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7 Charm hadron decay constants and form factors
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Leptonic and semileptonic decays of charmed D and Ds mesons or Λc and other charm
baryons occur via charged W -boson exchange, and are sensitive probes of c → d and c →
s quark flavour-changing transitions. Given experimental measurements of the branching
fractions combined with sufficiently precise theoretical calculations of the hadronic matrix
elements, they enable the determination of the CKM matrix elements |Vcd| and |Vcs| (within
the Standard Model) and a precise test of the unitarity of the second row of the CKM matrix.
Here, we summarize the status of lattice-QCD calculations of the charmed leptonic decay
constants. Significant progress has been made in charm physics on the lattice in recent years,
largely due to the availability of gauge configurations produced using highly-improved lattice-
fermion actions that enable treating the c quark with the same action as for the u, d, and s
quarks.

This section updates the corresponding one in the last FLAG review [1] for results that
appeared before April 30, 2021. As already done in Ref. [1], we limit our review to results based
on modern simulations with reasonably light pion masses (below approximately 500 MeV).

Following our review of lattice-QCD calculations of D(s)-meson leptonic decay constants
and charm-hadron semileptonic form factors, we then interpret our results within the context
of the Standard Model. We combine our best-determined values of the hadronic matrix
elements with the most recent experimentally-measured branching fractions to obtain |Vcd(s)|
and test the unitarity of the second row of the CKM matrix.

7.1 Leptonic decay constants fD and fDs

In the Standard Model, and up to electromagnetic corrections, the decay constant fD(s)
of a

pseudoscalar D or Ds meson is related to the branching ratio for leptonic decays mediated
by a W boson through the formula

B(D(s) → ℓνℓ) =
G2

F |Vcq|2τD(s)

8π
f2D(s)

m2
ℓmD(s)

(
1−

m2
ℓ

m2
D(s)

)2

, (169)

where q is d or s and Vcd (Vcs) is the appropriate CKM matrix element for a D (Ds) meson.
The branching fractions have been experimentally measured by CLEO, Belle, Babar and
BES with a precision around 4–5% for both the D and the Ds-meson decay modes [2]. When
combined with lattice results for the decay constants, they allow for determinations of |Vcs|
and |Vcd|.

In lattice-QCD calculations, the decay constants fD(s)
are extracted from Euclidean matrix

elements of the axial current

⟨0|Aµ
cq|Dq(p)⟩ = ifDq p

µ
Dq

, (170)

with q = d, s and Aµ
cq = c̄γµγ5q. Results for Nf = 2, 2 + 1 and 2 + 1 + 1 dynamical flavours

are summarized in Tab. 34 and Fig. 22. Since the publication of the last FLAG review, a
handful of results for fD and fDs have appeared, as described below. We consider isospin-
averaged quantities, although, in a few cases, results for fD+ are quoted (see, for example,
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Figure 22: Decay constants of the D and Ds mesons [values in Tab. 34 and Eqs. (171-179)].
As usual, full green squares are used in the averaging procedure, pale green squares have been
superseded by later determinations, while pale red squares do not satisfy the criteria. The
black squares and grey bands indicate our averages.

the FNAL/MILC 11,14A and 17 computations, where the difference between fD and fD+ has
been estimated to be around 0.5 MeV).

Only one new computation appeared for Nf = 2. Reference [3], Balasubramanian 19,
updates the result for fDs in Blossier 18 [4] (discussed in the previous review) by including
in the analysis two additional ensembles at a coarser lattice spacing (a = 0.075 fm, compared
to 0.065 fm and 0.048 fm used in Ref. [4]). Pion masses at this coarser resolution reach 282
MeV and MπL is always kept larger than 4.

The Nf = 2 averages for fD and fDs/fD coincide with those in the previous FLAG review
and are given by the values in ETM 13B [23], while the estimate for fDs is the result of the
weighted average of the numbers in ETM 13B [23] and Balasubramanian 19 [3]. They read

Nf = 2 : fD = 208(7) MeV Ref. [23], (171)

Nf = 2 : fDs = 246(4) MeV Refs. [3, 23], (172)

Nf = 2 :
fDs

fD
= 1.20(0.02) Ref. [23]. (173)

Turning to Nf = 2 + 1 results, the χQCD collaboration presented in χQCD 20A [11]

a calculation of the D
(∗)
s , D(∗) and ϕ meson decay constants. The couplings of the vector

mesons to the tensor current are also computed. The computation is performed at a single
lattice spacing with a−1 ≈ 1.7 GeV on a 2 + 1 domain wall fermion ensemble generated by
the RBC/UKQCD Collaboration. The sea pion mass is at its physical value and the spatial
extension is 5.5 fm. Overlap valence fermions are used with different values of the light, strange
and (quenched) charm quark masses. For the light quarks the corresponding pion masses
range between 114 and 208 MeV. The setup follows very closely the one in χQCD 14 [14]
(presented in the 2016 FLAG review). The decay constants fD and fDs are obtained from an
exactly conserved PCACWard identity so they do not depend on renormalization factors. The
results, however, do not enter the FLAG average as the simulations do not meet the quality
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criteria concerning the number of lattice spacings used in the continuum extrapolation.
A new result (RBC/UKQCD 18A) for the SU(3)-breaking ratio fDs/fD has been reported

in Ref. [12]. The setup includes 2 + 1 dynamical flavors of Domain Wall fermions. This new
result essentially supersedes RBC/UKQCD 17 [13] (discussed in the previous FLAG review)
by implementing a number of improvements. One level of stout smearing for the gauge fields
has been introduced before performing the charm-quark inversions, which has allowed them
to simulate directly at the physical charm mass. At the same time, the valence the strange-
quark mass has been tuned to its physical value in order to eliminate a small correction needed
previously. Finally, the number of source positions has been doubled on a few ensembles. As
of April 30, 2021 the article has not been published in a journal. Therefore, the result does
not contribute to the FLAG estimates.

The Nf = 2 + 1 FLAG estimates remain unchanged and read

Nf = 2 + 1 : fD = 209.0(2.4) MeV Refs. [13, 15, 16], (174)

Nf = 2 + 1 : fDs = 248.0(1.6) MeV Refs. [13, 14, 16, 18], (175)

Nf = 2 + 1 :
fDs

fD
= 1.174(0.007) Refs. [13, 15, 16], (176)

where the error on the Nf = 2+ 1 average of fDs has been rescaled by the factor
√
χ2/dof =

1.1. Those come from the results in HPQCD 12A [15], FNAL/MILC 11 [16] as well as
RBC/UKQCD 17 [13] concerning fD while for fDs also the χQCD 14 [14] result contributes,
and instead of the value in HPQCD 12A [15] the one in HPQCD 10A [18] is used. In addition,
the statistical errors between the results of FNAL/MILC and HPQCD have been everywhere
treated as 100% correlated since the two collaborations use overlapping sets of configurations.
The same procedure had been used in the past reviews.

No new result appeared for Nf = 2 + 1 + 1 since the last FLAG review. Our estimates,
therefore, coincide with those in Ref. [1], namely

Nf = 2 + 1 + 1 : fD = 212.0(0.7) MeV Refs. [5, 7], (177)

Nf = 2 + 1 + 1 : fDs = 249.9(0.5) MeV Refs. [5, 7], (178)

Nf = 2 + 1 + 1 :
fDs

fD
= 1.1783(0.0016) Refs. [5, 7], (179)

where the error on the average of fD has been rescaled by the factor
√
χ2/dof = 1.22.

On a general note, an important recent theoretical development is represented by the
nonperturbative calculation of the form factors FA and FV contributing to the radiative
leptonic decays of a charged pseudoscalar meson P . As discussed in Ref. [26], those appear
in the decomposition of the hadronic matrix element

Hαr
W (k,p) = ϵrµ(k)

∫
d4y eiky T⟨0|jαW (0)jµem(y)|P (p)⟩ , (180)

with ϵrµ(k) the polarisation vector of the outgoing photon (with momentum k) and jαW and
jµem the weak and electromagnetic currents, respectively. With general kinematics four form
factors together with the pseudoscalar decay constant fP are needed; however, for k2 = 0, by
choosing in addition a physical basis for the polarisation such that ϵr(k) ·k = 0, the deacy rate
can be calculated once FA, FV , and fP are known. A preliminary study has been presented
in Ref. [27] in the theory with 2+ 1 dynamical flavors. While a more complete calculation at
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three different lattice spacings (in the range 0.09–0.06 fm) and for Nf = 2+1+1 appeared in
Ref. [28]. The form factors, once used in combination with the nonperturbative calculation
of the corrections to P → ℓν̄ℓ due to the exchange of a virtual photon, allow for a complete
determination of the QED corrections to semileptonic decays of mesons. In Ref. [28] the form
factors are defined after removing the point-like, infrared divergent contribution, in order to
highlight the interesting structure dependent part. Restricting attention to on-shell photons,
the behaviour of discretisation effects is studied in Ref. [28] as the photon momentum is
changed and heavy quarks are considered. A prescription is also given to nonperturbatively
subtract infrared divergent cutoff effects. Still, for charmed mesons discretization effects
turned out to be rather large, relative to the size of the form factors, suggesting that very
fine lattice spacings will be needed in the case of B mesons.
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fD fDs fDs/fD

FNAL/MILC 17 ∇∇ [5] 2+1+1 A ⋆ ⋆ ⋆ ⋆ ✓ 212.1(0.6) 249.9(0.5) 1.1782(16)

FNAL/MILC 14A∗∗ [6] 2+1+1 A ⋆ ⋆ ⋆ ⋆ ✓ 212.6(0.4)
(
+1.0
−1.2

)
249.0(0.3)

(
+1.1
−1.5

)
1.1745(10)

(
+29
−32

)
ETM 14E† [7] 2+1+1 A ⋆ ◦ ◦ ⋆ ✓ 207.4(3.8) 247.2(4.1) 1.192(22)

ETM 13F [8] 2+1+1 C ◦ ◦ ◦ ⋆ ✓ 202(8) 242(8) 1.199(25)

FNAL/MILC 13∇ [9] 2+1+1 C ⋆ ⋆ ⋆ ⋆ ✓ 212.3(0.3)(1.0) 248.7(0.2)(1.0) 1.1714(10)(25)

FNAL/MILC 12B [10] 2+1+1 C ⋆ ⋆ ⋆ ⋆ ✓ 209.2(3.0)(3.6) 246.4(0.5)(3.6) 1.175(16)(11)

χQCD 20A†† [11] 2+1 A ■ ⋆ ⋆ ⋆ ✓ 213(5) 249(7) 1.16(3)

RBC/UKQCD 18A□∇ [12] 2+1 P ⋆ ⋆ ⋆ ⋆ ✓ 1.1740(51)
(
+68
−68

)
RBC/UKQCD 17 [13] 2+1 A ⋆ ⋆ ◦ ⋆ ✓ 208.7(2.8)

(
+2.1
−1.8

)
246.4(1.3)

(
+1.3
−1.9

)
1.1667(77)

(
+57
−43

)
χQCD 14†□ [14] 2+1 A ◦ ◦ ◦ ⋆ ✓ 254(2)(4)

HPQCD 12A [15] 2+1 A ◦ ◦ ◦ ⋆ ✓ 208.3(1.0)(3.3) 246.0(0.7)(3.5) 1.187(4)(12)

FNAL/MILC 11 [16] 2+1 A ◦ ◦ ◦ ◦ ✓ 218.9(11.3) 260.1(10.8) 1.188(25)

PACS-CS 11 [17] 2+1 A ■ ⋆ ■ ◦ ✓ 226(6)(1)(5) 257(2)(1)(5) 1.14(3)

HPQCD 10A [18] 2+1 A ⋆ ◦ ⋆ ⋆ ✓ 213(4)∗ 248.0(2.5)

HPQCD/UKQCD 07 [19] 2+1 A ◦ ◦ ◦ ⋆ ✓ 207(4) 241 (3) 1.164(11)

FNAL/MILC 05 [20] 2+1 A ◦ ◦ ■ ◦ ✓ 201(3)(17) 249(3)(16) 1.24(1)(7)

Balasubramanian 19 [3] 2 A ⋆ ⋆ ⋆ ⋆ ✓ 244(4)(2)

Blossier 18 [4] 2 A ◦ ⋆ ◦ ⋆ ✓ 238(5)(2)

TWQCD 14□□ [21] 2 A ■ ◦ ■ ⋆ ✓ 202.3(2.2)(2.6) 258.7(1.1)(2.9) 1.2788(264)

ALPHA 13B [22] 2 C ◦ ⋆ ◦ ⋆ ✓ 216(7)(5) 247(5)(5) 1.14(2)(3)

ETM 13B□ [23] 2 A ⋆ ◦ ◦ ⋆ ✓ 208(7) 250(7) 1.20(2)

ETM 11A [24] 2 A ⋆ ◦ ◦ ⋆ ✓ 212(8) 248(6) 1.17(5)

ETM 09 [25] 2 A ◦ ◦ ◦ ⋆ ✓ 197(9) 244(8) 1.24(3)

† Update of ETM 13F.
∇ Update of FNAL/MILC 12B.
∗ This result is obtained by using the central value for fDs/fD from HPQCD/UKQCD 07 and increasing the
error to account for the effects from the change in the physical value of r1.
□ Update of ETM 11A and ETM 09.
□□ One lattice spacing ≃ 0.1 fm only. mπ,minL = 1.93.
∗∗ At β = 5.8, mπ,minL = 3.2 but this lattice spacing is not used in the final cont./chiral extrapolations.
∇∇ Update of FNAL/MILC 14A. The ratio quoted is fDs/fD+ = 1.1749(16). In order to compare with
results from other collaborations, we rescale the number by the ratio of central values for fD+ and fD. We
use the same rescaling in FNAL/MILC 14A. At the finest lattice spacing the finite-volume criterium would
produce an empty green circle, however, as checked by the authors, results would not significantly change by
excluding this ensemble, which instead sharpens the continuum limit extrapolation.
□∇ Update of RBC/UKQCD 17.
†□ Two values of sea pion masses.
†† Four valence pion masses between 208 MeV and 114 MeV have been used at one value of the sea pion
mass of 139 MeV.

Table 34: Decay constants of the D and Ds mesons (in MeV) and their ratio.
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7.2 Form factors for D → πℓν and D → Kℓν semileptonic decays

The SM prediction for the differential decay rate of the semileptonic processes D → πℓν and
D → Kℓν can be written as

dΓ(D → Pℓν)

dq2
=
G2

F|Vcx|2

24π3

(q2 −m2
ℓ )

2
√
E2

P −m2
P

q4m2
D

×
[(

1 +
m2

ℓ

2q2

)
m2

D(E
2
P −m2

P )|f+(q2)|2 +
3m2

ℓ

8q2
(m2

D −m2
P )

2|f0(q2)|2
]
(181)

where x = d, s is the daughter light quark, P = π,K is the daughter light-pseudoscalar
meson, EP is the light-pseudoscalar meson energy in the rest frame of the decaying D, and
q = (pD − pP ) is the momentum of the outgoing lepton pair; in this section, the charged
lepton ℓ will either be an electron (resp. positron) or (anti)muon. The vector and scalar form
factors f+(q

2) and f0(q
2) parameterize the hadronic matrix element of the heavy-to-light

quark flavour-changing vector current Vµ = xγµc,

⟨P |Vµ|D⟩ = f+(q
2)

(
pDµ + pP µ −

m2
D −m2

P

q2
qµ

)
+ f0(q

2)
m2

D −m2
P

q2
qµ , (182)

and satisfy the kinematic constraint f+(0) = f0(0). Because the contribution to the decay
width from the scalar form factor is proportional to m2

ℓ , within current precision standards
it can be neglected for ℓ = e, µ, and Eq. (181) simplifies to

dΓ(D → Pℓν)

dq2
=

G2
F

24π3
|p⃗P |3|Vcx|2|f+(q2)|2 . (183)

In models of new physics, decay rates may also receive contributions from matrix elements of
other parity-even currents. In the case of the scalar density, partial vector current conservation
allows one to write matrix elements of the latter in terms of f+ and f0, while for tensor currents
Tµν = x̄σµνc a new form factor has to be introduced, viz.,

⟨P |Tµν |D⟩ = 2

mD +mP
[pPµpDν − pPνpDµ] fT (q

2) . (184)

Recall that, unlike the Noether current Vµ, the operator Tµν requires a scale-dependent renor-
malization.

Lattice-QCD computations of f+,0 allow for comparisons to experiment to ascertain
whether the SM provides the correct prediction for the q2-dependence of dΓ(D → Pℓν)/dq2;
and, subsequently, to determine the CKM matrix elements |Vcd| and |Vcs| from Eq. (181).
The inclusion of fT allows for analyses to constrain new physics. Currently, state-of-the-art
experimental results by CLEO-c [29] and BESIII [30, 31] provide data for the differential
rates in the whole q2 range available, with a precision of order 2–3% for the total branching
fractions in both the electron and muon final channels.

Calculations of theD → πℓν andD → Kℓν form factors typically use the same light-quark
and charm-quark actions as those of the leptonic decay constants fD and fDs . Therefore, many
of the same issues arise; in particular, considerations about cutoff effects coming from the large
charm-quark mass, or the normalization of weak currents, apply. Additional complications
arise, however, due to the necessity of covering a sizeable range of values in q2:
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• Lattice kinematics imposes restrictions on the values of the hadron momenta. Because
lattice calculations are performed in a finite spatial volume, the pion or kaon three-
momentum can only take discrete values in units of 2π/L when periodic boundary
conditions are used. For typical box sizes in recent lattice D- and B-meson form-factor
calculations, L ∼ 2.5–3 fm; thus, the smallest nonzero momentum in most of these
analyses lies in the range |p⃗P | ∼ 400–500 MeV. The largest momentum in lattice heavy-
light form-factor calculations is typically restricted to |p⃗P | ≤ 4π/L. For D → πℓν and
D → Kℓν, q2 = 0 corresponds to |p⃗π| ∼ 940 MeV and |p⃗K | ∼ 1 GeV, respectively,
and the full recoil-momentum region is within the range of accessible lattice momenta.
This has implications for both the accuracy of the study of the q2-dependence, and the
precision of the computation, since statistical errors and cutoff effects tend to increase
at larger meson momenta. As a consequence, many recent studies have incorporated
the use of nonperiodic (“twisted”) boundary conditions (tbc) [32, 33] in the valence
fields used for the computation of observables, as a means to alleviate some of these
difficulties. In particular, while they will not necessarily lead to a decrease of numerical
noise or cutoff effects, the use of tbc allows not only for a better momentum resolution,
but also to better control the q2 = 0 endpoint [34–39].

• Final-state pions and kaons can have energies ≳ 1 GeV, given the available kinematical
range 0 ≲ q2 ≤ q2max = (mD −mP )

2. This makes the use of (heavy-meson) chiral per-
turbation theory to extrapolate to physical light-quark masses potentially problematic.

• Accurate comparisons to experiment, including the determination of CKM parameters,
requires good control of systematic uncertainties in the parameterization of the q2-
dependence of form factors. While this issue is far more important for semileptonic
B decays, where existing lattice computations cover just a fraction of the kinematic
range, the increase in experimental precision requires accurate work in the charm sector
as well. The parameterization of semileptonic form factors is discussed in detail in
Appendix B.1.

The most advanced Nf = 2 lattice-QCD calculation of the D → πℓν and D → Kℓν
form factors is by the ETM collaboration [34]. This work, which did not proceed beyond the
preliminary stage, uses the twisted-mass Wilson action for both the light and charm quarks,
with three lattice spacings down to a ≈ 0.068 fm and (charged) pion masses down to mπ ≈
270 MeV. The calculation employs the method of Ref. [40] to avoid the need to renormalize
the vector current, by introducing double-ratios of lattice three-point correlation functions in
which the vector current renormalization cancels. Discretization errors in the double ratio
are of O((amc)

2), due to the automatic O(a) improvement at maximal twist. The vector and
scalar form factors f+(q

2) and f0(q
2) are obtained by taking suitable linear combinations of

these double ratios. Extrapolation to physical light-quark masses is performed using SU(2)
heavy-light meson χPT. The ETM collaboration simulates with twisted boundary conditions
for the valence quarks to access arbitrary momentum values over the full physical q2 range, and
interpolate to q2 = 0 using the Bečirević-Kaidalov ansatz [41]. The statistical errors in fDπ

+ (0)
and fDK

+ (0) are 9% and 7%, respectively, and lead to rather large systematic uncertainties in
the fits to the light-quark mass and energy dependence (7% and 5%, respectively). Another
significant source of uncertainty is from discretization errors (5% and 3%, respectively). On
the finest lattice spacing used in this analysis amc ∼ 0.17, so O((amc)

2) cutoff errors are
expected to be about 5%. This can be reduced by including the existing Nf = 2 twisted-mass
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ensembles with a ≈ 0.051 fm discussed in Ref. [42].
The first published Nf = 2 + 1 lattice-QCD calculation of the D → πℓν and D → Kℓν

form factors came from the Fermilab Lattice, MILC, and HPQCD collaborations [43].1 This
work uses asqtad-improved staggered sea quarks and light (u, d, s) valence quarks and the
Fermilab action for the charm quarks, with a single lattice spacing of a ≈ 0.12 fm, and a
minimum RMS-pion mass of ≈ 510 MeV, dictated by the presence of fairly large staggered
taste splittings. The vector current is normalized using a mostly nonperturbative approach,
such that the perturbative truncation error is expected to be negligible compared to other
systematics. Results for the form factors are provided over the full kinematic range, rather
than focusing just at q2 = 0 as was customary in previous work, and fitted to a Bečirević-
Kaidalov ansatz. In fact, the publication of this result predated the precise measurements
of the D → Kℓν decay width by the FOCUS [44] and Belle experiments [45], and showed
good agreement with the experimental determination of the shape of fDK

+ (q2). Progress on
extending this work was reported in [46]; efforts are aimed at reducing both the statistical
and systematic errors in fDπ

+ (q2) and fDK
+ (q2) by increasing the number of configurations

analyzed, simulating with lighter pions, and adding lattice spacings as fine as a ≈ 0.045 fm.
The most precise published calculations of the D → πℓν [47] and D → Kℓν [48] form

factors in Nf = 2 + 1 QCD are by the HPQCD collaboration. They are also based on
Nf = 2 + 1 asqtad-improved staggered MILC configurations, but use two lattice spacings
a ≈ 0.09 and 0.12 fm, and a HISQ action for the valence u, d, s, and c quarks. In these mixed-
action calculations, the HISQ valence light-quark masses are tuned so that the ratio ml/ms is
approximately the same as for the sea quarks; the minimum RMS sea-pion mass ≈ 390 MeV.
Form factors are determined only at q2 = 0, by using a Ward identity to relate matrix elements
of vector currents to matrix elements of the absolutely normalized quantity (mc−mx)⟨P |x̄c|D⟩
(where x = u, d, s), and exploiting the kinematic identity f+(0) = f0(0) to yield f+(q

2 = 0) =
(mc − mx)⟨P |x̄c|D⟩/(m2

D − m2
P ). A modified z-expansion (cf. Appendix B.1) is employed

to simultaneously extrapolate to the physical light-quark masses and the continuum and to
interpolate to q2 = 0, and allow the coefficients of the series expansion to vary with the light-
and charm-quark masses. The form of the light-quark dependence is inspired by χPT, and
includes logarithms of the form m2

πlog(m
2
π) as well as polynomials in the valence-, sea-, and

charm-quark masses. Polynomials in Eπ(K) are also included to parameterize momentum-
dependent discretization errors. The number of terms is increased until the result for f+(0)
stabilizes, such that the quoted fit error for f+(0) not only contains statistical uncertainties,
but also reflects relevant systematics. The largest quoted uncertainties in these calculations
are from statistics and charm-quark discretization errors. Progress towards extending the
computation to the full q2 range have been reported in Ref. [35, 36]; however, the information
contained in these conference proceedings is not enough to establish an updated value of f+(0)
with respect to the previous journal publications.

The most recent Nf = 2+1 computation of D semileptonic form factors has been carried
out by the JLQCD collaboration, and so far only published in conference proceedings; most
recently in Ref. [49]. They use their own Möbius domain-wall configurations at three values
of the lattice spacing a = 0.080, 0.055, 0.044 fm, with several pion masses ranging from 226
to 501 MeV (though there is so far only one ensemble, with mπ = 284 MeV, at the finest
lattice spacing). The vector and scalar form factors are computed at four values of the

1Because only two of the authors of this work are members of HPQCD, and to distinguish it from other
more recent works on the same topic by HPQCD, we hereafter refer to this work as “FNAL/MILC.”
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momentum transfer for each ensemble. The computed form factors are observed to depend
mildly on both the lattice spacing and the pion mass. The momentum dependence of the form
factors is fitted to a BCL z-parameterization (see Appendix B.1) with a Blaschke factor that
contains the measured value of the D∗

(s) mass in the vector channel, and a trivial Blaschke
factor in the scalar channel. The systematics of this latter fit is assessed by a BCL fit with
the experimental value of the scalar resonance mass in the Blaschke factor. Continuum and
chiral extrapolations are carried out through a linear fit in the squared lattice spacing and
the squared pion and ηc masses. A global fit that uses hard-pion HMχPT to model the mass
dependence is furthermore used for a comparison of the form factor shapes with experimental
data.2 Since the computation is only published in proceedings so far, it will not enter our
Nf = 2 + 1 average.3

The first full computation of both the vector and scalar form factors in Nf = 2+1+1 QCD
was achieved by the ETM collaboration [38]. Furthermore, they have provided a separate
determination of the tensor form factor, relevant for new physics analyses [39]. Both works
use the available Nf = 2 + 1 + 1 twisted-mass Wilson lattices [51], totaling three lattice
spacings down to a ≈ 0.06 fm, and a minimal pion mass of 220 MeV. Matrix elements are
extracted from suitable double ratios of correlation functions that avoid the need of nontrivial
current normalizations. The use of twisted boundary conditions allows both for imposing
several kinematical conditions, and considering arbitrary frames that include moving initial
mesons. After interpolation to the physical strange- and charm-quark masses, the results for
form factors are fitted to a modified z-expansion that takes into account both the light-quark
mass dependence through hard-pion SU(2) χPT [52], and the lattice-spacing dependence. In
the latter case, a detailed study of Lorentz-breaking effects due to the breaking of rotational
invariance down to the hypercubic subgroup is performed, leading to a nontrivial momentum-
dependent parameterization of cutoff effects. The z-parameterization (see Appendix B.1)
itself includes a single-pole Blaschke factor (save for the scalar channel in D → K, where
the Blaschke factor is trivial), with pole masses treated as free parameters. The final quoted
uncertainty on the form factors is about 5–6% for D → π, and 4% for D → K. The dominant
source of uncertainty is quoted as statistical+fitting procedure+input parameters — the latter
referring to the values of quark masses, the lattice spacing (i.e., scale setting), and the LO
SU(2) LECs.

Another Nf = 2 + 1 + 1 computation of f+ and f0 in the full kinematical range for
the D → Klν mode, performed by HPQCD, has recently been published — HPQCD 21A
(Ref. [53]). This work uses MILC’s HISQ ensembles at five values of the lattice spacing, and
pion masses reaching to the physical point for the three coarsest values of a. Vector currents
are normalized nonpertubatively by imposing that form factors satisfy Ward identities exactly
at zero recoil. Results for the form factors are fitted to a modified z-expansion ansatz, with all
sub-threshold poles removed by using the experimental value of the mass shifted by a factor
that matches the corresponding result at finite lattice spacing. The accuracy of the description
of the q2 dependence is crosschecked by comparing to a fit based on cubic splines. Finite-

2It is important to stress the finding in Ref. [50] that the factorization of chiral logs in hard-pion χPT
breaks down, implying that it does not fulfill the expected requisites for a proper effective field theory. Its use
to model the mass dependence of form factors can thus be questioned.

3The ensemble parameters quoted in Ref. [49] appear to show that the volumes employed at the lightest
pion masses are insufficient to meet our criteria for finite-volume effects. There is, however, a typo in the
table which results in a wrong assignment of lattice sizes, whereupon the criteria are indeed met. We thank
T. Kaneko for correspondence on this issue.
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volume effects are expected to be small, and chiral-perturbation-theory-based estimates for
them are included in the chiral fit. However, the impact of frozen topology at the finest lattice
spacing is neglected. The final uncertainty from the form factors in the determination of |Vcs|
quoted in HPQCD 21A is at the 0.5% level, and comparable to the rest of the uncertainty
(due to the experimental error, as well as weak and electromagnetic corrections); in particular,
the precision of the form factors is around seven times higher than that of the other existing
Nf = 2+1+1 determination by ETMC. The work also provides an accurate prediction for the
lepton flavour universality ratio between the muon and electron modes, where the uncertainty
is overwhelmingly dominated by the electromagnetic corrections.

The FNAL/MILC collaboration has also reported ongoing work on extending their com-
putation to Nf = 2+1+1, using MILC HISQ ensembles at four values of the lattice spacing
down to a = 0.042 fm and pion masses down to the physical point. The latest updates on
this computation, focusing on the form factors at q2 = 0, but without explicit values of the
latter yet, can be found in Refs. [54, 55].
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fDπ
+ (0) fDK

+ (0)

HPQCD 21A [53] 2+1+1 P ⋆ ⋆ ◦† ⋆ ✓ n/a 0.7380(44)

HPQCD 20 [56] 2+1+1 A ⋆ ◦ ⋆ ⋆ ✓ n/a n/a

ETM 17D, 18 [38, 39] 2+1+1 A ⋆ ◦ ◦ ⋆ ✓ 0.612(35) 0.765(31)

JLQCD 17B [49] 2+1 C ⋆ ⋆ ◦ ⋆ ✓ 0.615(31)(+17
−16)(

+28
−7 )∗ 0.698(29)(18)(+32

−12)
∗

HPQCD 11 [47] 2+1 A ◦ ◦ ◦ ⋆ ✓ 0.666(29)

HPQCD 10B [48] 2+1 A ◦ ◦ ◦ ⋆ ✓ 0.747(19)

FNAL/MILC 04 [43] 2+1 A ■ ■ ◦ ◦ ✓ 0.64(3)(6) 0.73(3)(7)

ETM 11B [34] 2 C ◦ ◦ ⋆ ⋆ ✓ 0.65(6)(6) 0.76(5)(5)

∗ The first error is statistical, the second from the q2 → 0 extrapolation, the third from the chiral-
continuum extrapolation.

† The volumes used in the computation satisfy the nominal criterion for finite-volume effects. However,
the impact of the topologically frozen ensemble at a ≃ 0.044 fm is neglected. We therefore assign a

◦rating here, as a mark of caution.

Table 35: Summary of computations of charmed-meson semileptonic form factors. Note that
HPQCD 20 (discussed in Sec. 7.4) addresses the Bc → Bs and Bc → Bd transitions—hence
the absence of quoted values for fDπ

+ (0) and fDK
+ (0)—while ETM 18 provides a computation

of tensor form factors.

Table 35 contains our summary of the existing calculations of the D → πℓν and D → Kℓν
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semileptonic form factors. Additional tables in Appendix C.5.1 provide further details on the
simulation parameters and comparisons of the error estimates. Recall that only calculations
without red tags that are published in a refereed journal are included in the FLAG average.
We will quote no FLAG estimate for Nf = 2, since the results by ETM have only appeared
in conference proceedings. For Nf = 2 + 1, only HPQCD 10B,11 qualify, which provides our
estimate for f+(q

2 = 0) = f0(q
2 = 0). For Nf = 2 + 1 + 1, we quote as the FLAG estimate

for fDπ
+ (0) the only published result by ETM 17D, while for fDK

+ (0) we quote the weighted
average of the values published by ETM 17D and HPQCD 21A:

fDπ
+ (0) = 0.666(29) Ref. [47],

Nf = 2 + 1 : (185)
fDK
+ (0) = 0.747(19) Ref. [48],

fDπ
+ (0) = 0.612(35) Ref. [38],

Nf = 2 + 1 + 1 : (186)
fDK
+ (0) = 0.7385(44) Refs. [38, 53].

It is worth noting that, at the current level of precision, no significant effect of the dy-
namical charm quark is observed. However, given the paucity of results, it is premature to
infer strong conclusions on this point.

In Fig. 23, we display the existing Nf = 2, Nf = 2 + 1, and Nf = 2 + 1 + 1 results
for fDπ

+ (0) and fDK
+ (0); the grey bands show our estimates of these quantities. Section 7.5

discusses the implications of these results for determinations of the CKM matrix elements
|Vcd| and |Vcs| and tests of unitarity of the second row of the CKM matrix.

In the case of Nf = 2+1+1, we can also provide a complete result for the q2 dependence
of f+ and f0. In the case of the D → πℓν channel, the latter is provided by the fit given
in ETM 17D (Ref. [38]), to which we refer the reader. For D → Kℓν, we can average the
results in ETM 17D (Ref. [38]), and HPQCD 21A (Ref. [53]). To that purpose, we use
the parameterizations provided in the papers to produce synthetic data for both f+(q

2) and
f0(q

2) at a number of values of q2. The large correlations involved make covariance matrices
ill-behaved as the number of values of q2 considered increases; we have settled for two q2 values
for ETM 17D and three q2 values for HPQCD 21A, in both cases including the kinematical
endpoints q2 = 0 and q2 = (mD −mK)2 of the semileptonic interval. This choice allows us
to obtain well-behaved covariance matrices. We fit the resulting dataset to a BCL ansatz (cf.
Eqs. (532,533)) for a number of combinations of the highest orders N+ and N0 considered for
either form factor; the constraint f+(0) = f0(0) is used to rewrite the highest-order coefficient
a0N0−1 in f0 in terms of the other N+ +N0 − 1 coefficients. In both form factors, we include
non-trivial Blaschke factors, with pole masses set to the experimental values of the D∗

s (for
the vector channel) and Ds0 (scalar channel) masses found in the PDG [57]. We take flavour
averages of charged and neutral states for the D and K masses. Our external input is thus
mD = 1.87265 GeV, mK = 495.644 MeV, mD∗

s
= 2.1122 GeV, and mDs0 = 2.317 GeV.

With this setup, we observe stable fits beyond the linear approximation in z for the form
factors, although precision is rapidly lost for coefficients of terms of O(z3) and higher. We
quote as our preferred fit, and, therefore, FLAG average, the N+ = N0 = 3 result, quoted
in full in Tab. 36, and illustrated in Fig. 24. As clearly shown in the figure, there is some
tension between the two datasets, that grows with q2 to reach the ∼ 2σ level. This results

11

http://arxiv.org/abs/2111.09849


Y. Aoki et al. FLAG Review 2021 2111.09849

D → Kℓν (Nf = 2 + 1 + 1)

values correlation matrix

a+0 0.7877(87) 1.000000 −0.498440 0.073805 0.687417 0.363513

a+1 −0.97(18) −0.498440 1.000000 −0.609159 −0.063023 0.309377

a+2 −0.3(2.0) 0.073805 −0.609159 1.000000 0.020575 0.007175

a00 0.6959(47) 0.687417 −0.063023 0.020575 1.000000 0.273019

a01 0.775(69) 0.363513 0.309377 0.007175 0.273019 1.000000

Table 36: Coefficients for the N+ = 3, N0 = 3 z-expansion of the Nf = 2 + 1 + 1 FLAG
average for the D → K form factors f+ and f0, and their correlation matrix.

in a relatively poor χ2/d.o.f. = 9.17/3, which has resulted in our rescaling the errors of our
average fit accordingly.

0.55 0.65 0.75

=
+

+
=

+
= ETM 11B

FNAL/MILC 04
HPQCD 11 / 10B
JLQCD 17B

FLAG average for = +

ETM 17D
HPQCD 21A

FLAG average for = + +

+ ( )

0.65 0.75 0.85

+ ( )

Figure 23: D → πℓν and D → Kℓν semileptonic form factors at q2 = 0. The Nf = 2 + 1
HPQCD result for fDπ

+ (0) is from HPQCD 11, the one for fDK
+ (0) represents HPQCD 10B

(see Tab. 35).

12

http://arxiv.org/abs/2111.09849


Y. Aoki et al. FLAG Review 2021 2111.09849

0.60

0.65

0.70

0.75

0.80

0.85

0.90

-0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05

F G LA 2021I I

B
(q

2
)f

D
→

K
(q

2
)

z(q2, topt)

f0 average
f+ average

f+ HPQCD 21A
f+ ETM 17D

f0 HPQCD 21A
f0 ETM 17D

0.8

1.0

1.2

1.4

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80

F G LA 2021I I

f
D
→

K
(q

2
)

q2 [GeV2]

f0 average
f+ average

f+ HPQCD 21A
f+ ETM 17D

f0 HPQCD 21A
f0 ETM 17D

Figure 24: The form factors f+(q
2) and f0(q

2) for D → Kℓν plotted versus z (left panel) and
q2 (right panel). In the left plot, we removed the Blaschke factors. See text for a discussion
of the data set. The grey and salmon bands display our preferred N+ = N0 = 3 BCL fit (five
parameters).

7.3 Form factors for Λc and Ξc semileptonic decays

The motivation for studying charm-baryon semileptonic decays is two-fold. First, these de-
cays allow for independent determinations of |Vcs|. Second, given that possible new-physics
contributions to the c→ sℓν weak effective Hamiltonian are already constrained to be much
smaller compared to b → uℓν̄ and b → sℓℓ, charm-baryon semileptonic decays allow testing
the lattice techniques for baryons that are also employed for bottom-baryon semileptonic
decays (see Sec. 8.6) in a better-controlled environment.

The amplitudes of the decays Λc → Λℓν receive contributions from both the vector and
the axial components of the current in the matrix element ⟨Λ|s̄γµ(1 − γ5)c|Λc⟩, and can be
parameterized in terms of six different form factors f+, f0, f⊥, g+, g0, g⊥ — see, e.g., Ref. [58]
for a complete description.

The computation in Meinel 16 [59] uses RBC/UKQCD Nf = 2 + 1 DWF ensembles, and
treats the c quarks within the Columbia RHQ approach. Two values of the lattice spacing
(a ≈ 0.11, 0.085 fm) are considered, with the absolute scale set from the Υ(2S)–Υ(1S)
splitting. In one ensemble, the pion mass mπ ≈ 139 MeV is at the physical point, while for
other ensembles it ranges from 295 to 352 MeV. Results for the form factors are obtained from
suitable three-point functions, and fitted to a modified z-expansion ansatz that combines the
q2-dependence with the chiral and continuum extrapolations. The paper predicts for the total
rates in the e and µ channels

Γ(Λc → Λe+νe)

|Vcs|2
= 0.2007(71)(74) ps−1 ,

Γ(Λc → Λµ+νµ)

|Vcs|2
= 0.1945(69)(72) ps−1 ,

(187)

where the uncertainties are statistical and systematic, respectively. In combination with the
recent experimental determination of the total branching fractions by BESIII [60, 61], it is
possible to extract |Vcs| as discussed in Sec. 7.5 below.

Lattice results are also available for the Λc → N form factors, where N is a neutron or
proton [62]. This calculation uses the same lattice actions but a different set of ensembles
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with parameters matching those used in the 2015 calculation of the Λb → p form factors
in Ref. [63] (cf. Sec. 8.6). Predictions are given for the rates of the c → d semileptonic
decays Λc → nℓ+νℓ; these modes have not yet been observed. Reference [62] also studies the
phenomenology of the flavour-changing neutral-current decay Λc → pµ+µ−. As is typical for
rare charm decays to charged leptons, this mode is dominated by long-distance effects that
have not yet been calculated on the lattice and whose description is model-dependent.

Recently, the authors of Zhang 21 [64] also performed a first lattice calculation of the
Ξc → Ξ form factors and extracted |Vcs|, with still large uncertainties, from the recent Belle
measurement of the Ξc → Ξℓ+νℓ branching fractions [65]. This calculation uses only two
ensembles with 2 + 1 flavours of clover fermions, with lattice spacings of 0.108 and 0.080
fm and nearly identical pion masses of 290 and 300 MeV. The results are extrapolated to
the continuum limit but are not extrapolated to the physical pion mass. No systematic
uncertainty is estimated for the effect of the missing chiral extrapolation.

A summary of the lattice calculations of charm-baryon semileptonic decay form factors is
given in Tab. 37.
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Ξc → Ξℓν Zhang 21 [64] 2+1 P ◦ ■ ◦ ⋆ ■

Λc → nℓν Meinel 17 [62] 2+1 A ◦ ◦ ■ ◦ ✓
Λc → Λℓν Meinel 16 [59] 2+1 A ◦ ⋆ ⋆ ◦ ✓

Table 37: Summary of computations of charmed-baryon semileptonic form factors.

7.4 Form factors for charm semileptonic decays with heavy spectator quarks

Two other decays mediated by the c → sℓν and c → dℓν transitions are Bc → Bsℓν and
Bc → B0ℓν, respectively. At present, there are no experimental results for these processes,
but it may be possible to produce them at LHCb in the future. The HPQCD Collaboration has
recently computed the form factors for both of these Bc decay modes with Nf = 2+1+1 [56].
The calculation uses six different MILC ensembles with HISQ light, strange, and charm
quarks, and employs the PCAC Ward identity to nonperturbatively renormalize the c → s
and c → d currents. Data were generated for two different choices of lattice action for the
spectator b quark: lattice NRQCD on five of the six ensembles, and HISQ on three of the
six ensembles (cf. Sec. 8 for a discussion of different lattice approaches used for the b quark).
For the NRQCD calculation, two of the ensembles have a physical light-quark mass, and the
lattice spacings are 0.15 fm, 0.12 fm, and 0.09 fm. The heavy-HISQ calculation is performed
only at ml/ms = 0.2, and at lattice spacings of 0.12 fm, 0.09 fm, and 0.06 fm. The largest

14

http://arxiv.org/abs/2111.09849


Y. Aoki et al. FLAG Review 2021 2111.09849

value of the heavy-HISQ mass used is 0.8 in lattice units on all three ensembles, which does
not reach the physical b-quark mass even at the finest lattice spacing.

Form-factor fits are performed using z-expansions (see Appendix B.1) modified to include
dependence on the lattice spacing and quark masses, including an expansion in the inverse
heavy quark mass in the case of the heavy-HISQ approach. The parameters t+ are set to
(mBc+mB(s)

)2 even though the branch cuts start at (mD+mK)2 or (mD+mπ)
2, as also noted

by the authors. The variable z is rescaled by a constant. The lowest charmed-meson poles are
removed before the z-expansion, but this still leaves the branch cuts and higher poles below
t+. As a consequence of this structure, the good convergence properties of the z-expansion
are not necessarily expected to apply. Fits are performed (i) using the NRQCD data only, (ii)
using the HISQ data only, and (iii) using the NRQCD data, but with priors on the continuum-
limit form-factor parameters equal to the results of the HISQ fit. The results from fits (i) and
(ii) are mostly consistent, with the NRQCD fit having smaller uncertainties than the HISQ
fit. Case (iii) then results in the smallest uncertainties and gives the predictions (for massless
leptons)

Γ(Bc → Bsℓ
+νℓ)

|Vcs|2
= 1.738(55)× 10−11 MeV ,

Γ(Bc → B0ℓ+νℓ)

|Vcd|2
= 2.29(12)× 10−11 MeV .

(188)

We note that there is a discrepancy between the NRQCD and HISQ results in the case of
f0(Bc → B0), and the uncertainty quoted for method (iii) does not cover this discrepancy.
However, this form factor does not enter in the decay rate for massless leptons.

7.5 Determinations of |Vcd| and |Vcs| and test of second-row CKM unitarity

We now interpret the lattice-QCD results for the D(s) meson decays as determinations of the
CKM matrix elements |Vcd| and |Vcs| in the Standard Model.

For the leptonic decays, we use the latest experimental averages from the Particle Data
Group [57] (see Sec. 71.3.1)

fD|Vcd| = 46.2(1.2) MeV , fDs |Vcs| = 245.7(4.6) MeV, (189)

where the errors include those from nonlattice theory, e.g., estimates of radiative corrections
to lifetimes [66]. By combining these with the average values of fD and fDs from the individual
Nf = 2, Nf = 2 + 1 and Nf = 2 + 1 + 1 lattice-QCD calculations that satisfy the FLAG
criteria, we obtain the results for the CKM matrix elements |Vcd| and |Vcs| in Tab. 38. For
our preferred values we use the averaged Nf = 2, 2 + 1, and 2 + 1 + 1 results for fD and fDs

in Eqs. (171-179). We obtain

leptonic decays, Nf = 2 + 1 + 1 : |Vcd| = 0.2179(7)(57) , |Vcs| = 0.983(2)(18) , (190)

Refs. [5, 7] ,

leptonic decays, Nf = 2 + 1 : |Vcd| = 0.2211(25)(57) , |Vcs| = 0.991(7)(19) , (191)

Refs. [13–16, 18] ,

leptonic decays, Nf = 2 : |Vcd| = 0.2221(74)(57) , |Vcs| = 0.998(16)(19) , (192)

Refs. [3, 23] ,

15

http://arxiv.org/abs/2111.09849


Y. Aoki et al. FLAG Review 2021 2111.09849

where the errors shown are from the lattice calculation and experiment (plus nonlattice the-
ory), respectively. For the Nf = 2+1 and the Nf = 2+1+1 determinations, the uncertainties
from the lattice-QCD calculations of the decay constants are significantly smaller than the
experimental uncertainties in the branching fractions.

The leptonic determinations of these CKM matrix elements have uncertainties that are
reaching the few-percent level. However, higher-order electroweak and hadronic-structure
dependent corrections to the rate have not been computed for the case ofD(s) mesons, whereas
they have been estimated to be around 1–2% for pion and kaon decays [67]. Therefore, it is
important that such theoretical calculations are tackled soon, perhaps directly on the lattice,
as proposed in Ref. [26].

For D meson semileptonic decays, there are still no Nf = 2 results, and for Nf = 2 + 1
the only works entering the FLAG averages are still HPQCD 10B/11 [47, 48]. For Nf =
2 + 1 + 1, on the other hand, there is a new work that enters FLAG averages, HPQCD 21A
(Ref. [53]). There is also a new experimental result by BESIII [69], in which the muon mode
D0 → K−µ+νµ has been measured for the first time. This has two consequences. First,
HFLAV has updated their averages for the combinations f+(0)|Vcx| [70]. They now find

fDπ
+ (0)|Vcd| = 0.1426(18) , fDK

+ (0)|Vcs| = 0.7180(33) (193)

The previous HFLAV average fDK
+ (0)|Vcs| = 0.7226(34) differed from the new one by 1.4

standard deviations. Second, we now determine |Vcs| using the full q2 dependence of the form
factors provided by both HPQCD 21A and ETM 17D (Ref. [38]). Using both the new lattice
and new experimental input, we perform a joint lattice+experimental fit to determine the
CKM matrix elements. This reduces the error on the CKM matrix elements significantly
compared with just using the form factor at q2 = 0, especially for |Vcd| (cf. Fig. 26). This
was, indeed, the strategy to extract |Vcd| and |Vcs| pursued in a companion paper to ETM
17D, Ref. [68], as as well as in HPQCD 21A (for |Vcs| only).4

The result for |Vcd| in Ref. [68] is still state-of-the-art, and we will quote it as the FLAG
estimate. In the case of |Vcs|, we have performed joint lattice+experiment fits using the
same ansatz as described for the lattice average of form factors in Sec. 7.2, including |Vcs|2
as an additional coefficient that provides the normalization of the experimental data. The
experimental datasets we include are three different measurements of theD0 → K−e+νe mode
by BaBar (BaBar 07, Ref. [71]), CLEO-c (CLEO 09/0, Ref. [29]), and BESIII (BESIII 15,
Ref. [72]); CLEO-c (CLEO 09/+, Ref. [29]) and BESIII measurements of the D+ → K̄0e+νe
mode (BESIII 17, Ref. [73]); and the recent first measurement of the D0 → K−µ+νµ mode
by BESIII, Ref. [69]. There is also a Belle dataset available in Ref. [74], but it provides
results for parameterized form factors rather than partial widths, which implies that reverse
modeling of the q2 dependence of the form factor would be needed to add them to the fit,
which involves an extra source of systematic uncertainty; it is, furthermore, the measurement
with the largest error. Thus, we will drop it. The CLEO collaboration provides correlation
matrices for the systematic uncertainties across the channels in their two measurements; the
latter are, however, not available for BESIII, and, therefore, we will conservatively treat
their systematics with a 100% correlation, following the same prescription as in the HFLAV

4Notice that the estimate for |Vcs| in Ref. [68] does not include the later experimental result in Ref. [69].
The value obtained in Ref. [68] is however completely dominated by the uncertainty of the lattice form factors,
and changes very little once the full experimental information is incorporated into the determination.
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F GLA 2021I I

Figure 25: The D → Kℓν differential decay rates.

review [70]. Since all lattice results have been obtained in the isospin limit, we will average
over the D0 and D+ electronic modes.

We observe that the error of the final result for |Vcs| is independent of the specific ansatz,
while the central values differ by at most one standard deviation. From the lattice point of
view, HPQCD 21A dominates the result completely, because of its much smaller uncertainties
than in ETM 17D. The precision of the data does not allow us to consistently resolve the
higher-order coefficients of the z-expansion beyond N+ = N0 = 3, at which point the result
for |Vcs| becomes insensitive to increasing the order. Thus, we quote the result from the latter
fit, provided in full detail in Table 39 and illustrated in Fig. 25, as the Nf = 2+ 1+ 1 FLAG
average. The χ2/d.o.f. of our preferred fit is 1.46, and we have rescaled the full covariance
matrix with that value to obtain conservative error estimates.

Notice that, notwithstanding the fact that HPQCD 21A dominates the fit, our final value
|Vcs| = 0.9714(69) is slightly higher than their quoted value |Vcs| = 0.9663(66) (where for the
error we have combined in quadrature their lattice and experiment error, in order to allow for
a direct comparison, and dropped the estimated systematic uncertainties due to electroweak
and electromagnetic corrections also provided in HPQCD 21A). This is due to the fact that
HPQCD 21A has applied the structure-independent electroweak correction factor ηEW =
1.009(2) in their analysis, which we are not doing for consistency with other determinations in
this review; if we had applied the same procedure, our final result would be |Vcs| = 0.9628(68).

Meinel 16 has also determined the form factors for Λc → Λℓν decays for Nf = 2 + 1,
which results in a determination of |Vcs| in combination with the experimental measurement
of the branching fractions for the e+ and µ+ channels in Refs. [60, 61]. In Ref. [59] the value
|Vcs| = 0.949(24)(14)(49) is quoted, where the first error comes from the lattice computation,
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the second from the Λc lifetime, and the third from the branching fraction of the decay. While
the lattice uncertainty is competitive with meson channels (for Nf = 2+1), the experimental
uncertainty is far larger.

Our estimates for |Vcd| and |Vcs| from semileptonic decay are

|Vcd| = 0.2141(93)(29) Ref. [47],

SL averages for Nf = 2 + 1 : (194)|Vcs| = 0.967(25)(5) Ref. [48],

|Vcs|(Λc) = 0.949(24)(51) Ref. [59],

|Vcd| = 0.2341(74) Refs. [38, 68],
SL averages for Nf = 2 + 1 + 1 : (195)

|Vcs| = 0.9714(69) Refs. [38, 53],

where the errors for Nf = 2+1 are lattice and experimental (plus nonlattice theory), respec-
tively. It has to be stressed that for meson decay errors are largely theory-dominated, save
for the D → K mode for Nf = 2 + 1 + 1 where the lattice contribution to the error is only
slightly larger than the experimental one; while in the baryon mode for |Vcs| the dominant
error is experimental. The above values are compared with individual leptonic determinations
in Tab. 38.

In Tab. 40, we summarize the results for |Vcd| and |Vcs| from leptonic and semileptonic
decays, and compare them to determinations from neutrino scattering (for |Vcd| only) and
global fits assuming CKM unitarity. These results are also plotted in Fig. 26. For both
|Vcd| and |Vcs|, the errors in the direct determinations from leptonic and semileptonic decays
are approximately one order of magnitude larger than the indirect determination from CKM
unitarity. The direct and indirect determinations are still always compatible within at most
1.2σ, save for the leptonic determinations of |Vcs|—that show a ∼ 2σ deviation for all values
of Nf—and |Vcd| using the Nf = 2 + 1 + 1 lattice result, where the difference is 1.8σ.

In order to provide final estimates, we average all the available results separately for each
value of Nf . Whenever two results share ensembles, we have conservatively fully correlated
their statistical uncertainties. This is a particularly sensitive issue in the average for |Vcs|, that
is dominated by the FNAL/MILC 17 and HPQCD 21A results, and for which precision has
been greatly improved by the latter; however, the uncertainty of the leptonic determination
is completely dominated by the experimental uncertainty, and therefore the impact of the
statistical correlation is all but negligible. We have also 100% correlated the errors from
the heavy-quark discretization and scale setting in HPQCD’s Nf = 2 + 1 results. Finally,
we include a 100% correlation in the fraction of the error of |Vcd(s)| leptonic determinations
that comes from the experimental input, to avoid an artificial reduction of the experimental
uncertainty in the averages. Our results thus are

our average, Nf = 2 + 1 + 1 |Vcd| = 0.2236(37) , |Vcs| = 0.9741(65) , (196)

Refs. [5, 7, 38, 53, 68] ,

our average, Nf = 2 + 1 : |Vcd| = 0.2192(54) , |Vcs| = 0.982(16) , (197)

Refs. [13–16, 18, 47, 48, 59] ,

our average, Nf = 2 : |Vcd| = 0.2221(93) , |Vcs| = 0.998(24) , (198)

Refs. [3, 23] ,
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where the errors include both theoretical and experimental uncertainties. These averages
also appear in Fig. 26. The mutual consistency between the various lattice results is good
except for the case of |Vcd| with Nf = 2 + 1 + 1, where a ∼ 2σ tension between the leptonic
and semileptonic determinations is observed. Currently, the leptonic and semileptonic deter-
minations of Vcd are controlled by experimental and lattice uncertainties, respectively. The
leptonic error will be reduced by Belle II and BES III. It would be valuable to have other
lattice calculations of the semileptonic form factors.

Using the lattice determinations of |Vcd| and |Vcs| in Tab. 40, we can test the unitarity of
the second row of the CKM matrix. We obtain

Nf = 2 + 1 + 1 : |Vcd|2 + |Vcs|2 + |Vcb|2 − 1 = −0.001(8) , (199)

Nf = 2 + 1 : |Vcd|2 + |Vcs|2 + |Vcb|2 − 1 = 0.01(3) , (200)

Nf = 2 : |Vcd|2 + |Vcs|2 + |Vcb|2 − 1 = 0.05(6) . (201)

The much-improved precision in |Vcs| —cf. the value 0.025(22) quoted in the latest PDG
review, Ref. [57]— has thus not resulted in any tension with CKM unitarity. Note that,
given the current level of precision, this result does not depend on |Vcb|, which is of O(10−2).
Notice, on the other hand, that the final quoted precision of 0.7% makes the incorporation of
electromagnetic corrections from first principles a necessary step for the near future, similarly
to the ongoing developments in the light-meson sector.

19

http://arxiv.org/abs/2111.09849


Y. Aoki et al. FLAG Review 2021 2111.09849

0.20 0.22 0.24

=
+

+
=

+
=

CKM unitarity
neutrino scattering

ETM 13B
Balasubramanian 19
our estimate for =

FNAL/MILC 11
HPQCD 12A/10A
HPQCD 11/10B
QCD 14

Meinel 16
RBC/UKQCD 17
our estimate for = +

ETM 14E
ETM 17D ( = )
ETM 17D/Riggio 17
FNAL/MILC 17 
HPQCD 21A ( = )
HPQCD 21A
our estimate for = + +

| |

0.951.001.05

             | |

Figure 26: Comparison of determinations of |Vcd| and |Vcs| obtained from lattice methods
with nonlattice determinations and the Standard Model prediction based on CKM unitarity.
When two references are listed on a single row, the first corresponds to the lattice input
for |Vcd| and the second to that for |Vcs|. The results denoted by squares are from leptonic
decays, while those denoted by triangles are from semileptonic decays. The points indicated
as (q2 = 0) do not contribute to the average, and are shown to stress the decrease in the
final uncertainty obtained by considering the full q2 dependence. Notice that the HPQCD
21A point includes estimates of the electroweak and soft electromagnetic uncertainties that
we have not incorporated into our average.
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Collaboration Ref. Nf from |Vcd| or |Vcs|

FNAL/MILC 17 [5] 2+1+1 fD 0.2179(6)(57)
ETM 17D/Riggio 17 [38, 68] 2+1+1 D → πℓν 0.2341(74)
ETM 14E [7] 2+1+1 fD 0.2228(41)(57)
RBC/UKQCD 17 [13] 2+1 fD 0.2214(36)(57)
HPQCD 12A [15] 2+1 fD 0.2218(36)(57)
HPQCD 11 [47] 2+1 D → πℓν 0.2140(93)(29)
FNAL/MILC 11 [16] 2+1 fD 0.2110(108)(55)
ETM 13B [23] 2 fD 0.2221(74)(57)

HPQCD 21A [53] 2+1+1 D → Kℓν 0.9750(54)(45)†

FNAL/MILC 17 [5] 2+1+1 fDs 0.983(2)(18)
ETM 17D/Riggio 17 [38, 68] 2+1+1 D → Kℓν 0.970(33)
ETM 17D (q2 = 0) [38] 2+1+1 D → Kℓν 0.939(38)
ETM 14E [7] 2+1+1 fDs 0.994(17)(19)
RBC/UKQCD 17 [13] 2+1 fDs 0.997(9)(19)
Meinel 16 [59] 2+1 Λc → Λℓν 0.949(24)(51)
χQCD 14 [14] 2+1 fDs 0.968(17)(19)
FNAL/MILC 11 [16] 2+1 fDs 0.945(40)(19)
HPQCD 10A [18] 2+1 fDs 0.991(10)(19)
HPQCD 10B [48] 2+1 D → Kℓν 0.975(25)(7)
Balasubramanian 19 [3] 2 fDs 1.007(18)(19)
ETM 13B [23] 2 fDs 0.983(28)(19)

† The value quoted in HPQCD 21A is actually |Vcs| = 0.9663(53)latt(39)exp(19)ηEW (40)EM, and takes into

account an electroweak correction ηEW = 1.009(2) that we have eliminated to allow for a straight comparison

with the other results. The three remaining errors have been combined in quadrature. Note also that the other

computations in the table do not incorporate estimates of electroweak and soft electromagnetic corrections.

HPQCD 21A also quotes a value for |Vcs| obtained from the total branching fraction that results in a very

small decrease in the total error due to a reduction in the estimate of electromagnetic corrections.

Table 38: Determinations of |Vcd| (upper panel) and |Vcs| (lower panel) obtained from lattice
calculations of D-meson leptonic decay constants and semileptonic form factors. The errors
shown are from the lattice calculation and experiment (plus nonlattice theory), respectively,
save for ETM 17D/Riggio 17, where the joint fit to lattice and experimental data does not
provide a separation of the two sources of error (although the latter is largely theory domi-
nated, like other results using D → π and D → K decays).
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D → Kℓν (Nf = 2 + 1 + 1)

values correlation matrix

a+0 0.7864(54) 1 −0.282248 −0.052775 0.760032 0.631483 −0.899274

a+1 −0.849(68) −0.282248 1 −0.640953 −0.088377 0.041977 0.128087

a+2 −1.5(1.1) −0.052775 −0.640953 1 0.018139 0.115382 0.020790

a00 0.6958(32) 0.760032 −0.088377 0.018139 1 0.300343 −0.734376

a01 0.781(45) 0.631483 0.041977 0.115382 0.300343 1 −0.664113

|Vcs| 0.9714(69) −0.899274 0.128087 0.020790 −0.734376 −0.664113 1

Table 39: Coefficients for the N+ = N0 = 3 z-expansion of the D → K form factors f+ and
f0, |Vcs|, and their correlation matrix.

from Ref. |Vcd| |Vcs|

Nf = 2 + 1 + 1 fD & fDs [5, 7] 0.2179(57) 0.983(18)
Nf = 2 + 1 fD & fDs [13–16, 18] 0.2211(62) 0.991(20)
Nf = 2 fD & fDs [3, 23] 0.2220(93) 0.999(25)

Nf = 2 + 1 + 1 D → πℓν and D → Kℓν [38, 53, 68] 0.2341(74) 0.9714(69)
Nf = 2 + 1 D → πℓν and D → Kℓν [47, 48] 0.2141(97) 0.967(25)
Nf = 2 + 1 Λc → Λℓν [59] n/a 0.949(56)

PDG neutrino scattering [57] 0.230(11)
PDG CKM unitarity [57] 0.2265(5) 0.9732(1)

Table 40: Comparison of determinations of |Vcd| and |Vcs| obtained from lattice methods with
nonlattice determinations and the Standard Model prediction from global fits assuming CKM
unitarity. Experimental and lattice errors have been combined in quadrature. The PDG
figures quoted are taken from the “CKM Quark-Mixing Matrix” review.
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