and define the potential at large distances by this fit.8 Recall that for observables in
momentum space we take the renormalization scale entering our criteria as µ = q, Eq. (338).
The analysis (as in ETM 11C [125]) is dominated by the data at the smallest lattice spacing,
where a controlled determination of the overall scale is difficult due to possible finite-size
effects. Karbstein 18 [123] is a reanalysis of Karbstein 14 and supersedes it. Some data with
a different discretization of the static quark is added (on the same configurations) and the
discrete lattice results for the static potential in position space are first parameterized by a
continuous function, which then allows for an analytical Fourier transformation to momentum
space.

Similarly also for Takaura 18 [119, 120] the momentum space potential Ṽ (Q) is the central
object. Namely, they assume that renormalon/power-law effects are absent in Ṽ (Q) and only
come in through the Fourier transformation. They provide evidence that renormalon effects
(both u = 1/2 and u = 3/2) can be subtracted and arrive at a nonperturbative term kΛ3

MS
r2.

Two different analyses are carried out with the final result taken from “Analysis II”. Our

8Note that at large distances, where string breaking is known to occur, this is not any more the ground
state potential defined by Eq. (356).
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numbers including the evaluation of the criteria refer to it. Together with the perturbative
3-loop (including the α4

s logαs term) expression, this term is fitted to the nonperturbative
results for the potential in the region 0.04 fm ≤ r ≤ 0.35 fm, where 0.04 fm is r = a on
the finest lattice. The nonperturbative potential data originates from JLQCD ensembles
(Symanzik-improved gauge action and Möbius domain-wall quarks) at three lattice spacings
with a pion mass around 300 MeV. Since at the maximal distance in the analysis we find
αMS(2/r) = 0.43, the renormalization scale criterion yields a ■ . The perturbative behaviour
is ◦ because of the high orders in perturbation theory known. The continuum-limit criterion
yields a ◦ .

One of the main issues for all these computations is whether the perturbative running of
the coupling constant has been reached. While for Nf = 0 fermions Brambilla 10 [127] reports
agreement with perturbative behaviour at the smallest distances, Husung 17 (which goes to
shorter distances) finds relatively large corrections beyond the 3-loop αqq. For dynamical
fermions, Bazavov 12 [122] and Bazavov 14 [121] report good agreement with perturbation
theory after the renormalon is subtracted or eliminated.

A second issue is the coverage of configuration space in some of the simulations, which use
very small lattice spacings with periodic boundary conditions. Affected are the smallest two
lattice spacings of Bazavov 14 [121] where very few tunnelings of the topological charge occur
[52]. With present knowledge, it also seems possible that the older data by Refs. [62, 118]
used by Brambilla 10 [127] are partially obtained with (close to) frozen topology.

The computation in Husung 17 [126], for Nf = 0 flavours, first determines the coupling
ḡ2qq(r, a) from the force and then performs a continuum extrapolation on lattices down to

a ≈ 0.015 fm, using a step-scaling method at short distances, r/r0<∼ 0.5. Using the 4-loop
βqq function this allows r0Λqq to be estimated, which is then converted to the MS scheme.
αeff = αqq ranges from ∼ 0.17 to large values; we give ◦ for renormalization scale and ⋆
for perturbative behaviour. The range aµ = 2a/r ≈ 0.37–0.14 leads to a ⋆ in the continuum
extrapolation. Recently these calculations have been extended in Husung 20 [31]. A finer
lattice spacing of a = 0.01 fm (scale from r0 = 0.5 fm) is reached and lattice volumes up to
L/a = 192 are simulated (in Ref. [126] the smallest lattice spacing is 0.015 fm). The Wilson
action is used despite its significantly larger cutoff effects compared to Symanzik-improved
actions; this avoids unitarity violations, thus allowing for a clean ground state extraction via
a generalized eigenvalue problem. Open boundary conditions are used to avoid the topology-
freezing problem. Furthermore, new results for the continuum approach are employed, which
determine the cutoff dependence at O(a2) including the exact coupling-dependent terms, in
the asymptotic region where the Symanzik effective theory is applicable [129]. An ansatz for
the remaining higher order cutoff effects at O(a4) is propagated as a systematic error to the
data, which effectively discards data for r/a < 3.5. The large volume step-scaling function
with step factor 3/4 is computed and compared to perturbation theory. For αqq > 0.2 there
is a noticeable difference between the 2-loop and 3-loop results. Furthermore, the ultra-soft
contributions at 4-loop level give a significant contribution to the static QQ̄ force. While this
study is for Nf = 0 flavours it does raise the question whether the weak coupling expansion for
the range of r-values used in present analyses of αs is sufficiently reliable. Around αqq ≈ 0.21
the differences get smaller but the error increases significantly, mainly due to the propagated

lattice artifacts. The dependence of Λ
nf=0

MS

√
8t0 on α3

qq is very similar to the one observed
in the previous study but no value for its αqq → 0 limit is quoted. Husung 20 [31] is more
pessimistic about the error on the Λ parameter stating the relative error has to be 5% or
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larger, while Husung 17 quotes a relative error of 3%.
In 2+1-flavor QCD two new papers appeared on the determination of the strong coupling

constant from the static quark anti-quark potential after the FLAG 19 report [29, 30]. In
TUMQCD 19 [29]9 the 2014 analysis of Bazavov 14 [121] has been extended by including
three finer lattices with lattice spacing a = 0.035, 0.030 and 0.025 fm as well as lattice results
on the free energy of static quark anti-quark pair at non-zero temperature. On the new fine
lattices the effect of freezing topology has been observed, however, it was verified that this
does not affect the potential within the estimated errors [130, 131]. The comparison of the
lattice result on the static potential has been performed in the interval r = [rmin, rmax], with
rmax = 0.131, 0.121, 0.098, 0.073 and 0.055 fm. The main result quoted in the paper is based
on the analysis with rmax = 0.073 fm [29]. Since the new study employs a much wider range in
r than the previous one [121] we give it a ⋆ for the perturbative behaviour. Since αeff = αqq

varies in the range 0.2–0.4 for the r values used in the main analysis we give ◦ for the
renormalization scale. Several values of rmin have been used in the analysis, the largest being
rmin/a =

√
8 ≃ 2.82, which corresponds to aµ ≃ 0.71. Therefore, we give a ◦ for continuum

extrapolation in this case. An important difference compared to the previous study [121] is
the variation of the renormalization scale. In Ref. [121] the renormalization scale was varied
by a factor of

√
2 around the nominal value of µ = 1/r, in order to exclude very low scales,

for which the running of the strong coupling constant is no longer perturbative. In the new
analysis the renormalization scale was varied by a factor of two. As the result, despite the
extended data set and shorter distances used in the new study the perturbative error did not
decrease [29]. We also note that the scale dependence turned out to be non-monotonic in the
range µ = 1/(2r)–2/r [29]. The final result reads (“us” stands for “ultra-soft”),

Λ
Nf=3

MS
= 314.0± 5.8(stat)± 3.0(lat)± 1.7(scale)+13.4

−1.8 (pert)± 4.0(pert. us) MeV

= 314+16
−08 MeV , (359)

where all errors were combined in quadrature. This is in very good agreement with the
previous determination [121].

The analysis was also applied to the singlet static quark anti-quark free energy at short
distances. At short distances the free energy is expected to be the same as the static potential.
This is verified numerically in the lattice calculations TUMQCD 19 [29] for rT < 1/4 with
T being the temperature. Furthermore, this is confirmed by the perturbative calculations
at T > 0 at NLO [132]. The advantage of using the free energy is that it gives access to
much shorter distances. On the other hand, one has fewer data points because the condition
rT < 1/4 has to be satisfied. The analysis based on the free energy gives

Λ
Nf=3

MS
= 310.9± 11.3(stat)± 3.0(lat)± 1.7(scale)+5.6

−0.8(pert)± 2.1(pert. us) MeV

= 311(13) MeV, (360)

in good agreement with the above result and thus, providing additional confirmation of it.
The analysis of Ayala 20 [30] uses a subset of data presented in TUMQCD 19 [29] with

the same correction of the lattice effects. For this reason the continuum extrapolation gets ◦ ,
too. They match to perturbation theory for 1/r > 2 GeV, which corresponds to αeff = αqq =
0.2–0.4. Therefore, we give ◦ for the renormalization scale. They verify the perturbative

9The majority of authors are the same as in [121].
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behaviour in the region 1 GeV < 1/r < 2.9 GeV, which corresponds to variation of α3
eff by

a factor of 3.34. However, the relative error on the final result has δΛ/Λ ≃ 0.035 which is
larger than α3

eff = 0.011. Therefore, we give a ⋆ for the perturbative behaviour in this case.
The final result for the Λ-parameter reads:

Λ
Nf=3

MS
= 338± 2(stat)± 8(matching)± 10(pert) MeV = 338(13)MeV . (361)

This is quite different from the above result. This difference is mostly due to the organization
of the perturbative series. The authors use ultra-soft (log) resummation, i.e. they resum
the terms α3+n

s lnn αs to all orders instead of using fixed-order perturbation theory. They
also include what is called the terminant of the perturbative series associated to the leading
renormalon of the force [30]. When they use fixed order perturbation theory they obtain very
similar results to Refs. [29, 121]. It has been argued that log resummation cannot be justified
since for the distance range available in the lattice studies αs is not small enough and the
logarithmic and non-logarithmic higher-order terms are of a similar size [121]. On the other
hand, the resummation of ultra-soft logs does not lead to any anomalous behaviour of the
perturbative expansion like large scale dependence or bad convergence [30].

To obtain the value of Λ
Nf=3

MS
from the static potential we combine the results in Eqs. (359)

and (361) using the weighted average with the weight given by the perturbative error and
using the difference in the central value as the error estimate. This leads to

Λ
Nf=3

MS
= 330(24) MeV , (362)

from the static potential determination. In the case of TUMQCD 19, where the perturbative
error is very asymmetric we used the larger upper error for the calculation of the corresponding
weight.

9.6 αs from the light-quark vacuum polarization in momentum/position
space

9.6.1 General considerations

Except for the new calculation Cali 20 [32], where position space is used (see below), the
light-flavour-current 2-point function is usually evaluated in momentum space, in terms of
the vacuum-polarization function. For the flavour-nonsinglet currents Ja

µ (a = 1, 2, 3) in the
momentum representation this is parametrized as

⟨Ja
µJ

b
ν⟩ = δab[(δµνQ

2 −QµQν)Π
(1)
J (Q)−QµQνΠ

(0)
J (Q)] , (363)

where Qµ is a space-like momentum and Jµ ≡ Vµ for a vector current and Jµ ≡ Aµ for an

axial-vector current. Defining ΠJ(Q) ≡ Π
(0)
J (Q) + Π

(1)
J (Q), the operator product expansion

(OPE) of ΠV/A(Q) is given by

ΠV/A|OPE(Q
2, αs)

= c+ C
V/A
1 (Q2) + CV/A

m (Q2)
m̄2(Q)

Q2
+

∑
q=u,d,s

C
V/A
q̄q (Q2)

⟨mq q̄q⟩
Q4

+C
V/A
GG (Q2)

⟨αsGG⟩
Q4

+O(Q−6) , (364)
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for large Q2. The perturbative coefficient functions C
V/A
X (Q2) for the operators X (X = 1, q̄q,

GG) are given as C
V/A
X (Q2) =

∑
i≥0

(
C

V/A
X

)(i)
αi
s(Q

2) and m̄ is the running mass of the mass-

degenerate up and down quarks. C
V/A
1 is known including α4

s in a continuum renormalization

scheme such as the MS scheme [133–136]. Nonperturbatively, there are terms in C
V/A
X that

do not have a series expansion in αs. For an example for the unit operator see Ref. [137].
The term c is Q-independent and divergent in the limit of infinite ultraviolet cutoff. However
the Adler function defined as

D(Q2) ≡ −Q2dΠ(Q
2)

dQ2
, (365)

is a scheme-independent finite quantity. Therefore one can determine the running-coupling
constant in the MS scheme from the vacuum-polarization function computed by a lattice-
QCD simulation. Of course, there is the choice whether to use the vector or the axial vector
channel, or both, the canonical choice being ΠV+A = ΠV + ΠA. While perturbation theory
does not distinguish between these channels, the nonperturbative contributions are different,
and the quality of lattice data may differ, too. For a given choice, the lattice data of the
vacuum polarization is fitted with the perturbative formula Eq. (364) with fit parameter ΛMS

parameterizing the running coupling αMS(Q
2).

While there is no problem in discussing the OPE at the nonperturbative level, the ‘con-
densates’ such as ⟨αsGG⟩ are ambiguous, since they mix with lower-dimensional operators
including the unity operator. Therefore one should work in the high-Q2 regime where power
corrections are negligible within the given accuracy. Thus setting the renormalization scale
as µ ≡

√
Q2, one should seek, as always, the window ΛQCD ≪ µ≪ a−1.

9.6.2 Definitions in position space

The 2-point current correlation functions in position space contain the same physical infor-
mation as in momentum space, but the technical details are sufficiently different to warrant
a separate discussion. The (Euclidean) current-current correlation function for Jµ

ff ′ (with
flavour indices f, f ′) is taken to be either the flavour non-diagonal vector or axial vector
current, with the Lorentz indices contracted,

CA,V(x) = −
∑
µ

〈
Jµ
ff ′A,V(x)J

µ
f ′fA,V(0)

〉
=

6

π4(x2)3

(
1 +

αs

π
+O(α2)

)
. (366)

In the chiral limit, the perturbative expansion is known to α4
s [138], and is identical for vector

and axial vector correlators. The only scale is set by the Euclidean distance µ = 1/|x| and
the effective coupling can thus be defined as

αeff(µ = 1/|x|) = π
[
(x2)3(π4/6)CA,V(x)− 1

]
. (367)

As communicated to us by the authors of [32], there is a typo in Eq. (35) of [138]. For future
reference, the numerical coefficients for the 3-loop conversion

αeff(µ) = αMS(µ) + c1α
2
MS

(µ) + c2α
3
MS

(µ) + c3α
4
MS

(µ), (368)

should read
c1 = −1.4346, c2 = 0.16979, c3 = 3.21120 . (369)
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9.6.3 Discussion of computations

Results using this method in momentum space are, to date, only available using overlap
fermions or domain-wall fermions. Since the last review, FLAG 19, there has been one new
computation, Cali 20 [32], which uses the vacuum polarization in position space, using O(a)
improved Wilson fermions. The results are collected in Tab. 62 for Nf = 2, JLQCD/TWQCD
08C [139] and for Nf = 2 + 1, JLQCD 10 [140], Hudspith 18 [141] and Cali 20 [32].
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scale ΛMS[MeV] r0ΛMS

Cali 20 [32] 2+1 A ◦ ⋆ ⋆ mΥ
§ 342(17) 0.818(41)a

Hudspith 18 [141] 2+1 P ◦ ◦ ■ mΩ
⋆ 337(40) 0.806(96)b

Hudspith 15 [142] 2+1 C ◦ ◦ ■ mΩ
⋆ 300(24)+ 0.717(58)

JLQCD 10 [140] 2+1 A ■ ◦ ■ r0 = 0.472 fm 247(5)† 0.591(12)

JLQCD/TWQCD 08C [139] 2 A ◦ ◦ ■ r0 = 0.49 fm 234(9)(+16
−0 ) 0.581(22)(+40

−0 )

§ via t0/a
2, still unpublished. We use r0 = 0.472 fm

⋆ Determined in [143].
a Evaluates to α

(5)

MS
(MZ) = 0.11864(114)

In conversion to r0Λ we used r0 = 0.472 fm.
b α

(5)

MS
(MZ) = 0.1181(27)(+8

−22). ΛMS determined by us from α
(3)

MS
(2GeV) = 0.2961(185). In conversion to r0Λ

we used r0 = 0.472 fm.
+ Determined by us from α

(3)

MS
(2 GeV) = 0.279(11). Evaluates to α

(5)

MS
(MZ) = 0.1155(18).

† α
(5)

MS
(MZ) = 0.1118(3)(+16

−17).

Table 62: Results from the vaccum polarization in both momentum and position space

We first discuss the results of JLQCD/TWQCD 08C [139] and JLQCD 10 [140]. The
fit to Eq. (364) is done with the 4-loop relation between the running coupling and ΛMS. It
is found that without introducing condensate contributions, the momentum scale where the
perturbative formula gives good agreement with the lattice results is very narrow, aQ ≃
0.8–1.0. When a condensate contribution is included the perturbative formula gives good
agreement with the lattice results for the extended range aQ ≃ 0.6–1.0. Since there is only a
single lattice spacing a ≈ 0.11 fm there is a ■ for the continuum limit. The renormalization
scale µ is in the range of Q = 1.6–2 GeV. Approximating αeff ≈ αMS(Q), we estimate that
αeff = 0.25–0.30 for Nf = 2 and αeff = 0.29–0.33 for Nf = 2 + 1. Thus we give a ◦ and
■ for Nf = 2 and Nf = 2 + 1, respectively, for the renormalization scale and a ■ for the
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perturbative behaviour.
A further investigation of this method was initiated in Hudspith 15 [142] and completed

by Hudspith 18 [141] (see also [144]) based on domain-wall fermion configurations at three
lattice spacings, a−1 = 1.78, 2.38, 3.15 GeV, with three different light-quark masses on the
two coarser lattices and one on the fine lattice. An extensive discussion of condensates, using
continuum finite-energy sum rules was employed to estimate where their contributions might
be negligible. It was found that even up to terms of O((1/Q2)8) (a higher order than depicted
in Eq. (364) but with constant coefficients) no single condensate dominates and apparent
convergence was poor for low Q2 due to cancellations between contributions of similar size
with alternating signs. (See, e.g., the list given by Hudspith 15 [142].) Choosing Q2 to be
at least ∼ 3.8GeV2 mitigated the problem, but then the coarsest lattice had to be discarded,
due to large lattice artefacts. So this gives a ■ for continuum extrapolation. With the higher
Q2 the quark-mass dependence of the results was negligible, so ensembles with different quark
masses were averaged over. A range of Q2 from 3.8–16 GeV2 gives αeff = 0.31–0.22, so there is
a ◦ for the renormalization scale. The value of α3

eff reaches ∆αeff/(8πb0αeff) and thus gives a

◦ for perturbative behaviour. In Hudspith 15 [142] (superseded by Hudspith 18 [141]) about
a 20% difference in ΠV (Q

2) was seen between the two lattice spacings and a result is quoted
only for the smaller a.

9.6.4 Vacuum polarization in position space

Cali 20 [32] evaluate the light-current 2-point function in position space. The 2-point func-
tions for the nonperturbatively renormalized (non-singlet) flavour currents is computed for
distances |x| between 0.1 and 0.25 fm and extrapolated to the chiral limit. The available
CLS configurations are used for this work, with lattice spacings between 0.039 and 0.086 fm.
Despite fully nonperturbative renormalization and O(a) improvement, the remaining O(a2)
effects, as measured by O(4) symmetry violations, are very large, even after subtraction of
tree-level lattice effects. Therefore the authors performed a numerical stochastic perturbation
theory (NSPT) simulation in order to determine the lattice artifacts at O(g2). Only after
subtraction of these effects the constrained continuum extrapolations from 3 different lat-
tice directions to the same continuum limit are characterized by reasonable χ2-values, so the
feasibility of the study crucially depends on this step. Interestingly, there is no subtraction
performed of nonperturbative effects. For instance, chiral-symmetry breaking would manifest
itself in a difference between the vector and the axial vector 2-point functions, and is invisible
to perturbation theory, where these 2-point functions are known to α4

s [138]. According to the
authors, phenomenological estimates suggest that a difference of 1.5% between the continuum
correlators would occur around 0.3 fm and this difference would not be resolvable by their
lattice data. Equality within their errors is confirmed for shorter distances. We note, however,
that chiral symmetry breaking effects are but one class of nonperturbative effects, and their
smallness does not allow for the conclusion that such effects are generally small. In fact, the
need for explicit subtractions in momentum space analyses may lead one to suspect that such

effects are not negligible at the available distance scales. For the determination of Λ
Nf=3

MS
the

authors limit the range of distances to 0.13–0.19 fm, where αeff ∈ [0.2354, 0.3075] (private
communication by the authors). These effective couplings are converted to MS couplings
at the same scales µ = 1/|x| by solving Eq. (368) numerically. Central values for the Λ-
parameter thus obtained are in the range 325–370 MeV (using the β-function at 5-loop order)
and a weighted average yields the quoted result 342(17) MeV, where the average emphasizes
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the data around |x| = 0.16 fm, or µ = 1.3 GeV.
Applying the FLAG criteria the range of lattice spacings yields ⋆ for the continuum

extrapolation. However, the FLAG criterion implicitly assumes that the remaining cutoff
effects after non-perturbative O(a) improvement are small, which is not the case here. Some
hypercubic lattice artefacts are still rather large even after 1-loop subtraction, but these are
not used for the analysis. As for the renormalization scale, the lowest effective coupling
entering the analysis is 0.235 < 0.25, so we give ◦ . As for perturbative behaviour, for the
range of couplings in the above interval α3

eff changes by (0.308/0.235)3 ≈ 2.2, marginally
reaching (3/2)2 = 2.25. The errors ∆αeff after continuum and chiral extrapolations are 4–6%
(private communication by the authors) and the induced uncertainty in Λ is comfortably
above 2α3

eff, which gives a ⋆ according to FLAG criteria.
Although the current FLAG criteria are formally passed by this result, the quoted error of

5% for Λ seems very optimistic. We have performed a simple test, converting to the MS scheme
by inverting Eq. (368) perturbatively (instead of solving the fixed-order equation numerically).
The differences between the couplings are of order α5

s and thus indicative of the sensitivity
to perturbative truncation errors. The resulting Λ-parameter estimates are now in the range
409–468 MeV, i.e. ca. 15–30% larger than before. While the difference between both estimates
decreases proportionally to the expected α3

eff, an extraction of the Λ-parameter in this energy
range is a priori affected by systematic uncertainties corresponding to such differences. The
FLAG criterion might fail to capture this e.g. if the assumption of an O(1) coefficient for
the asymptotic α3

eff behaviour is not correct. Some indication for a problematic behaviour is
indeed seen when perturbatively inverting Eq. (368) to order α3

s. The resulting MS couplings
are then closer to the values used in Cali 20, although the difference is formally O(α4

s) rather
than O(α5

s).

9.7 αs from observables at the lattice spacing scale

9.7.1 General considerations

The general method is to evaluate a short-distance quantity Q at the scale of the lattice
spacing ∼ 1/a and then determine its relationship to αMS via a perturbative expansion.

This is epitomized by the strategy of the HPQCD collaboration [145, 146], discussed here
for illustration, which computes and then fits to a variety of short-distance quantities

Y =

nmax∑
n=1

cnα
n
V′(q∗) . (370)

The quantity Y is taken as the logarithm of small Wilson loops (including some nonplanar
ones), Creutz ratios, ‘tadpole-improved’ Wilson loops and the tadpole-improved or ‘boosted’
bare coupling (O(20) quantities in total). The perturbative coefficients cn (each depending
on the choice of Y ) are known to n = 3 with additional coefficients up to nmax being fitted
numerically. The running coupling αV′ is related to αV from the static-quark potential (see
Sec. 9.5).10

The coupling constant is fixed at a scale q∗ = d/a. The latter is chosen as the mean
value of ln q with the one-gluon loop as measure [147, 148]. (Thus a different result for d is
found for every short-distance quantity.) A rough estimate yields d ≈ π, and in general the
renormalization scale is always found to lie in this region.

10αV′ is defined by ΛV′ = ΛV and bV
′

i = bVi for i = 0, 1, 2 but bV
′

i = 0 for i ≥ 3.
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For example, for the Wilson loop Wmn ≡ ⟨W (ma, na)⟩ we have

ln

(
Wmn

u
2(m+n)
0

)
= c1αV′(q∗) + c2α

2
V′(q∗) + c3α

3
V′(q∗) + · · · , (371)

for the tadpole-improved version, where c1, c2 , . . . are the appropriate perturbative coefficients

and u0 = W
1/4
11 . Substituting the nonperturbative simulation value in the left hand side, we

can determine αV′(q∗), at the scale q∗. Note that one finds empirically that perturbation
theory for these tadpole-improved quantities have smaller cn coefficients and so the series has
a faster apparent convergence compared to the case without tadpole improvement.

Using the β-function in the V′ scheme, results can be run to a reference value, chosen
as α0 ≡ αV′(q0), q0 = 7.5GeV. This is then converted perturbatively to the continuum MS
scheme

αMS(q0) = α0 + d1α
2
0 + d2α

3
0 + · · · , (372)

where d1, d2 are known 1-and 2-loop coefficients.
Other collaborations have focused more on the bare ‘boosted’ coupling constant and di-

rectly determined its relationship to αMS. Specifically, the boosted coupling is defined by

αP(1/a) =
1

4π

g20
u40
, (373)

again determined at a scale ∼ 1/a. As discussed previously, since the plaquette expectation
value in the boosted coupling contains the tadpole-diagram contributions to all orders, which
are dominant contributions in perturbation theory, there is an expectation that the perturba-
tion theory using the boosted coupling has smaller perturbative coefficients [147], and hence
smaller perturbative errors.

9.7.2 Continuum limit

Lattice results always come along with discretization errors, which one needs to remove by a
continuum extrapolation. As mentioned previously, in this respect the present method differs
in principle from those in which αs is determined from physical observables. In the general
case, the numerical results of the lattice simulations at a value of µ fixed in physical units can
be extrapolated to the continuum limit, and the result can be analyzed as to whether it shows
perturbative running as a function of µ in the continuum. For observables at the cutoff-scale
(q∗ = d/a), discretization effects cannot easily be separated out from perturbation theory, as
the scale for the coupling comes from the lattice spacing. Therefore the restriction aµ ≪ 1
(the ‘continuum-extrapolation’ criterion) is not applicable here. Discretization errors of order
a2 are, however, present. Since a ∼ exp(−1/(2b0g

2
0)) ∼ exp(−1/(8πb0α(q

∗)), these errors now
appear as power corrections to the perturbative running, and have to be taken into account
in the study of the perturbative behaviour, which is to be verified by changing a. One thus
usually fits with power corrections in this method.

In order to keep a symmetry with the ‘continuum-extrapolation’ criterion for physical
observables and to remember that discretization errors are, of course, relevant, we replace it
here by one for the lattice spacings used:

• Lattice spacings
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⋆ 3 or more lattice spacings, at least 2 points below a = 0.1 fm

◦ 2 lattice spacings, at least 1 point below a = 0.1 fm

■ otherwise

9.7.3 Discussion of computations

Note that due to µ ∼ 1/a being relatively large the results easily have a ⋆ or ◦ in the rating
on renormalization scale.

The work of El-Khadra 92 [158] employs a 1-loop formula to relate α
(0)

MS
(π/a) to the

boosted coupling for three lattice spacings a−1 = 1.15, 1.78, 2.43GeV. (The lattice spacing

is determined from the charmonium 1S-1P splitting.) They obtain Λ
(0)

MS
= 234MeV, cor-

responding to αeff = α
(0)

MS
(π/a) ≈ 0.15–0.2. The work of Aoki 94 [155] calculates α

(2)
V and

α
(2)

MS
for a single lattice spacing a−1 ∼ 2GeV, again determined from charmonium 1S-1P

splitting in two-flavour QCD. Using 1-loop perturbation theory with boosted coupling, they

obtain α
(2)
V = 0.169 and α

(2)

MS
= 0.142. Davies 94 [154] gives a determination of αV from the

expansion

− lnW11 ≡
4π

3
α
(Nf )
V (3.41/a)× [1− (1.185 + 0.070Nf )α

(Nf )
V ] , (374)

neglecting higher-order terms. They compute the Υ spectrum in Nf = 0, 2 QCD for single
lattice spacings at a−1 = 2.57, 2.47GeV and obtain αV(3.41/a) ≃ 0.15, 0.18, respectively.

Extrapolating the inverse coupling linearly in Nf , a value of α
(3)
V (8.3GeV) = 0.196(3) is

obtained. SESAM 99 [152] follows a similar strategy, again for a single lattice spacing. They

linearly extrapolated results for 1/α
(0)
V , 1/α

(2)
V at a fixed scale of 9GeV to give α

(3)
V , which

is then perturbatively converted to α
(3)

MS
. This finally gave α

(5)

MS
(MZ) = 0.1118(17). Wingate

95 [153] also follows this method. With the scale determined from the charmonium 1S-1P
splitting for single lattice spacings in Nf = 0, 2 giving a−1 ≃ 1.80GeV for Nf = 0 and

a−1 ≃ 1.66GeV for Nf = 2, they obtain α
(0)
V (3.41/a) ≃ 0.15 and α

(2)
V ≃ 0.18, respectively.

Extrapolating the inverse coupling linearly in Nf , they obtain α
(3)
V (6.48GeV) = 0.194(17).

The QCDSF/UKQCD collaboration, QCDSF/UKQCD 05 [151], [159–161], use the 2-loop
relation (re-written here in terms of α)

1

αMS(µ)
=

1

αP(1/a)
+ 4π(2b0 ln aµ− tP1 ) + (4π)2(2b1 ln aµ− tP2 )αP(1/a) , (375)

where tP1 and tP2 are known. (A 2-loop relation corresponds to a 3-loop lattice β-function.)
This was used to directly compute αMS, and the scale was chosen so that the O(α0

P) term
vanishes, i.e.,

µ∗ =
1

a
exp [tP1 /(2b0)] ≈

{
2.63/a Nf = 0
1.4/a Nf = 2

. (376)

The method is to first compute αP(1/a) and from this, using Eq. (375) to find αMS(µ
∗). The

RG equation, Eq. (320), then determines µ∗/ΛMS and hence using Eq. (376) leads to the
result for r0ΛMS. This avoids giving the scale in MeV until the end. In the Nf = 0 case
seven lattice spacings were used [62], giving a range µ∗/ΛMS ≈ 24–72 (or a−1 ≈ 2–7 GeV)
and αeff = αMS(µ

∗) ≈ 0.15–0.10. Neglecting higher-order perturbative terms (see discussion
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Collaboration Ref. Nf pu
bl
ic
at
io
n
st
at
us

re
no
rm

al
iz
at
io
n
sc
al
e

p
er
tu
rb
at
iv
e
b
eh
av
io
ur

la
tt
ic
e
sp
ac
in
gs

scale ΛMS[MeV] r0ΛMS

HPQCD 10a§ [149] 2+1 A ◦ ⋆ ⋆ r1 = 0.3133(23) fm 340(9) 0.812(22)

HPQCD 08Aa [146] 2+1 A ◦ ⋆ ⋆ r1 = 0.321(5) fm†† 338(12)⋆ 0.809(29)

Maltman 08a [150] 2+1 A ◦ ◦ ⋆ r1 = 0.318 fm 352(17)† 0.841(40)

HPQCD 05Aa [145] 2+1 A ◦ ◦ ◦ r1
†† 319(17)⋆⋆ 0.763(42)

QCDSF/UKQCD 05[151] 2 A ⋆ ■ ⋆ r0 = 0.467(33) fm 261(17)(26) 0.617(40)(21)b

SESAM 99c [152] 2 A ◦ ■ ■ cc̄(1S-1P)

Wingate 95d [153] 2 A ⋆ ■ ■ cc̄(1S-1P)
Davies 94e [154] 2 A ⋆ ■ ■ Υ

Aoki 94f [155] 2 A ⋆ ■ ■ cc̄(1S-1P)

Kitazawa 16 [156] 0 A ⋆ ⋆ ⋆ w0 260(5)j 0.621(11)j

FlowQCD 15 [157] 0 P ⋆ ⋆ ⋆ w0.4
i 258(6)i 0.618(11)i

QCDSF/UKQCD 05[151] 0 A ⋆ ◦ ⋆ r0 = 0.467(33) fm 259(1)(20) 0.614(2)(5)b

SESAM 99c [152] 0 A ⋆ ■ ■ cc̄(1S-1P)

Wingate 95d [153] 0 A ⋆ ■ ■ cc̄(1S-1P)
Davies 94e [154] 0 A ⋆ ■ ■ Υ

El-Khadra 92g [158] 0 A ⋆ ■ ◦ cc̄(1S-1P) 234(10) 0.560(24)h

a The numbers for Λ have been converted from the values for α
(5)
s (MZ).

§ α
(3)

MS
(5 GeV) = 0.2034(21), α

(5)

MS
(MZ) = 0.1184(6), only update of intermediate scale and c-, b-quark

masses, supersedes HPQCD 08A.
† α

(5)

MS
(MZ) = 0.1192(11).

⋆ α
(3)
V (7.5GeV) = 0.2120(28), α

(5)

MS
(MZ) = 0.1183(8), supersedes HPQCD 05.

†† Scale is originally determined from Υ mass splitting. r1 is used as an intermediate scale. In conversion
to r0ΛMS, r0 is taken to be 0.472 fm.

⋆⋆ α
(3)
V (7.5GeV) = 0.2082(40), α

(5)

MS
(MZ) = 0.1170(12).

b This supersedes Refs. [159–161]. α
(5)

MS
(MZ) = 0.112(1)(2). The Nf = 2 results were based on values

for r0/a which have later been found to be too small [57]. The effect will be of the order of 10–15%,
presumably an increase in Λr0.

c α
(5)

MS
(MZ) = 0.1118(17).

d α
(3)
V (6.48GeV) = 0.194(7) extrapolated from Nf = 0, 2. α

(5)

MS
(MZ) = 0.107(5).

e α
(3)
P (8.2GeV) = 0.1959(34) extrapolated from Nf = 0, 2. α

(5)

MS
(MZ) = 0.115(2).

f Estimated α
(5)

MS
(MZ) = 0.108(5)(4).

g This early computation violates our requirement that scheme conversions are done at the 2-loop level.
Λ

(4)

MS
= 160(+47

−37)MeV, α
(4)

MS
(5GeV) = 0.174(12). We converted this number to give α

(5)

MS
(MZ) = 0.106(4).

h We used r0 = 0.472 fm to convert to r0ΛMS.
i Reference scale w0.4 where wx is defined by t∂t[t

2⟨E(t)⟩]
∣∣
t=w2

x
= x in terms of the action density E(t) at

positive flow time t [157]. Our conversion to r0 scale using [157] r0/w0.4 = 2.587(45) and r0 = 0.472 fm.
j Our conversion from w0ΛMS = 0.2154(12) to r0 scale using r0/w0 = (r0/w0.4) · (w0.4/w0) = 2.885(50)

with the factors cited by the collaboration [157] and with r0 = 0.472 fm.

Table 63: Wilson loop results. Some early results for Nf = 0, 2 did not determine ΛMS.
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after Eq. (377) below) in Eq. (375) this is sufficient to allow a continuum extrapolation of
r0ΛMS. A similar computation for Nf = 2 by QCDSF/UKQCD 05 [151] gave µ∗/ΛMS ≈
12–17 (or roughly a−1 ≈ 2–3 GeV) and αeff = αMS(µ

∗) ≈ 0.20–0.18. The Nf = 2 results of
QCDSF/UKQCD 05 [151] are affected by an uncertainty which was not known at the time
of publication: It has been realized that the values of r0/a of Ref. [151] were significantly too
low [57]. As this effect is expected to depend on a, it influences the perturbative behaviour
leading us to assign a ■ for that criterion.

Since FLAG 13, there has been one new result for Nf = 0 by FlowQCD 15 [157], later
updated and published in Kitazawa 16 [156]. They also use the techniques as described in
Eqs. (375), (376), but together with the gradient flow scale w0 (rather than the r0 scale)
leading to a determination of w0ΛMS. The continuum limit is estimated by extrapolating the
data at 6 lattice spacings linearly in a2. The data range used is µ∗/ΛMS ≈ 50–120 (or a−1 ≈
5–11 GeV) and αMS(µ

∗) ≈ 0.12–0.095. Since a very small value of αMS is reached, there is a ⋆
in the perturbative behaviour. Note that our conversion to the common r0 scale unfortunately
leads to a significant increase of the error of the Λ parameter compared to using w0 directly
[68]. Again we note that the results of QCDSF/UKQCD 05 [151] (Nf = 0) and Kitazawa
16 [156] may be affected by frozen topology as they have lattice spacings significantly below
a = 0.05 fm. Kitazawa 16 [156] investigate this by evaluating w0/a in a fixed topology and
estimate any effect at about ∼ 1%.

The work of HPQCD 05A [145] (which supersedes the original work [162]) uses three
lattice spacings a−1 ≈ 1.2, 1.6, 2.3GeV for 2+ 1 flavour QCD. Typically the renormalization
scale q ≈ π/a ≈ 3.50–7.10 GeV, corresponding to αV′ ≈ 0.22–0.28.

In the later update HPQCD 08A [146] twelve data sets (with six lattice spacings) are
now used reaching up to a−1 ≈ 4.4GeV, corresponding to αV′ ≈ 0.18. The values used for
the scale r1 were further updated in HPQCD 10 [149]. Maltman 08 [150] uses most of the
same lattice ensembles as HPQCD 08A [146], but not the one at the smallest lattice spacing,
a ≈ 0.045 fm. Maltman 08 [150] also considers a much smaller set of quantities (three versus
22) that are less sensitive to condensates. They also use different strategies for evaluating the
condensates and for the perturbative expansion, and a slightly different value for the scale r1.
The central values of the final results from Maltman 08 [150] and HPQCD 08A [146] differ
by 0.0009 (which would be decreased to 0.0007 taking into account a reduction of 0.0002 in
the value of the r1 scale used by Maltman 08 [150]).

As mentioned before, the perturbative coefficients are computed through 3-loop order [163],
while the higher-order perturbative coefficients cn with nmax ≥ n > 3 (with nmax = 10) are
numerically fitted using the lattice-simulation data for the lattice spacings with the help of
Bayesian methods. It turns out that corrections in Eq. (371) are of order |ci/c1|αi = 5–15%
and 3–10% for i = 2, 3, respectively. The inclusion of a fourth-order term is necessary to
obtain a good fit to the data, and leads to a shift of the result by 1 – 2 sigma. For all but one
of the 22 quantities, central values of |c4/c1| ≈ 2–4 were found, with errors from the fits of ≈ 2.
It should be pointed out that the description of lattice results for the short distance quan-
tities does not require Bayesian priors, once the term proportional to c4 is included [150].
We also stress that different short distance quantities have quite different nonperturbative
contributions [164]. Hence the fact that different observables lead to consistent αs values is a
nontrivial check of the approach.

An important source of uncertainty is the truncation of perturbation theory. In HPQCD
08A [146], 10 [149] it is estimated to be about 0.4% of αMS(MZ). In FLAG 13 we included
a rather detailed discussion of the issue with the result that we prefer for the time being a
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more conservative error based on the above estimate |c4/c1| = 2. From Eq. (370) this gives
an estimate of the uncertainty in αeff of

∆αeff(µ1) =

∣∣∣∣c4c1
∣∣∣∣α4

eff(µ1) , (377)

at the scale µ1 where αeff is computed from the Wilson loops. This can be used with a
variation in Λ at lowest order of perturbation theory and also applied to αs evolved to a
different scale µ2,

11

∆Λ

Λ
=

1

8πb0αs

∆αs

αs
,

∆αs(µ2)

∆αs(µ1)
=
α2
s(µ2)

α2
s(µ1)

. (378)

With µ2 =MZ and αs(µ1) = 0.2 (a typical value extracted from Wilson loops in HPQCD 10
[149], HPQCD 08A [146] at µ = 5GeV) we have

∆αMS(mZ) = 0.0012 , (379)

which we shall later use as the typical perturbative uncertainty of the method with 2 + 1
fermions.

Tab. 63 summarizes the results. Within the errors of 3–5% Nf = 3 determinations of r0Λ
nicely agree.

9.8 αs from heavy-quark current two-point functions

9.8.1 General considerations

The method has been introduced in HPQCD 08, Ref. [165], and updated in HPQCD 10,
Ref. [149], see also Ref. [166]. In addition there is a 2+1+1-flavour result, HPQCD 14A [167].

The basic observable is constructed from a current,

J(x) = iamcψc(x)γ5ψc′(x) , (380)

of two mass-degenerate heavy-valence quarks, c, c′, usually taken to be at or around the
charm-quark mass. The pre-factor mc denotes the bare mass of the quark. When the lattice
discretization respects chiral symmetry, J(x) is a renormalization group invariant local field,
i.e., it requires no renormalization. Staggered fermions and twisted-mass fermions have such
a residual chiral symmetry. The (Euclidean) time-slice correlation function

G(x0) = a6
∑
x⃗

⟨J†(x)J(0)⟩ , (381)

(J†(x) = iamcψc′(x)γ5ψc(x)) has a ∼ x−3
0 singularity at short distances and moments

Gn = a

T/2−a∑
x0=−(T/2−a)

xn0 G(x0) (382)

are nonvanishing for even n and furthermore finite for n ≥ 4. Here T is the time extent of the
lattice. The moments are dominated by contributions at x0 of order 1/mc. For large mass mc

11From Eq. (327) we see that at low order in PT the coupling αs is continuous and differentiable across the
mass thresholds (at the same scale). Therefore to leading order αs and ∆αs are independent of Nf .
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these are short distances and the moments become increasingly perturbative for decreasing n.

Denoting the lowest-order perturbation theory moments by G
(0)
n , one defines the normalized

moments

Rn =


G4/G

(0)
4 for n = 4 ,

amηc
2amc

(
Gn

G
(0)
n

)1/(n−4)
for n ≥ 6 ,

(383)

of even order n. Note that Eq. (380) contains the variable (bare) heavy-quark mass mc. The

normalization G
(0)
n is introduced to help in reducing lattice artifacts. In addition, one can

also define moments with different normalizations,

R̃n = 2Rn/mηc for n ≥ 6 . (384)

While R̃n also remains renormalization-group invariant, it now also has a scale which might
introduce an additional ambiguity [168].

The normalized moments can then be parameterized in terms of functions

Rn ≡

{
r4(αs(µ)) for n = 4 ,

mηc
2m̄c(µm)rn(αs(µ)) for n ≥ 6 ,

(385)

with m̄c(µm) being the renormalized heavy-quark mass. The scale µm at which the heavy-
quark mass is defined could be different from the scale µ at which αs is defined [169]. The
HPQCD collaboration, however, used the choice µ = µm = 3mc(µ). This ensures that
the renormalization scale is never too small. The reduced moments rn have a perturbative
expansion

rn = 1 + rn,1αs + rn,2α
2
s + rn,3α

3
s + . . . , (386)

where the written terms rn,i(µ/m̄c(µ)), i ≤ 3 are known for low n from Refs. [170–174]. In
practice, the expansion is performed in the MS scheme. Matching nonperturbative lattice
results for the moments to the perturbative expansion, one determines an approximation
to αMS(µ) as well as m̄c(µ). With the lattice spacing (scale) determined from some extra
physical input, this calibrates µ. As usual suitable pseudoscalar masses determine the bare-
quark masses, here in particular the charm mass, and then through Eq. (385) the renormalized
charm-quark mass.

A difficulty with this approach is that large masses are needed to enter the perturbative
domain. Lattice artifacts can then be sizeable and have a complicated form. The ratios in
Eq. (383) use the tree-level lattice results in the usual way for normalization. This results in
unity as the leading term in Eq. (386), suppressing some of the kinematical lattice artifacts.
We note that in contrast to, e.g., the definition of αqq, here the cutoff effects are of order
akαs, while there the tree-level term defines αs and therefore the cutoff effects after tree-
level improvement are of order akα2

s. To obtain the continuum results for the moments it is
important to perform fits with high powers of a. This implies many fit parameters. To deal
with this problem the HPQCD collaboration used Bayesian fits of their lattice results. More
recent analyses of the moments, however, did not rely on Bayesian fits [33, 34, 168, 175].
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Finite-size effects (FSE) due to the omission of |x0| > T/2 in Eq. (382) grow with n
as (mηcT/2)

n exp (−mηcT/2). In practice, however, since the (lower) moments are short-
distance dominated, the FSE are expected to be small at the present level of precision. Pos-
sible exception could be the ratio R8/R10, where the finite-volume effects could be significant
as discussed below.

Moments of correlation functions of the quark’s electromagnetic current can also be ob-
tained from experimental data for e+e− annihilation [176, 177]. This enables a nonlattice
determination of αs using a similar analysis method. In particular, the same continuum
perturbation-theory computation enters both the lattice and the phenomenological determi-
nations.

9.8.2 Discussion of computations

The determination of the strong-coupling constant from the moments of quarkonium corre-
lators by HPQCD collaboration have been discussed in detail in the FLAG 2016 and 2019
reports. Therefore, we only give the summary of these determinations in Table 64.

Two additional computations have appeared between the FLAG 16 and the FLAG 19
reports. We re-discuss them here (see also the summary section), as the assessment in FLAG
19 was partially based on an inconsistent use of the FLAG criteria and has now been changed.
Maezawa and Petreczky, [175] computed the two-point functions of the cc̄ pseudoscalar opera-
tor and obtained R4, R6/R8 and R8/R10 based on the HotQCD collaboration HISQ staggered
ensembles, [52]. The scale is set by measuring r1 = 0.3106(18) fm. Continuum limits are taken
fitting the lattice-spacing dependence with a2+a4 form as the best fit. For R4, they also em-
ploy other forms for fit functions such as a2, αboosted

s a2 + a4, etc., the results agreeing within
errors. Matching R4 with the 3-loop formula Eq. (386) through order α3

MS
[170], where µ

is fixed to mc, they obtain α
(3)

MS
(µ = mc) = 0.3697(54)(64)(15). The first error is statistical,

the second is the uncertainty in the continuum extrapolation, and the third is the truncation
error in the perturbative approximation of r4. This last error is estimated by the “typical
size” of the missing 4-loop contribution, which they assume to be α4

MS
(µ) multiplied by 2

times the 3-loop coefficient 2× r4,3 × α4
MS

(µ) = 0.2364× α4
MS

(µ). The result is converted to

α
(5)

MS
(MZ) = 0.11622(84) . (387)

Since αeff = 0.38 we assign ■ for the criterion of the renormalization scale. As ∆Λ/Λ < α2
eff ,

we assign ■ for the criterion of perturbative behaviour. The lattice cutoff ranges as a−1 =
1.42–4.89 GeV with µ = 2mc ∼ 2.6 GeV so that we assign ◦ for continuum extrapolation.

JLQCD 16 [168] also computed the two-point functions of the cc̄ pseudoscalar opera-
tor and obtained R6, R8, R10 and their ratios based on 2+1-flavour QCD with Möbius
domain-wall quark for three lattice cutoff a−1 = 2.5, 3.6, 4.5 GeV. The scale is set by√
t0 = 0.1465(21)(13) fm. The continuum limit is taken assuming linear dependence on a2.

They find a sizeable lattice-spacing dependence of R4, which is therefore not used in their anal-
ysis, but for R6, R8, R10 the dependence is mild giving reasonable control over the continuum
limit. They use the perturbative formulae for the vacuum polarization in the pseudoscalar

channel ΠPS through order α3
MS

in the MS scheme [172, 173] to obtain α
(4)

MS
. Combining the

matching of lattice results with continuum perturbation theory for R6, R6/R8 and R10, they

obtain α
(4)

MS
(µ = 3 GeV) = 0.2528(127), where the error is dominated by the perturbative

truncation error. To estimate the truncation error they study the dependence of the final
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scale ΛMS[MeV] r0ΛMS

HPQCD 14A [167] 2+1+1 A ◦ ⋆ ◦ w0 = 0.1715(9) fma 294(11)bc 0.703(26)

Petreczky 20 [33] 2+1 P ◦ ◦ ⋆ r1 = 0.3106(18) fm 332(17)h 0.792(41)g

Boito 20 [36] 2+1 A ■ ■ ◦ mc(mc) = 1.28(2) GeV 328(30)h 0.785(72)
Petrezcky 19, mh=mc [34] 2+1 A ■ ■ ⋆ r1 = 0.3106(18) fmg 314(10) 0.751(24)g

Petrezcky 19, mh
mc

=1.5 [34] 2+1 A ■ ■ ◦ r1 = 0.3106(18) fmg 310(10) 0.742(24)g

Maezawa 16 [175] 2+1 A ■ ■ ◦ r1 = 0.3106(18) fmd 309(10)e 0.739(24)e

JLQCD 16 [168] 2+1 A ■ ◦ ◦ √
t0 = 0.1465(25) fm 331(38)f 0.792(89)f

HPQCD 10 [149] 2+1 A ◦ ⋆ ◦ r1 = 0.3133(23) fm† 338(10)⋆ 0.809(25)

HPQCD 08B [165] 2+1 A ■ ■ ■ r1 = 0.321(5) fm† 325(18)+ 0.777(42)

a Scale determined in [178] using fπ.
b α

(4)

MS
(5GeV) = 0.2128(25), α

(5)

MS
(MZ) = 0.11822(74).

c We evaluated Λ
(4)

MS
from α

(4)

MS
. We also used r0 = 0.472 fm.

d Scale is determined from fπ .
e α

(3)

MS
(mc = 1.267GeV) = 0.3697(85), α

(5)

MS
(MZ) = 0.11622(84). Our conversion with r0 = 0.472 fm.

f We evaluated Λ
(3)

MS
from the given α

(4)

MS
(3GeV) = 0.2528(127). α

(5)

MS
(MZ) = 0.1177(26). We also used

r0 = 0.472 fm to convert.
g We used r0 = 0.472 fm to convert.
h We back-engineered from α

(5)

MS
(MZ) = 0.1177(20). We used r0 = 0.472 fm to convert.

⋆ α
(3)

MS
(5GeV) = 0.2034(21), α

(5)

MS
(MZ) = 0.1183(7).

† Scale is determined from Υ mass splitting.
+ We evaluated Λ

(3)

MS
from the given α

(4)

MS
(3GeV) = 0.251(6). α

(5)

MS
(MZ) = 0.1174(12).

Table 64: Heavy-quark current two-point function results. Note that all analysis using 2 + 1
flavour simulations perturbatively add a dynamical charm quark. Partially they then quote
results in Nf = 4-flavour QCD, which we converted back to Nf = 3, corresponding to the
nonperturbative sea quark content.

result on the choice of the renormalization scales µ, µm which are used as renormalization
scales for αs and the quark mass. Independently [169] the two scales are varied in the range

of 2 GeV to 4 GeV. The above result is converted to α
(5)

MS
(MZ) as

α
(5)

MS
(MZ) = 0.1177(26) . (388)

Since αeff ≃ 0.37, they have ■ for the renormalization scale criterion. Since ∆Λ/Λ ≃ α2
eff ,

we also assign ◦ for the criterion of perturbative behaviour. The lattice cutoff ranges over
a−1 = 2.5–4.5 GeV with µ = 3 GeV so we also give them a ◦ for continuum extrapolation.
We note, however, that the χ2/dof of the a2 extrapolation was quite bad, namely between
2.1 and 5.1 [168]. Please note that the 2019 FLAG review mistakenly took αMS(2mc) for
αeff . This resulted in a ◦ rating for the renormalization scale for both Maezawa 16 and
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JLQCD 16. With the consistent definition of αeff both determinations now have ■ for the
renormalization scale.

Three new determinations of αs from the moments of quarkonium correlators appeared
since the 2019 FLAG review [33, 34, 36]. Petreczky 19 [34] extended the calculation of [175] by
considering heavy-quark masses larger than the charm-quark mass, namely, mh = 1.5mc, 2mc

and 3mc. Also three additional lattice spacings, a = 0.025, 0.03 and 0.035 fm have been added
to the analysis. Another improvement compared to Maezawa 16 was the use of random-
colour wall sources which greatly reduced the statistical errors. In fact, the statistical errors
on the moments were completely negligible compared to other sources of errors. The lattices
corresponding to the three smallest lattice spacings have been generated for the calculations of
the QCD equation of state at high temperature [130] at light sea-quark masses corresponding
to the pion mass of 300 MeV in the continuum limit, instead of the pion mass of 160 MeV as
in the previous calculations. However, it has been checked that the effect of the larger light
sea-quark masses is very small, about the size of the statistical errors [34]. Therefore, the
calculations at the two light sea-quark masses have been combined into a single analysis [34].
For each value of the heavy-quark mass the continuum extrapolations have been performed
using various fit ansätze, some of which included high powers of a. Due to availability of
many lattice spacing it was possible to perform such fits without using Bayesian priors. The
variation of the continuum-extrapolated values with the variation of the fit range in a2 and
the fit forms has been investigated and included as the systematic error of the continuum
results. The renormalization scale µ was fixed to the heavy-quark mass, and αs(µ = mh) and

the corresponding Λ
Nf=3

MS
has been determined for each value of mh using continuum results

for R4, R6/R8 and R8/R10. The perturbative error was estimated as in Maezawa 16 but
with the coefficient of the 4-loop term being 1.6 times the coefficient of the 3-loop term. The

values of Λ
Nf=3

MS
obtained for mh = mc and mh = 1.5mc were consistent with each other,

Λ
Nf=3

MS
= 314(10) MeV for mh = mc and Λ

Nf=3

MS
= 310(10) MeV for mh = 1.5mc. However,

the Λ
Nf=3

MS
values turned out to be significantly lower for mh = 2mc and 3mc. In Petreczky 20

[33], it has been argued that reliable continuum extrapolations of R4, R6/R8 and R8/R10 are
not possible for mh ≥ 2mc. Therefore, we only review the results obtained for mh = mc and
mh = 1.5mc. There are many lattice spacings available for analysis, including three lattice
spacings a ≤ 0.035 fm, implying that aµ < 0.5. Therefore, we assign ⋆ for the continuum
extrapolatiom. The value of αeff is 0.38 and 0.31 for mh = mc and mh = 1.5mc, respectively.
So we assign ■ for the renormalization scale. Since (∆Λ/Λ)∆α < α2

eff we assign ■ for the
perturbative behaviour.

Petreczky 20 [33] used the same raw lattice data as Petreczky 19 but a different strategy for
continuum extrapolation and αs extraction. The lattice spacing dependence of the results of
R4 at different quark masses was fitted simultaneously in a similar manner as in the HPQCD
10 and HPQCD 14 analyses, but without using Bayesian priors. In extracting αs several
choices of the renormalization scale µ in the range 2/3mh–3mh have been considered. The
perturbative error was estimated as in Petreczky 19 but the variation of the results due to
the scale variation was larger than the estimated perturbative error. The final error of the

result Λ
Nf=3

MS
= 331(17) MeV comes mostly from the scale variation [33]. Since there are

three lattice spacing available with aµ < 0.5 we give ⋆ for continuum extrapolation. Because
αeff = 0.22−0.38 we give ◦ for the renormalization scale. Finally, since (∆Λ/Λ)∆α > α2

eff for
the smallest αeff value we give ◦ for the perturbative behaviour. In addition to R4 Petreczky
20 also considered using R6/R8 and R8/R10 for the αs determination. It was pointed out

37

http://arxiv.org/abs/2111.09849


Y. Aoki et al. FLAG Review 2021 2111.09849

that the lattice spacing dependence of R6/R8 is quite subtle and therefore reliable continuum
extrapolations for this ratio are not possible for mh ≥ 2mc [33]. For mh = mc and 1.5mc the
ratio R6/R8 leads to αs values that are consistent with the ones from R4. Furthermore, it was
argued that finite-volume effects in the case of R8/R10 are large formh = mc and therefore the
corresponding data are not suitable for extracting αs. This observation may explain why the
central values of αs extracted from R8/R10 in some previous studies were systematically lower
[34, 165, 175]. On the other hand for mh ≥ 1.5mc the finite-volume effects are sufficiently
small in the continuum extrapolated results if some small-volume lattice data are excluded
from the analysis [33]. The αs obtained from R8/R10 with mh ≥ 1.5mc were consistent with
the ones obtained from R4.

Boito 20 [36] use published continuum extrapolated lattice results on R4, R6/R8 and
R8/R10 from various groups combined with experimental results on e+e− annihilation. They
quote a separate result for each lattice determinations of R4, R6/R8 and R8/R10 for mh = mc

from different lattice groups. They vary the scale µ and µm independently in the region
between mc and 4 GeV. As the typical value they quote αs(MZ) = 0.1177(20). The error
is dominated by the perturbative uncertainty. Since the effective coupling is around 0.38 we
give ■ for the renormalization scale. Because (∆Λ/Λ)∆α < α2

eff we give this determination
■ for perturbative behaviour. The continuum results used in the analysis were rated as

◦ with the exception of HPQCD 08B, which however, does not affect the quoted αs value.
Therefore we give them ◦ for the continuum extrapolation. An interesting point of the Boito
20 analysis is that the αs values extracted from R8/R10 are systematically lower than the ones
extracted from R4. This confirms the above assertion that finite volume effects are significant
for R8/R10 at mh = mc.

Aside from the final results for αs(mZ) obtained by matching with perturbation theory,
it is interesting to make a comparison of the short distance quantities in the continuum
limit Rn which are available from HPQCD 08 [165], JLQCD 16 [168], Maezawa 16 [175],
Petreczky 19 [34] and Petreczky 20 [33] (all using 2 + 1 flavours). This comparison is shown
in Tab. 65. The results are in quite good agreement with each other. For future studies it is

HPQCD 08 HPQCD 10 Maezawa 16 JLQCD 16 Petreczky 19 Petreczky 20

R4 1.272(5) 1.282(4) 1.265(7) - 1.279(4) 1.278(2)
R6 1.528(11) 1.527(4) 1.520(4) 1.509(7) 1.521(3) 1.522(2)
R8 1.370(10) 1.373(3) 1.367(8) 1.359(4) 1.369(3) 1.368(3)
R10 1.304(9) 1.304(2) 1.302(8) 1.297(4) 1.311(7) 1.301(3)

R6/R8 1.113(2) - 1.114(2) 1.111(2) 1.1092(6) 1.10895(32)
R8/R10 1.049(2) - 1.0495(7) 1.0481(9) 1.0485(8) -

Table 65: Moments and the ratios of the moments from Nf = 3 simulations at the charm
mass.

of course interesting to check agreement of these numbers before turning to the more involved
determination of αs.
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9.9 αs from QCD vertices

9.9.1 General considerations

The most intuitive and in principle direct way to determine the coupling constant in QCD
is to compute the appropriate three- or four-point gluon vertices or alternatively the quark-
quark-gluon vertex or ghost-ghost-gluon vertex (i.e., qqA or ccA vertex, respectively). A
suitable combination of renormalization constants then leads to the relation between the bare
(lattice) and renormalized coupling constant. This procedure requires the implementation of
a nonperturbative renormalization condition and the fixing of the gauge. For the study of
nonperturbative gauge fixing and the associated Gribov ambiguity, we refer to Refs. [179–
181] and references therein. In practice the Landau gauge is used and the renormalization
constants are defined by requiring that the vertex is equal to the tree-level value at a certain
momentum configuration. The resulting renormalization schemes are called ‘MOM’ scheme

(symmetric momentum configuration) or ‘M̃OM’ (one momentum vanishes), which are then
converted perturbatively to the MS scheme.

A pioneering work to determine the three-gluon vertex in theNf = 0 theory is Alles 96 [182]
(which was followed by Ref. [183] for two flavour QCD); a more recent Nf = 0 computation
was Ref. [184] in which the three-gluon vertex as well as the ghost-ghost-gluon vertex was con-
sidered. (This requires a computation of the propagator of the Faddeev–Popov ghost on the
lattice.) The latter paper concluded that the resulting ΛMS depended strongly on the scheme
used, the order of perturbation theory used in the matching and also on nonperturbative
corrections [185].

Subsequently in Refs. [186, 187] a specific M̃OM scheme with zero ghost momentum for
the ghost-ghost-gluon vertex was used. In this scheme, dubbed the ‘MM’ (Minimal MOM) or
‘Taylor’ (T) scheme, the vertex is not renormalized, and so the renormalized coupling reduces
to

αT(µ) = Dgluon
lat (µ, a)Dghost

lat (µ, a)2
g20
4π

, (389)

where Dghost
lat and Dgluon

lat are the (bare lattice) dressed ghost and gluon ‘form factors’ of these
propagator functions in the Landau gauge,

Dab(p) = −δab D
ghost(p)

p2
, Dab

µν(p) = δab
(
δµν −

pµpν
p2

)
Dgluon(p)

p2
, (390)

and we have written the formula in the continuum with Dghost/gluon(p) = D
ghost/gluon
lat (p, 0).

Thus there is now no need to compute the ghost-ghost-gluon vertex, just the ghost and gluon
propagators.

9.9.2 Discussion of computations

For the calculations considered here, to match to perturbative scaling, it was first necessary
to reduce lattice artifacts by an H(4) extrapolation procedure (addressing O(4) rotational
invariance), e.g., ETM 10F [193] or by lattice perturbation theory, e.g., Sternbeck 12 [191].
To match to perturbation theory, collaborations vary in their approach. In ETM 10F [193],
it was necessary to include the operator A2 in the OPE of the ghost and gluon propagators,
while in Sternbeck 12 [191] very large momenta are used and a2p2 and a4p4 terms are included
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scale ΛMS[MeV] r0ΛMS

ETM 13D [188] 2+1+1 A ◦ ◦ ■ fπ 314(7)(14)(10)a 0.752(18)(34)(81)†

ETM 12C [189] 2+1+1 A ◦ ◦ ■ fπ 324(17)§ 0.775(41)†

ETM 11D [190] 2+1+1 A ◦ ◦ ■ fπ 316(13)(8)(+0
−9)

⋆ 0.756(31)(19)(+0
−22)

†

Zafeiropoulos 19 [37] 2+1 A ■ ■ ■ mΩ 320(4)(12)b 0.766(10)(29)†

Sternbeck 12 [191] 2+1 C only running of αs in Fig. 4

Sternbeck 12 [191] 2 C Agreement with r0ΛMS value of [57]

Sternbeck 10 [192] 2 C ◦ ⋆ ■ 251(15)# 0.60(3)(2)
ETM 10F [193] 2 A ◦ ◦ ◦ fπ 330(23)(22)(+0

−33) 0.72(5)+

Boucaud 01B [183] 2 A ◦ ◦ ■ K∗ −K 264(27)⋆⋆ 0.669(69)

Sternbeck 12 [191] 0 C Agreement with r0ΛMS value of [127]

Sternbeck 10 [192] 0 C ⋆ ⋆ ■ 259(4)# 0.62(1)
Ilgenfritz 10 [194] 0 A ⋆ ⋆ ■ only running of αs in Fig. 13
Boucaud 08 [187] 0 A ◦ ⋆ ■

√
σ = 445MeV 224(3)(+8

−5) 0.59(1)(+2
−1)

Boucaud 05 [184] 0 A ■ ⋆ ■
√
σ = 445MeV 320(32) 0.85(9)

Soto 01 [195] 0 A ◦ ◦ ◦ √
σ = 445MeV 260(18) 0.69(5)

Boucaud 01A [196] 0 A ◦ ◦ ◦ √
σ = 445MeV 233(28) MeV 0.62(7)

Boucaud 00B [197] 0 A ◦ ◦ ◦ only running of αs

Boucaud 00A [198] 0 A ◦ ◦ ◦ √
σ = 445MeV 237(3)(+ 0

−10) 0.63(1)(+0
−3)

Becirevic 99B [199] 0 A ◦ ◦ ■
√
σ = 445MeV 319(14)(+10

−20) 0.84(4)(+3
−5)

Becirevic 99A [200] 0 A ◦ ◦ ■
√
σ = 445MeV ≲ 353(2)(+25

−15) ≲ 0.93(+7
−4)

Boucaud 98B [201] 0 A ■ ◦ ■
√
σ = 445MeV 295(5)(15) 0.78(4)

Boucaud 98A [202] 0 A ■ ◦ ■
√
σ = 445MeV 300(5) 0.79(1)

Alles 96 [182] 0 A ■ ■ ■
√
σ = 440MeV++ 340(50) 0.91(13)

a α
(5)

MS
(MZ) = 0.1196(4)(8)(6).

† We use the 2+1 value r0 = 0.472 fm.
§ α

(5)

MS
(MZ) = 0.1200(14).

⋆ First error is statistical; second is due to the lattice spacing and third is due to the chiral extrapolation.
α
(5)

MS
(MZ) = 0.1198(9)(5)(+0

−5).
b α

(5)

MS
(MZ) = 0.1172(3)(9)(5). The first error is the uncertainty in the determination of αT , the second

due to the condensate while the third is due to higher order nonperturbative corrections.
# In the paper only r0ΛMS is given, we converted to MeV with r0 = 0.472 fm.
+ The determination of r0 from the fπ scale is found in Ref. [55].
⋆⋆ α

(5)

MS
(MZ) = 0.113(3)(4).

++ The scale is taken from the string tension computation of Ref. [128].

Table 66: Results for the gluon–ghost vertex.

in their fit to the momentum dependence. A further later refinement was the introduction
of higher nonperturbative OPE power corrections in ETM 11D [190] and ETM 12C [189].
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Although the expected leading power correction, 1/p4, was tried, ETM finds good agreement
with their data only when they fit with the next-to-leading-order term, 1/p6. The update
ETM 13D [188] investigates this point in more detail, using better data with reduced statistical
errors. They find that after again including the 1/p6 term they can describe their data over
a large momentum range from about 1.75 GeV to 7 GeV.

In all calculations except for Sternbeck 10 [192], Sternbeck 12 [191], the matching with the
perturbative formula is performed including power corrections in the form of condensates, in
particular ⟨A2⟩. Three lattice spacings are present in almost all calculations with Nf = 0, 2,
but the scales ap are rather large. This mostly results in a ■ on the continuum extrapolation
(Sternbeck 10 [192], Boucaud 01B [183] for Nf = 2. Ilgenfritz 10 [194], Boucaud 08 [187],
Boucaud 05 [184], Becirevic 99B [199], Becirevic 99A [200], Boucaud 98B [201], Boucaud 98A
[202], Alles 96 [182] for Nf = 0). A ◦ is reached in the Nf = 0 computations Boucaud
00A [198], 00B [197], 01A [196], Soto 01 [195] due to a rather small lattice spacing, but this
is done on a lattice of a small physical size. The Nf = 2 + 1 + 1 calculation, fitting with
condensates, is carried out for two lattice spacings and with ap > 1.5, giving ■ for the
continuum extrapolation as well. In ETM 10F [193] we have 0.25 < αeff < 0.4, while in ETM
11D [190], ETM 12C [189] (and ETM 13 [203]) we find 0.24 < αeff < 0.38, which gives a ◦
in these cases for the renormalization scale. In ETM 10F [193] the values of ap violate our
criterion for a continuum limit only slightly, and we give a ◦ .

In Sternbeck 10 [192], the coupling ranges over 0.07 ≤ αeff ≤ 0.32 for Nf = 0 and
0.19 ≤ αeff ≤ 0.38 for Nf = 2 giving ⋆ and ◦ for the renormalization scale, respectively.
The fit with the perturbative formula is carried out without condensates, giving a satisfactory
description of the data. In Boucaud 01A [196], depending on a, a large range of αeff is used
which goes down to 0.2 giving a ◦ for the renormalization scale and perturbative behaviour,
and several lattice spacings are used leading to ◦ in the continuum extrapolation. TheNf = 2
computation Boucaud 01B [196], fails the continuum limit criterion because both aµ is too
large and an unimproved Wilson fermion action is used. Finally in the conference proceedings
Sternbeck 12 [191], the Nf = 0, 2, 3 coupling αT is studied. Subtracting 1-loop lattice artifacts
and subsequently fitting with a2p2 and a4p4 additional lattice artifacts, agreement with the
perturbative running is found for large momenta (r20p

2 > 600) without the need for power
corrections. In these comparisons, the values of r0ΛMS from other collaborations are used.
As no numbers are given, we have not introduced ratings for this study.

Since the previous FLAG review, there has been one new result, Zafeiropoulos 19 [37],
again based on the method described in ETM 10F, [193] but now for Nf = 3 flavours rather
than two. Again an ⟨A2⟩ condensate is included, but cannot be determined; an estimate is
used from ETM 10F (Nf = 2) and ETM12C (Nf = 4). The scale Λ is determined from
the largest momenta available (when a plateau appears), and the error is estimated from the
larger range p ∼ 3.0–3.7 GeV. This is used to determine αMS . In this work there is also some
emphasis on being close to the physical-quark masses, using three domain-wall fermion data
sets and careful consideration of discretization effects following [204]. The disadvantage is
that a lower upper bound on the momenta is now reached.

The range of effective couplings is 0.35<∼ αeff
<∼ 0.42, and over this range we have

(αeff(3.0 GeV)/αeff(3.7 GeV))3 ∼ 1.7, which leads to a ■ for perturbative behaviour. With
no αeff at or below 0.3 and only two lattice spacings, we also obtain a ■ for both the renor-
malization scale and the continuum extrapolation.

In Tab. 66 we summarize the results. Presently there are no Nf ≥ 3 calculations of αs

from QCD vertices that satisfy the FLAG criteria to be included in the range.
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9.10 αs from the eigenvalue spectrum of the Dirac operator

9.10.1 General considerations

Consider the spectral density of the continuum Dirac operator

ρ(λ) =
1

V

〈∑
k

(δ(λ− iλk) + δ(λ+ iλk))

〉
, (391)

where V is the volume and λk are the eigenvalues of the Dirac operator in a gauge background.
Its perturbative expansion

ρ(λ) =
3

4π2
λ3(1− ρ1ḡ

2 − ρ2ḡ
4 − ρ3ḡ

6 +O(ḡ8)) , (392)

is known including ρ3 in the MS scheme [205, 206]. In renormalization group improved form
one sets the renormalization scale µ to µ = sλ with s = O(1) and the ρi are pure numbers.
Nakayama 18 [207] initiated a study of ρ(λ) in the perturbative regime. They prefer to
consider µ independent from λ. Then ρi are polynomials in log(λ/µ) of degree i. One may
consider

F (λ) ≡ ∂ log(ρ(λ))

∂ log(λ)
= 3− F1ḡ

2 − F2ḡ
4 − F3ḡ

6 − F4ḡ
8 +O(ḡ10) , (393)

where the coefficients, Fi, which are known for i = 1, . . . , 4, are again polynomials of degree
i in log(λ/µ). Choosing the alternate renormalization-group-improved form with µ = sλ in
Eq. (392), Eq. (393) would instead lead to

F (λ) = 3− F̄2ḡ
4(λ)− F̄3ḡ

6(λ)− F̄4ḡ
8(λ) +O(ḡ10) , (394)

with pure numbers F̄i and F̄1 = 0. Determinations of αs can be carried out by a computation
and continuum extrapolation of ρ(λ) and/or F (λ) at large λ. Such computations are made
possible by the techniques of [85, 207, 208].

We note that according to our general discussions in terms of an effective coupling, we have
nl = 2; the 3-loop β function of a coupling defined from Eq. (392) or Eq. (394) is known. 12

9.10.2 Discussion of computations

There is one pioneering result to date using this method by Nakayama 18 [207]. They

computed the eigenmode distributions of the Hermitian operator a2D†
ovDov where Dov =

Dov(mf = 0, amPV) is the overlap operator and mPV is the Pauli–Villars regulator on en-
sembles with 2+1 flavours using Möbius domain-wall quarks for three lattice cutoffs a−1 =
2.5, 3.6, 4.5 GeV, where amPV = 3 or∞. The bare eigenvalues are converted to the MS scheme
at µ = 2GeV by multiplying with the renormalization constant Zm(2GeV), which is then
transformed to those renormalized at µ = 6GeV using the renormalization-group equation.
The scale is set by

√
t0 = 0.1465(21)(13) fm. The continuum limit is taken assuming a linear

dependence in a2, while the volume size is kept about constant: 2.6–2.8 fm. Choosing the

12In the present situation, Nakayama 18 [207], the effective coupling is defined by ḡ2λ(µ) = F̄
−1/2
2 (3−F (λ))

with µ = λ. The alternative definition, Eq. (394), would give ḡ2λ(µ) = F̄
−1/2
2 (3− F (λ))1/2.
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renormalization scale µ = 6GeV, Nakayama 18 [207] extracted the strong coupling constant

α
(3)

MS
(6GeV) = 0.204(10). The result is converted to

α
(5)

MS
(MZ) = 0.1226(36) . (395)

Three lattice spacings in the range a−1 = 2.5–4.5 GeV with µ = λ = 0.8–1.25 GeV yield quite
small values aµ. However, our continuum-limit criterion does not apply as it requires us to
consider αs = 0.3. We thus deviate from the general rule and give a ◦ which would result at
the smallest value αMS(µ) = 0.4 considered by Nakayama 18 [207]. The values of αMS lead
to a ■ for the renormalization scale, while perturbative behaviour is rated ◦ .

In Tab. 67 we list this result.
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scale ΛMS[MeV] r0ΛMS

Nakayama 18 [207] 2+1 A ■ ◦ ◦ √
t0 409(60) ∗ 0.978(144)

∗ α
(5)

MS
(MZ) = 0.1226(36). ΛMS determined by us using α

(3)

MS
(6GeV) = 0.204(10). Uses r0 = 0.472 fm

Table 67: Dirac eigenvalue result.

9.11 Summary

After reviewing the individual computations, we are now in a position to discuss the overall
result. We first present the current status and for that briefly consider r0Λ with its flavour
dependence from Nf = 0 to 4 flavours. Then we discuss the central αMS(MZ) results, which
just use Nf ≥ 3, give ranges for each sub-group discussed previously, and give final FLAG
average as well as an overall average together with the current PDG nonlattice numbers.
Finally we return to r0Λ, presenting our estimates for the various Nf .

9.11.1 The present situation

We first summarize the status of lattice-QCD calculations of the QCD scale ΛMS. Fig. 40
shows all the results for r0ΛMS discussed in the previous sections.

Many of the numbers are the ones given directly in the papers. However, when only ΛMS

in physical units (MeV) is available, we have converted them by multiplying with the value
of r0 in physical units. The notation used is full green squares for results used in our final
average, while a lightly shaded green square indicates that there are no red squares in the
previous colour coding but the computation does not enter the ranges because either it has
been superseded by an update or it is not published. Red open squares mean that there is at
least one red square in the colour coding.
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0.6 0.7 0.8 0.9

=
=

=
=

El-Khadra 92
UKQCD 92
Bali 92
Luscher 93
Alles 96
ALPHA 98
Boucaud 98A
Boucaud 98B
Becirevic 99B
Boucaud 00A
Boucaud 01A
Soto 01
QCDSF/UKQCD 05
Boucaud 05
Boucaud 08
Brambilla 10
Sternbeck 10
Kitazawa 16
Ishikawa 17
Husung 17
Dalla Brida 19
FLAG estimate for =

Boucaud 01B
ALPHA 04
QCDSF/UKQCD 05
JLQCD/TWQCD 08C
ETM 10F
Sternbeck 10
ETM 11C
ALPHA 12
Karbstein 14
Karbstein 18
FLAG estimate for =

HPQCD 05A
HPQCD 08A
HPQCD 08B
Maltman 08
PACS-CS 09
HPQCD 10
HPQCD 10
JLQCD 10
Bazavov 12
Bazavov 14
JLQCD 16
Maezawa 16
ALPHA 17
Nakayama 18
Hudspith 18
Takaura 18
TUMQCD 19
Petreczky 19
Zafeiropoulos 19
Cali 20
Ayala 20
Boito 20
Petreczky 20
FLAG estimate for =

ETM 11D
ETM 12C
ETM 13D
HPQCD 14A
FLAG average for =

Figure 40: r0ΛMS estimates for Nf = 0, 2, 3, 4 flavours. Full green squares are used in our
final ranges, pale green squares also indicate that there are no red squares in the colour coding
but the computations were superseded by later more complete ones or not published, while
red open squares mean that there is at least one red square in the colour coding.

For Nf = 0 there is now some tension: the value of the new result, Dalla Brida 19 [27] is
rather high compared to the previous FLAG average and yet it passes the FLAG 19 criteria
by some margin.

When two flavours of quarks are included, the numbers extracted by the various groups
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show a considerable spread, as in particular older computations did not yet control the sys-
tematics sufficiently. This illustrates the difficulty of the problem and emphasizes the need
for strict criteria. The agreement among the more modern calculations with three or more
flavours, however, is quite good.

We now turn to the status of the essential result for phenomenology, α
(5)

MS
(MZ). In Tab. 68

and the upper plot in Fig. 41 we show all the results for α
(5)

MS
(MZ) (i.e., αMS at the Z mass)
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α
MS

(MZ) Remark Tab.

ALPHA 17 [92] 2+1 A ⋆ ⋆ ⋆ 0.11852( 84) step-scaling 60
PACS-CS 09A [93] 2+1 A ⋆ ⋆ ◦ 0.11800(300) step-scaling 60

pre-range (average) 0.11848( 81)

Ayala 20 [30] 2+1 A ◦ ⋆ ◦ 0.11836(88) Q-Q̄ potential 61

TUMQCD 19 [29] 2+1 A ◦ ⋆ ◦ 0.11671(+110
−57 ) Q-Q̄ potential (and free energy) 61

Takaura 18 [119, 120] 2+1 A ■ ◦ ◦ 0.11790(70)(+130
−120) Q-Q̄ potential 61

Bazavov 14 [121] 2+1 A ◦ ⋆ ◦ 0.11660(100) Q-Q̄ potential 61

Bazavov 12 [122] 2+1 A ◦ ◦ ◦ 0.11560(+210
−220) Q-Q̄ potential 61

pre-range with estimated pert. error 0.11782(165)

Cali 20 [32] 2+1 A ◦ ⋆ ⋆ 0.11863(114) vacuum pol. (position space) 62

Hudspith 18 [141] 2+1 P ◦ ⋆ ■ 0.11810(270)( +80
−220) vacuum polarization 62

JLQCD 10 [140] 2+1 A ■ ◦ ■ 0.11180(30)(+160
−170) vacuum polarization 62

pre-range with estimated pert. error 0.11863(360)

HPQCD 10 [149] 2+1 A ◦ ⋆ ⋆ 0.11840( 60) Wilson loops 63
Maltman 08 [150] 2+1 A ◦ ◦ ⋆ 0.11920(110) Wilson loops 63

pre-range with estimated pert. error 0.11871(128)

Petreczky 20 [33] 2+1 P ◦ ◦ ⋆ 0.11773(119). heavy current two points 64
Boito 20 [35, 36] 2+1 A ■ ■ ◦ 0.1177(20) use published lattice data 64
Petreczky 19 [34] 2+1 A ■ ■ ⋆ 0.1159(12). heavy current two points 64
JLQCD 16 [168] 2+1 A ■ ◦ ◦ 0.11770(260) heavy current two points 64
Maezawa 16 [175] 2+1 A ■ ■ ◦ 0.11622( 84) heavy current two points 64
HPQCD 14A [167] 2+1+1 A ◦ ⋆ ◦ 0.11822( 74) heavy current two points 64
HPQCD 10 [149] 2+1 A ◦ ⋆ ◦ 0.11830( 70) heavy current two points 64
HPQCD 08B [165] 2+1 A ■ ■ ■ 0.11740(120) heavy current two points 64

pre-range with estimated pert. error 0.11826(200)

Zafeiropoulos 19 [37] 2+1 A ■ ■ ■ 0.1172(11) gluon-ghost vertex 66
ETM 13D [188] 2+1+1 A ◦ ◦ ■ 0.11960(40)(80)(60) gluon-ghost vertex 66
ETM 12C [189] 2+1+1 A ◦ ◦ ■ 0.12000(140) gluon-ghost vertex 66

ETM 11D [190] 2+1+1 A ◦ ◦ ■ 0.11980(90)(50)( +0
−50) gluon-ghost vertex 66

Nakayama 18 [207] 2+1 A ⋆ ◦ ■ 0.12260(360) Dirac eigenvalues 67

Table 68: Results for αMS(MZ). Different methods are listed separately and they are combined
to a pre-range when computations are available without any ■ . A weighted average of the pre-
ranges gives 0.11843(60), using the smallest pre-range uncertainty gives 0.11843(81) while the
average uncertainty of the ranges used as an error gives 0.11843(187). Note that TUMQCD
19 supersedes Bazavov 14/12.

obtained from Nf = 2 + 1 and Nf = 2 + 1 + 1 simulations. The conversion from Nf = 3 or
Nf = 4 to Nf = 5 is made by matching the coupling constant at the charm and bottom quark
thresholds and using the scale as determined or used by the authors.
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As can be seen from the tables and figures, at present there are several computations
satisfying the criteria to be included in the FLAG average. Since FLAG 19 four new com-

putations of α
(5)

MS
(MZ) pass all our criteria with at least a ◦ . The results agree quite well

within the stated uncertainties, which vary significantly.

9.11.2 Our range for α
(5)

MS

We now explain the determination of our range. We only include those results without a red
tag and that are published in a refereed journal. We also do not include any numbers that
were obtained by extrapolating from theories with less than three flavours. They are not
controlled and can be looked up in the previous FLAG reviews.

A general issue with most determinations of αMS, both lattice and nonlattice, is that they
are dominated by perturbative truncation errors, which are difficult to estimate. Further, all
results discussed here except for those of Secs. 9.3, 9.7 are based on extractions of αMS that
are largely influenced by data with αeff ≥ 0.3. At smaller αs the momentum scale µ quickly
gets at or above a−1. We have included computations using aµ up to 1.5 and αeff up to 0.4,
but one would ideally like to be significantly below that. Accordingly we choose to not simply
perform weighted averages with the individual errors estimated by each group. Rather, we
use our own more conservative estimates of the perturbative truncation errors in the weighted
average.

In the following we repeat aspects of the methods and calculations that inform our es-
timates of the perturbative truncation errors. We also provide separate estimates for αs

obtained from step-scaling, the heavy-quark potential, Wilson loops, heavy-quark current
two-point functions and vacuum polarization to enable a comparison of the different lattice
approaches; these are summarized in Tab. 68.

• Step-scaling
The step-scaling computations of PACS-CS 09A [93] and ALPHA 17 [92] reach energies
around the Z-mass where perturbative uncertainties in the three-flavour theory are
negligible. Perturbative errors do enter in the conversion of the Λ-parameters from
three to five flavours, but successive order contributions decrease rapidly and can be
neglected. We form a weighted average of the two results and obtain αMS = 0.11848(81).

• Static-quark potential computations
Brambilla 10 [127], ETM 11C [125] and Bazavov 12 [122] give evidence that they have
reached distances where perturbation theory can be used. However, in addition to Λ,
a scale is introduced into the perturbative prediction by the process of subtracting the
renormalon contribution. This subtraction is avoided in Bazavov 14 [121] by using
the force and again agreement with perturbative running is reported. Husung 17 [126]
(unpublished) studies the reliability of perturbation theory in the pure gauge theory with
lattice spacings down to 0.015 fm and finds that at weak coupling there is a downwards
trend in the Λ-parameter with a slope ∆Λ/Λ ≈ 9α3

s. The downward trend is broadly
confirmed in Husung 20 [31] albeit with larger errors.

Bazavov 14 [121] satisfies all of the criteria to enter the FLAG average for αs but has
been superseded by TUMQCD 19 [29]. Moreover, there is another study, Ayala 20 [30]
who use the very same data as TUMQCD 19, but treat perturbation theory differently,
resulting in a rather different central value. This shows that perturbative truncation
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errors are the main source of errors. We combine the results for Λ
Nf=3

MS
from both

groups as a weighted average (with the larger upward error of TUMQCD 19) and take

the difference of the central values as the uncertainty of the average. We obtain Λ
Nf=3

MS
=

330(24) MeV, which translates to αs(mZ) = 0.11782(165).

• Small Wilson loops
Here the situation is unchanged as compared to FLAG 16. In the determination of
αs from observables at the lattice spacing scale, there is an interplay of higher-order
perturbative terms and lattice artifacts. In HPQCD 05A [145], HPQCD 08A [146] and
Maltman 08 [150] both lattice artifacts (which are power corrections in this approach)
and higher-order perturbative terms are fitted. We note that Maltman 08 [150] and
HPQCD 08A [146] analyze largely the same data set but use different versions of the
perturbative expansion and treatments of nonperturbative terms. After adjusting for the
slightly different lattice scales used, the values of αMS(MZ) differ by 0.0004 to 0.0008 for
the three quantities considered. In fact the largest of these differences (0.0008) comes
from a tadpole-improved loop, which is expected to be best behaved perturbatively.
We therefore replace the perturbative-truncation errors from [150] and [149] with our
estimate of the perturbative uncertainty Eq. (379). Taking the perturbative errors to
be 100% correlated between the results, we obtain for the weighted average αMS =
0.11871(128).

• Heavy quark current two-point functions
Other computations with small errors are HPQCD 10 [149] and HPQCD 14A [167],
where correlation functions of heavy valence quarks are used to construct short-distance
quantities. Due to the large quark masses needed to reach the region of small coupling,
considerable discretization errors are present, see Fig. 30 of FLAG 16. These are treated
by fits to the perturbative running (a 5-loop running αMS with a fitted 5-loop coefficient
in the β-function is used) with high-order terms in a double expansion in a2Λ2 and
a2m2

c supplemented by priors which limit the size of the coefficients. The priors play an
especially important role in these fits given the much larger number of fit parameters
than data points. We note, however, that the size of the coefficients does not prevent
high-order terms from contributing significantly, since the data includes values of amc

that are rather close to 1.

We note that the result of JLQCD 16 was classified in FLAG 19 as having passed all
FLAG criteria, although the scale is set by the charm-quark mass, implying αeff ≃ 0.38.
We now assign a red flag for renormalization scale, as we do for Petreczky 19 and Boito
20 (see below). Since FLAG 19, there have been three new studies, Petreczky 19 [34],
Petreczky 20 [33] and Boito 20 [36] (Petreczky 19/Petreczky 20 supersede Maezawa
16 [175]). While Petreczky 19/Petreczky 20 share the same lattice data for heavy
quark masses in the range mh = mc–4mc they use a different strategy for continuum
extrapolations and a different treatment of perturbative uncertainties. Petreczky 19 [34]
perform continuum extrapolation separately for each value of the valence-quark mass,
while Petreczky 20 rely on joint continuum extrapolations of the lattice data at different
heavy-quark masses, similar to the analysis of HPQCD, but without Bayesian priors. It
is concluded that reliable continuum extrapolations for mh ≥ 2mc require a joint fit to
the data. This limits the eligible αs determinations in Petreczky 19 [34] tomh = mc and
1.5mc, for which, however, the FLAG criteria are not satisfied. There is also a difference
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in the choice of renormalization scale between both analyses: Petreczky 19 [34] uses
µ = mh, while Petreczky 20 [33] considers several choices of µ in the range µ = 2/3mh–
3mh, which leads to larger perturbative uncertainties in the determination of αs [33].
Boito 20 [36] use published continuum extrapolated lattice results for mh = mc and
performs its own extraction of αs. Limiting the choice of mh to the charm-quark mass
means that the FLAG criteria are not met (αeff ≃ 0.38). However, their analysis gives
valuable insight into the perturbative error. In addition to the renormalization scale
µ, Boito 20 also vary the renormalization scale µm at which the charm quark mass
is defined. The corresponding result αs(MZ) = 0.1177(20) agrees well with previous
lattice determination but has a larger error, which is dominated by the perturbative
uncertainty due to the variation of both scales. This increased uncertainty suggests
that the perturbative error estimated by HPQCD using a fixed scale µ = 3mh may
be too small. Therefore, we take the average of the HPQCD 10 and HPQCD 14A
determinations and assign an error of 0.0020, based on the analysis of Boito 20 [36].
This results in the range αs(MZ) = 0.11826(200).

• Light quark vacuum polarization
Since FLAG 19 a new study, Cali 20 [32] appeared, which uses the light current two-
point functions in position space, evaluated on a subset of CLS configurations for lattice
spacings in the range 0.038–0.076 fm, and for Euclidean distances 0.13–0.19 fm, cor-
responding to renormalization scales µ = 1–1.5 GeV. Both flavour nonsinglet vector
and axial vector currents are considered and their difference is shown to vanish within
errors. After continuum and chiral limits are taken, the effective coupling from the axial
vector two-point function is converted at 3-loop order to αMS(µ). The authors do this
by numerical solution for αMS and then perform a weighted average of the Λ-parameter

estimates for the available energy range, which yields Λ
Nf=3

MS
= 342(17) MeV. Note that

this is the first calculation in the vacuum polarization category that passes the current
FLAG criteria. Yet the renormalization scales are rather low and one might suspect
that other nonperturbative (i.e., non chiral-symmetry breaking) effects may still be size-
able. Our main issue is a rather optimistic estimate of perturbative truncation errors,
based only on the variation of the Λ-parameter from the range of effective couplings
considered. If the solution for the MS coupling is done by series expansion in αeff,
the differences in αMS, formally of order α5

eff, are still large at the scales considered.
Hence, as a measure of the systematic uncertainty we take the difference 409−355 MeV

between Λ
Nf=3

MS
estimates at µ = 1.5 GeV as a proxy for the total error, i.e. Λ

Nf=3

MS
=

342(54) MeV, which translates to our pre-range, αs(mZ) = 0.11863(360), from vacuuum
polarization.

• Other methods
Computations using other methods do not qualify for an average yet, predominantly
due to a lacking ◦ in the continuum extrapolation.

We obtain the central value for our range of αs from the weighted average of the five
pre-ranges listed in Tab. 68. The error of this weighted average is 0.0006, which is quite a
bit smaller than the most precise entry. Because, however, the errors on almost all of the αs

calculations that enter the average are dominated by perturbative truncation errors, which
are especially difficult to estimate, we choose instead to take a larger range for αs of 0.0008.
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This is the error on the pre-range for αs from step-scaling, because perturbative-truncation
errors are sub-dominant in this method. Our final range is then given by

α
(5)

MS
(MZ) = 0.1184(8) . (396)

moving up by 2 in the last given digit compared to FLAG 19 and with the same uncertainty.
Of the eleven calculations that are included most are within 1σ of this range, an exception
being TUMQCD 19 (which supersedes Bazavov 14 and Bazavov 12). Further, the range for

α
(5)

MS
(MZ) presented here is based on results with rather different systematics (apart from the

matching across the charm threshold). We therefore believe that the true value is very likely
to lie within this range.

All computations which enter this range, with the exception of HPQCD 14A [167], rely on a
perturbative inclusion of the charm and bottom quarks. Perturbation theory for the matching
of ḡ2Nf

and ḡ2Nf−1 looks very well behaved even at the mass of the charm. Worries that still
there may be purely nonperturbative effects at this rather low scale have been removed by
nonperturbative studies of the accuracy of perturbation theory. While the original study in
Ref. [104] was not precise enough, the extended one in Ref. [105] estimates effects in the
Λ-parameter to be significantly below 1% and thus negligible for the present and near future
accuracy.

9.11.3 Ranges for [r0Λ]
(Nf ) and ΛMS

In the present situation, we give ranges for [r0Λ]
(Nf ) and ΛMS, discussing their determination

case by case. We include results withNf < 3 because it is interesting to see theNf -dependence
of the connection of low- and high-energy QCD. This aids our understanding of the field
theory and helps in finding possible ways to tackle it beyond the lattice approach. It is also
of interest in providing an impression on the size of the vacuum-polarization effects of quarks,
in particular with an eye on the still difficult-to-treat heavier charm and bottom quarks.
Most importantly, however, the decoupling strategy described in subsection 9.4 means that
Λ-parameters at different Nf can be connected by a nonperturbative matching computation.
Thus, even results at unphysical flavour numbers, in particular Nf = 0, may enter results
for the physically interesting case. Rather than phasing out results for “unphysical flavour
numbers”, continued scrutiny by FLAG will be necessary. Having said this, we emphasize
that results for [r0Λ]

(0) and [r0Λ]
(2) are not meant to be used directly for phenomenology.

For the ranges we obtain:

[r0ΛMS]
(4) = 0.70(3) , (397)

[r0ΛMS]
(3) = 0.808(29) , (398)

[r0ΛMS]
(2) = 0.79(+ 5

−15) , (399)

[r0ΛMS]
(0) = 0.624(36) . (400)

No change has occurred since FLAG 19 for Nf = 2, 4, so we take over the respective discussion
from FLAG 19.

For Nf = 2+1+1, we presently do not quote a range as there is a single result: HPQCD
14A [167] found [r0Λ]

(4) = 0.70(3).
For Nf = 2 + 1, we take as a central value the weighted average of Cali 20 [32], Ayala 20

[30], TUMQCD 19[29], ALPHA 17 [92] HPQCD 10 [149] (Wilson loops and current two-point
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correlators), PACS-CS 09A [93] (with linear continuum extrapolation) and Maltman 08 [150].
Since the uncertainty in r0 is small compared to that of Λ, we can directly propagate the
error from the analog of Eq. (396) with the 2+1+1 number removed and arrive at

[r0ΛMS]
(3) = 0.808(29) . (401)

(The error of the straight weighted average is 0.012.) It is in good agreement with all 2+1
results without red tags. In physical units, using r0 = 0.472 fm and neglecting its error, this
means13

Λ
(3)

MS
= 338(12)MeV , (402)

where the error of the straight weighted average is less than 5MeV.
For Nf = 2, at present there is one computation with a ⋆ rating for all criteria, ALPHA

12 [57]. We adopt it as our central value and enlarge the error to cover the central values
of the other three results with filled green boxes. This results in an asymmetric error. Our
range is unchanged as compared to FLAG 13,

[r0ΛMS]
(2) = 0.79(+ 5

−15) , (403)

and in physical units, using r0 = 0.472 fm,

Λ
(2)

MS
= 330(+21

−63)MeV . (404)

A weighted average of the four eligible numbers would yield [r0ΛMS]
(2) = 0.689(23), not

covering the best result and in particular leading to a smaller error than we feel is justified,
given the issues discussed previously in Sec. 9.5.2 (Karbstein 18 [123], ETM 11C [125]) and
Sec. 9.9.2 (ETM 10F [193]). Thus we believe that our estimate is a conservative choice; the
low values of ETM 11C [125] and Karbstein 18 [123] lead to a large downward error. We
note that this can largely be explained by different values of r0 between ETM 11C [125] and
ALPHA 12 [57]. We still hope that future work will improve the situation.

For Nf = 0, the new result DallaBrida 19 [27], is quite large compared to the FLAG
19 average. We combine it with those results which entered the FLAG 19 report, namely
ALPHA 98 [96], QCDSF/UKQCD 05 [151], Brambilla 10 [127], Kitazawa 16 [156] and
Ishikawa 17 [87] for forming a range.14 Taking a weighted average of the six numbers, we
obtain [r0ΛMS]

(0) = 0.624(5), up from 0.615(5) for FLAG 19.
Clearly the errors are dominantly systematic, mostly due to perturbative truncation er-

rors. Since we do not change the FLAG 19 criteria for this edition, we give a range which
encompasses all central values. Unfortunately, this requires to double the error of the FLAG
19 result (which was given by 0.615(18)), due to the large central value of 0.660 by DallaBrida
19. We arrive at our range for Nf = 0,

[r0ΛMS]
(0) = 0.624(36) . (405)

13In the FLAG 19 report [1], an inaccurate conversion of [r0ΛMS]
(3) in Eq. (345) to physical units (using

r0 = 0.472 fm) led to 343MeV in Eqs. (346,353). However, using fm×MeV= 1/197.3 gives 337MeV (Eqs. (351)
and (352) are however correct). Note: Equation references in this footnote are from FLAG 19 [1].

14We have assigned a ◦ for the continuum limit, in Boucaud 00A [198], 00B [197], 01A [196], Soto 01
[195] but these results are from lattices of a very small physical size with finite-size effects that are not easily
quantified.
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This is clearly not very satisfactory, and, despite this large error, this still means that the
high quality, and statistics dominated new step-scaling result Dalla Brida 19 is more than 3
sigma away from the central value of the new FLAG average.

Converting to physical units, again using r0 = 0.472 fm yields

Λ
(0)

MS
= 261(15)MeV . (406)

While the conversion of the Λ parameter to physical units is quite unambiguous for Nf = 2+1,
our choice of r0 = 0.472 fm also for smaller numbers of flavour amounts to a convention, in
particular for Nf = 0. Indeed, in the Tabs. 60–66 somewhat different numbers in MeV are
found.

9.11.4 Conclusions

With the present results our range for the strong coupling is
(repeating Eq. (396))

α
(5)

MS
(MZ) = 0.1184(8) Refs. [29, 30, 32, 92, 93, 149, 150, 167],

and the associated Λ parameters

Λ
(5)

MS
= 214(10) MeV Refs. [29, 30, 32, 92, 93, 149, 150, 167], (407)

Λ
(4)

MS
= 297(12) MeV Refs. [29, 30, 32, 92, 93, 149, 150, 167], (408)

Λ
(3)

MS
= 339(12) MeV Refs. [29, 30, 32, 92, 93, 149, 150, 167] . (409)

Compared with FLAG 19, the central values have moved slightly, with the errors remaining
the same.

It is interesting to compare with the Particle Data Group average of nonlattice determi-
nations of recent years,

α
(5)

MS
(MZ) = 0.1176(11) , PDG 20, nonlattice [10], also appeared as Eq. (319) ,

α
(5)

MS
(MZ) = 0.1174(16) , PDG 18, nonlattice [11], (410)

α
(5)

MS
(MZ) = 0.1174(16) , PDG 16, nonlattice [210] , (411)

α
(5)

MS
(MZ) = 0.1175(17) , PDG 14, nonlattice [211] , (412)

α
(5)

MS
(MZ) = 0.1183(12) , PDG 12, nonlattice [212] . (413)

(there was no update in [11]). There is good agreement with Eq. (396). Despite our very
conservative error estimate, the FLAG lattice average has an error that is 30% smaller than
the PDG 20 nonlattice-world average and a weighted average of the two [Eq. (396) and
Eq. (319)] yields

α
(5)

MS
(MZ) = 0.1181(7) , FLAG 21 + PDG 20. (414)

In the lower plot in Fig. 41 we show as blue circles the various PDG pre-averages which
lead to the PDG 20 nonlattice average. They are on a similar level as our pre-ranges (green
squares) : each one corresponds to an estimate (by the PDG) of αs determined from one set
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of input quantities. Within each pre-average multiple groups did the analysis and published
their results as displayed in Ref. [10].

The fact that our range for the lattice determination of αMS(MZ) in Eq. (396) is in
excellent agreement with the PDG 20 nonlattice average Eq. (319) is an excellent check for the
subtle interplay of theory, phenomenology and experiments in the nonlattice determinations.
The work done on the lattice provides an entirely independent determination, with negligible
experimental uncertainty, which reaches a better precision even with our quite conservative
estimate of its uncertainty.

We finish by commenting on perspectives for the future. The step-scaling methods have
been shown to yield a very precise result and to satisfy all criteria easily. A downside is
that dedicated simulations have to be done and the method is thus hardly used. It would
be desirable to have at least one more such computation by an independent collaboration, as
also requested in the review [12]. While this FLAG review does not report an error reduction
compared to FLAG 19, the understanding of some systematic errors has improved. With
the exception of the step-scaling result, all determinations of αs, appear to be limited by
systematic uncertainties due to perturbative truncation errors. Similar conclusions have been
drawn in the recent review article [25]. In order to improve control of systematics it would
be necessary to reach higher energy scales without incurring large cutoff effects. This could
be achieved by applying step-scaling methods in large (infinite) volume, provided that finite
volume effects are carefully controlled. Even a relatively modest increase by a scale factor
2–3 could significantly enhance the scope for some of the current approaches to determine αs.
Another hope for improvement are decoupling strategies, following the recent proposal by the
ALPHA collaboration, cf. Sec. 9.4. This in turn motivates further state-of-the-art studies in
the pure gauge theory (Nf = 0), where it would be important to resolve the current tension
between results in the literature.
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Figure 41: α
(5)

MS
(MZ), the coupling constant in the MS scheme at the Z mass. Top: lattice

results, pre-ranges from different calculation methods, and final average. Bottom: Compar-
ison of the lattice pre-ranges and average with the nonlattice ranges and average. The first
PDG 20 entry gives the outcome of their analysis excluding lattice results (see Sec. 9.11.4).

66

http://arxiv.org/abs/2111.09849

	The strong coupling s
	Introduction
	Scheme and scale dependence of s and QCD
	Overview of the review of s
	Additions with respect to the FLAG 19 report

	General issues
	Discussion of criteria for computations entering the averages
	Physical scale
	Studies of truncation errors of perturbation theory

	s from Step-Scaling Methods
	General considerations
	Discussion of computations

	The decoupling method
	s from the potential at short distances
	General considerations
	Discussion of computations

	s from the light-quark vacuum polarization in momentum/position space
	General considerations
	Definitions in position space
	Discussion of computations
	Vacuum polarization in position space

	s from observables at the lattice spacing scale
	General considerations
	Continuum limit
	Discussion of computations

	s from heavy-quark current two-point functions
	General considerations
	Discussion of computations

	s from QCD vertices
	General considerations
	Discussion of computations

	s from the eigenvalue spectrum of the Dirac operator
	General considerations
	Discussion of computations

	Summary
	The present situation
	Our range for MS(5)
	Ranges for [r0 ](N f) and MS
	Conclusions


	References

