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Quark masses are fundamental parameters of the Standard Model. An accurate determina-
tion of these parameters is important for both phenomenological and theoretical applications.
The bottom- and charm-quark masses, for instance, are important sources of parametric un-
certainties in several Higgs decay modes. The up-, down- and strange-quark masses govern
the amount of explicit chiral symmetry breaking in QCD. From a theoretical point of view,
the values of quark masses provide information about the flavour structure of physics beyond
the Standard Model. The Review of Particle Physics of the Particle Data Group contains a
review of quark masses [1], which covers light as well as heavy flavours. Here we also consider
light- and heavy-quark masses, but focus on lattice results and discuss them in more detail.
We do not discuss the top quark, however, because it decays weakly before it can hadronize,
and the nonperturbative QCD dynamics described by present day lattice simulations is not
relevant. The lattice determination of light- (up, down, strange), charm- and bottom-quark
masses is considered below in Secs. 3.1, 3.2, and 3.3, respectively.

Quark masses cannot be measured directly in experiment because quarks cannot be iso-
lated, as they are confined inside hadrons. From a theoretical point of view, in QCD with Nf

flavours, a precise definition of quark masses requires one to choose a particular renormaliza-
tion scheme. This renormalization procedure introduces a renormalization scale µ, and quark
masses depend on this renormalization scale according to the Renormalization Group (RG)
equations. In mass-independent renormalization schemes the RG equations read

µ
dm̄i(µ)

dµ
= m̄i(µ)τ(ḡ) , (20)

where the function τ(ḡ) is the anomalous dimension, which depends only on the value of the
strong coupling αs = ḡ2/(4π). Note that in QCD τ(ḡ) is the same for all quark flavours. The
anomalous dimension is scheme dependent, but its perturbative expansion

τ(ḡ)
ḡ→0∼ − ḡ2

(
d0 + d1ḡ

2 + . . .
)

(21)

has a leading coefficient d0 = 8/(4π)2, which is scheme independent.1 Equation (20), being
a first order differential equation, can be solved exactly by using Eq. (21) as the boundary
condition. The formal solution of the RG equation reads

Mi = m̄i(µ)[2b0ḡ
2(µ)]−d0/(2b0) exp

{
−
∫ ḡ(µ)

0
dx

[
τ(x)

β(x)
− d0

b0x

]}
, (22)

where b0 = (11− 2Nf/3)/(4π)2 is the universal leading perturbative coefficient in the expan-
sion of the β-function

β(ḡ) ≡ µdḡ

dµ

ḡ→0∼ − ḡ3
(
b0 + b1ḡ

2 + . . .
)

(23)

which governs the running of the strong coupling. The renormalization group invariant (RGI)
quark masses Mi are formally integration constants of the RG Eq. (20). They are scale inde-
pendent, and due to the universality of the coefficient d0, they are also scheme independent.

1We follow the conventions of Gasser and Leutwyler [2].
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Moreover, they are nonperturbatively defined by Eq. (22). They only depend on the num-
ber of flavours Nf , making them a natural candidate to quote quark masses and compare
determinations from different lattice collaborations. Nevertheless, it is customary in the phe-
nomenology community to use the MS scheme at a scale µ = 2 GeV to compare different
results for light-quark masses, and use a scale equal to its own mass for the charm and bottom
quarks. In this review, we will quote the final averages of both quantities.

Results for quark masses are always quoted in the four-flavour theory. Nf = 2 + 1
results have to be converted to the four-flavour theory. Fortunately, the charm quark is
heavy (ΛQCD/mc)

2 < 1, and this conversion can be performed in perturbation theory with
negligible (∼ 0.2%) perturbative uncertainties. Nonperturbative corrections in this matching
are more difficult to estimate. Since these effects are suppressed by a factor of 1/Nc, and a
factor of the strong coupling at the scale of the charm mass, naive power counting arguments
would suggest that the effects are ∼ 1%. In practice, numerical nonperturbative studies [3–5]
have found this power counting argument to be an overestimate by one order of magnitude
in the determination of simple hadronic quantities or the Λ-parameter. Moreover, lattice
determinations do not show any significant deviation between theNf = 2+1 andNf = 2+1+1
simulations. For example, the difference in the final averages for the mass of the strange quark
ms between Nf = 2+1 and Nf = 2+1+1 determinations is about 1.3%, or about one standard
deviation.

We quote all final averages at 2 GeV in the MS scheme and also the RGI values (in the
four-flavour theory). We use the exact RG Eq. (22). Note that to use this equation we need
the value of the strong coupling in the MS scheme at a scale µ = 2 GeV. All our results are
obtained from the RG equation in the MS scheme and the 5-loop beta function together with

the value of the Λ-parameter in the four-flavour theory Λ
(4)

MS
= 294(12) MeV obtained in this

review (see Sec. 9). In the uncertainties of the RGI masses we separate the contributions

from the determination of the quark masses and the propagation of the uncertainty of Λ
(4)

MS
.

These are identified with the subscripts m and Λ, respectively.
Conceptually, all lattice determinations of quark masses contain three basic ingredients:

1. Tuning the lattice bare-quark masses to match the experimental values of some quan-
tities. Pseudo-scalar meson masses provide the most common choice, since they have a
strong dependence on the values of quark masses. In pure QCD with Nf quark flavours
these values are not known, since the electromagnetic interactions affect the experi-
mental values of meson masses. Therefore, pure QCD determinations use model/lattice
information to determine the location of the physical point. This is discussed at length
in Sec. 3.1.1.

2. Renormalization of the bare-quark masses. Bare-quark masses determined with the
above-mentioned criteria have to be renormalized. Many of the latest determinations
use some nonperturbatively defined scheme. One can also use perturbation theory to
connect directly the values of the bare-quark masses to the values in the MS scheme at
2 GeV. Experience shows that 1-loop calculations are unreliable for the renormalization
of quark masses: usually at least two loops are required to have trustworthy results.

3. If quark masses have been nonperturbatively renormalized, for example, to some MOM/SF
scheme, the values in this scheme must be converted to the phenomenologically useful
values in the MS scheme (or to the scheme/scale independent RGI masses). Either op-
tion requires the use of perturbation theory. The larger the energy scale of this matching
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with perturbation theory, the better, and many recent computations in MOM schemes
do a nonperturbative running up to 3–4 GeV. Computations in the SF scheme allow
us to perform this running nonperturbatively over large energy scales and match with
perturbation theory directly at the electro-weak scale ∼ 100 GeV.

Note that many lattice determinations of quark masses make use of perturbation theory at a
scale of a few GeV.

We mention that lattice-QCD calculations of the b-quark mass have an additional compli-
cation which is not present in the case of the charm and light quarks. At the lattice spacings
currently used in numerical simulations the direct treatment of the b quark with the fermionic
actions commonly used for light quarks is very challenging. Only two determinations of the
b-quark mass use this approach, reaching the physical b-quark mass region at two lattice
spacings with aM ∼ 1. There are a few widely used approaches to treat the b quark on the
lattice, which have been already discussed in the FLAG 13 review (see Sec. 8 of Ref. [6]).
Those relevant for the determination of the b-quark mass will be briefly described in Sec. 3.3.

3.1 Masses of the light quarks

Light-quark masses are particularly difficult to determine because they are very small (for the
up and down quarks) or small (for the strange quark) compared to typical hadronic scales.
Thus, their impact on typical hadronic observables is minute, and it is difficult to isolate their
contribution accurately.

Fortunately, the spontaneous breaking of SU(3)L × SU(3)R chiral symmetry provides
observables which are particularly sensitive to the light-quark masses: the masses of the
resulting Nambu-Goldstone bosons (NGB), i.e., pions, kaons, and eta. Indeed, the Gell-Mann-
Oakes-Renner relation [7] predicts that the squared mass of a NGB is directly proportional to
the sum of the masses of the quark and antiquark which compose it, up to higher-order mass
corrections. Moreover, because these NGBs are light, and are composed of only two valence
particles, their masses have a particularly clean statistical signal in lattice-QCD calculations.
In addition, the experimental uncertainties on these meson masses are negligible. Thus,
in lattice calculations, light-quark masses are typically obtained by renormalizing the input
quark mass and tuning them to reproduce NGB masses, as described above.

3.1.1 The physical point and isospin symmetry

As mentioned in Sec. 2.1, the present review relies on the hypothesis that, at low energies, the
Lagrangian LQCD +LQED describes nature to a high degree of precision. However, most of the
results presented below are obtained in pure QCD calculations, which do not include QED.
Quite generally, when comparing QCD calculations with experiment, radiative corrections
need to be applied. In pure QCD simulations, where the parameters are fixed in terms of the
masses of some of the hadrons, the electromagnetic contributions to these masses must be
discussed. How the matching is done is generally ambiguous because it relies on the unphysical
separation of QCD and QED contributions. In this section, and in the following, we discuss
this issue in detail. A related discussion, in the context of scale setting, is given in Sec. 11.3.
Of course, once QED is included in lattice calculations, the subtraction of electromagnetic
contributions is no longer necessary.

Let us start from the unambiguous case of QCD+QED. As explained in the introduction
of this section, the physical quark masses are the parameters of the Lagrangian such that a
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given set of experimentally measured, dimensionful hadronic quantities are reproduced by the
theory. Many choices are possible for these quantities, but in practice many lattice groups use
pseudoscalar meson masses, as they are easily and precisely obtained both by experiment, and
through lattice simulations. For example, in the four-flavour case, one can solve the system

Mπ+(mu,md,ms,mc, α) = M exp.
π+ , (24)

MK+(mu,md,ms,mc, α) = M exp.
K+ , (25)

MK0(mu,md,ms,mc, α) = M exp.
K0 , (26)

MD0(mu,md,ms,mc, α) = M exp.
D0 , (27)

where we assumed that

• all the equations are in the continuum and infinite-volume limits;

• the overall scale has been set to its physical value, generally through some lattice-scale
setting procedure involving a fifth dimensionful input (see the discussion in Sec. 11.3);

• the quark masses mq are assumed to be renormalized from the bare, lattice ones in some
given continuum renormalization scheme;

• α = e2

4π is the fine-structure constant expressed as function of the positron charge e,
generally set to the Thomson limit α = 0.007297352 . . . [1];

• the mass Mh(mu,md,ms,mc, α) of the meson h is a function of the quark masses and
α. The functional dependence is generally obtained by choosing an appropriate param-
eterization and performing a global fit to the lattice data;

• the superscript exp. indicates that the mass is an experimental input, lattice groups use
in general the values in the Particle Data Group review [1].

However, ambiguities arise with simulations of QCD only. In that case, there is no exper-
imentally measurable quantity that emerges from the strong interaction only. The missing
QED contribution is tightly related to isospin-symmetry breaking effects. Isospin symmetry
is explicitly broken by the differences between the up- and down-quark masses δm = mu−md,
and electric charges δQ = Qu − Qd. These effects are, respectively, of order O(δm/ΛQCD)
and O(α), and are expected to be O(1%) of a typical isospin-symmetric hadronic quantity.
Strong and electromagnetic isospin-breaking effects are of the same order and therefore can-
not, in principle, be evaluated separately without introducing strong ambiguities. Because
these effects are small, they can be treated as a perturbation,

X(mu,md,ms,mc, α) = X̄(mud,ms,mc) + δmAX(mud,ms,mc) + αBX(mud,ms,mc) , (28)

for a given hadronic quantity X, where mud = 1
2(mu + md) is the average light-quark mass.

There are several things to notice here. Firstly, the neglected higher-order O(δm2, αδm, α2)
corrections are expected to be O(10−4) relatively to X, which at the moment is way beyond
the relative statistical accuracy that can be delivered by a lattice calculation. Secondly, this
is not strictly speaking an expansion around the isospin-symmetric point, the electromagnetic
interaction has also symmetric contributions. From this last expression the previous state-
ments about ambiguities become clearer. Indeed, the only unambiguous prediction one can
perform is to solve Eqs. (24)–(27) and use the resulting parameters to obtain a prediction for
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X, which is represented by the left-hand side of Eq. (28). This prediction will be the sum
of the QCD isospin-symmetric part X̄, the strong isospin-breaking effects XSU(2) = δmAX ,
and the electromagnetic effects Xγ = αBX . Obtaining any of these terms individually re-
quires extra, unphysical conditions to perform the separation. To be consistent with previous
editions of FLAG, we also define X̂ = X̄ +XSU(2) to be the α→ 0 limit of X.

With pure QCD simulations, one typically solves Eqs. (24)–(27) by equating the QCD,
isospin-symmetric part of a hadron mass M̄h, result of the simulations, with its experimental
value M exp.

h . This will result in an O(δm, α) mis-tuning of the theory parameters which will
propagate as an error on predicted quantities. Because of this, in general, one cannot predict
hadronic quantities with a relative accuracy higher than O(1%) from pure QCD simulations,
independently on how the target X is sensitive to isospin-breaking effects. If one performs a
complete lattice prediction of the physical value of X, it can be of phenomenological interest
to define in some way X̄, XSU(2), and Xγ . If we keep mud, ms and mc at their physical values
in physical units, for a given renormalization scheme and scale, then these three quantities
can be extracted by setting successively and simultaneously α and δm to 0. This is where the
ambiguity lies: in general the δm = 0 point will depend on the renormalization scheme used
for the quark masses. In the next section, we give more details on that particular aspect and
discuss the order of scheme ambiguities.

3.1.2 Ambiguities in the separation of isospin-breaking contributions

In this section, we discuss the ambiguities that arise in the individual determination of the
QED contributionXγ and the strong-isospin correctionXSU(2) defined in the previous section.
Throughout this section, we assume that the isospin-symmetric quark masses mud, ms and
mc are always kept fixed in physical units to the values they take at the QCD+QED physical
point in some given renormalization scheme. Let us assume that both up and down masses
have been renormalized in an identical mass-independent scheme which depends on some
energy scale µ. We also assume that the renormalization procedure respects chiral symmetry
so that quark masses renormalize multiplicatively. The renormalization constants of the quark
masses are identical for α = 0 and therefore the renormalized mass of a quark has the general
form

mq(µ) = Zm(µ)[1 + αQ2
tot.δ

(0)
Z (µ) + αQtot.Qqδ

(1)
Z (µ) + αQ2

qδ
(2)
Z (µ)]mq,0 , (29)

up to O(α2) corrections, where mq,0 is the bare-quark mass, Qtot. and Q2
tot. are the sum of all

quark charges and squared charges, respectively, and Qq is the quark charge, all in units of in
units of the positron charge e. Throughout this section, a subscript ud generally denotes the
average between up and down quantities and δ the difference between the up and the down
quantities. The source of the ambiguities described in the previous section is the mixing of the
isospin-symmetric mass mud and the difference δm through renormalization. Using Eq. (29)
one can make this mixing explicit at leading order in α:(

mud(µ)
δm(µ)

)
= Zm(µ)[1 + αQ2

tot.δ
(0)
Z (µ) + αM (1)(µ) + αM (2)(µ)]

(
mud,0

δm0

)
(30)

with the mixing matrices

M (1)(µ) = δ
(1)
Z (µ)Qtot.

(
Qud

1
4δQ

δQ Qud

)
and M (2)(µ) = δ

(2)
Z (µ)

(
Q2
ud

1
4δQ

2

δQ2 Q2
ud

)
, (31)

5 Updated Feb. 2023

http://arxiv.org/abs/2111.09849


Y. Aoki et al. FLAG Review 2021 2111.09849

where Qud = 1
2(Qu + Qd) and δQ = Qu − Qd are the average and difference of the up and

down charges, and similarly Q2
ud = 1

2(Q2
u +Q2

d) and δQ2 = Q2
u −Q2

d for the squared charges.
Now let us assume that for the purpose of determining the different components in Eq. (28),
one starts by tuning the bare masses to obtain equal up and down masses, for some small
coupling α0 at some scale µ0, i.e., δm(µ0) = 0. At this specific point, one can extract the pure
QCD, and the QED corrections to a given quantity X by studying the slope of α in Eq. (28).
From these quantities the strong-isospin contribution can then readily be extracted using a
nonzero value of δm(µ0). However, if now the procedure is repeated at another coupling α
and scale µ with the same bare masses, it appears from Eq. (30) that δm(µ) 6= 0. More
explicitly,

δm(µ) = mud(µ0)
Zm(µ)

Zm(µ0)
[α∆Z(µ)− α0∆Z(µ0)] , (32)

with
∆Z(µ) = Qtot.δQδ

(1)
Z (µ) + δQ2δ

(2)
Z (µ) , (33)

up to higher-order corrections in α and α0. In other words, the definitions of X̄, XSU(2), and
Xγ depend on the renormalization scale at which the separation was made. This dependence,
of course, has to cancel in the physical sum X. One can notice that at no point did we mention
the renormalization of α itself, which, in principle, introduces similar ambiguities. However,
the corrections coming from the running of α are O(α2) relatively to X, which, as justified
above, can be safely neglected. Finally, important information is provided by Eq. (32): the
scale ambiguities are O(αmud). For physical quark masses, one generally has mud ' δm. So
by using this approximation in the first-order expansion Eq. (28), it is actually possible to
define unambiguously the components of X up to second-order isospin-breaking corrections.
Therefore, in the rest of this review, we will not keep track of the ambiguities in determining
pure QCD or QED quantities. However, in the context of lattice simulations, it is crucial to
notice that mud ' δm is only accurate at the physical point. In simulations at larger-than-
physical pion masses, scheme ambiguities in the separation of QCD and QED contributions
are generally large. Once more, the argument made here assumes that the isospin-symmetric
quark masses mud, ms, and mc are kept fixed to their physical value in a given scheme
while varying α. Outside of this assumption there is an additional isospin-symmetric O(αmq)
ambiguity between X̄ and Xγ .

Such separation in lattice QCD+QED simulation results appeared for the first time in
RBC 07 [8] and Blum 10 [9], where the scheme was implicitly defined around the χPT
expansion. In that setup, the δm(µ0) = 0 point is defined in pure QCD, i.e., α0 = 0 in the
previous discussion. The QCD part of the kaon-mass splitting from the first FLAG review [10]
is used as an input in RM123 11 [11], which focuses on QCD isospin corrections only. It
therefore inherits from the convention that was chosen there, which is also to set δm(µ0) = 0
at zero QED coupling. The same convention was used in the follow-up works RM123 13 [12]
and RM123 17 [13]. The BMW collaboration was the first to introduce a purely hadronic
scheme in its electro-quenched study of the baryon octet mass splittings [14]. In this work, the
quark mass difference δm(µ) is swapped with the mass splitting ∆M2 between the connected
ūu and d̄d pseudoscalar masses. Although unphysical, this quantity is proportional [15] to
δm(µ) up to O(αmud) chiral corrections. In this scheme, the quark masses are assumed to be
equal at ∆M2 = 0, and the O(αmud) corrections to this statement are analogous to the scale
ambiguities mentioned previously. The same scheme was used for the determination of light-
quark masses in BMW 16A [16] and in the recent BMW prediction of the leading hadronic
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contribution to the muon magnetic moment [17]. The BMW collaboration used a different
hadronic scheme for its determination of the nucleon-mass splitting in BMW 14 [18] using full
QCD+QED simulations. In this work, the δm = 0 point was fixed by imposing the baryon
splitting MΣ+ −MΣ− to cancel. This scheme is quite different from the other ones presented
here, in the sense that its intrinsic ambiguity is not O(αmud). What motivates this choice here
is that MΣ+ −MΣ− = 0 in the limit where these baryons are point particles, so the scheme
ambiguity is suppressed by the compositeness of the Σ baryons. This may sound like a more
difficult ambiguity to quantify, but this scheme has the advantage of being defined purely
by measurable quantities. Moreover, it has been demonstrated numerically in BMW 14 [18]
that, within the uncertainties of this study, the MΣ+ −MΣ− = 0 scheme is equivalent to the
∆M2 = 0 one, explicitly MΣ+ −MΣ− = −0.18(12)(6) MeV at ∆M2 = 0. The calculation
QCDSF/UKQCD 15 [19] uses a “Dashen scheme,” where quark masses are tuned such that
flavour-diagonal mesons have equal masses in QCD and QCD+QED. Although not explicitly
mentioned by the authors of the paper, this scheme is simply a reformulation of the ∆M2 = 0
scheme mentioned previously. Finally, MILC 18 [20] also used the ∆M2 = 0 scheme and
noticed its connection to the “Dashen scheme” from QCDSF/UKQCD 15.

Before the previous edition of this review, the contributions X̄, XSU(2), and Xγ were given
for pion and kaon masses based on phenomenological information. Considerable progress has
been achieved by the lattice community to include isospin-breaking effects in calculations, and
it is now possible to determine these quantities precisely directly from a lattice calculation.
However, these quantities generally appear as intermediate products of a lattice analysis,
and are rarely directly communicated in publications. These quantities, although unphysical,
have a phenomenological interest, and we encourage the authors of future calculations to
quote them explicitly.

3.1.3 Inclusion of electromagnetic effects in lattice-QCD simulations

Electromagnetism on a lattice can be formulated using a naive discretization of the Maxwell
action S[Aµ] = 1

4

∫
d4x

∑
µ,ν [∂µAν(x)− ∂νAµ(x)]2. Even in its noncompact form, the action

remains gauge invariant. This is not the case for non-Abelian theories for which one uses the
traditional compact Wilson gauge action (or an improved version of it). Compact actions for
QED feature spurious photon-photon interactions which vanish only in the continuum limit.
This is one of the main reason why the noncompact action is the most popular so far. It was
used in all the calculations presented in this review. Gauge-fixing is necessary for noncompact
actions because of the usual infinite measure of equivalent gauge orbits which contribute to
the path integral. It was shown [21, 22] that gauge-fixing is not necessary with compact
actions, including in the construction of interpolating operators for charged states.

Although discretization is straightforward, simulating QED in a finite volume is more
challenging. Indeed, the long range nature of the interaction suggests that important finite-
size effects have to be expected. In the case of periodic boundary conditions, the situation
is even more critical: a naive implementation of the theory features an isolated zero-mode
singularity in the photon propagator. It was first proposed in [23] to fix the global zero-mode
of the photon field Aµ(x) in order to remove it from the dynamics. This modified theory is
generally named QEDTL. Although this procedure regularizes the theory and has the right
classical infinite-volume limit, it is nonlocal because of the zero-mode fixing. As first discussed
in [18], the nonlocality in time of QEDTL prevents the existence of a transfer matrix, and
therefore a quantum-mechanical interpretation of the theory. Another prescription named
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QEDL, proposed in [24], is to remove the zero-mode of Aµ(x) independently for each time slice.
This theory, although still nonlocal in space, is local in time and has a well-defined transfer
matrix. Whether these nonlocalities constitute an issue to extract infinite-volume physics
from lattice-QCD+QEDL simulations is, at the time of this review, still an open question.
However, it is known through analytical calculations of electromagnetic finite-size effects at
O(α) in hadron masses [12, 18, 24–28], meson leptonic decays [27], and the hadronic vacuum
polarization [29] that QEDL does not suffer from a problematic (e.g., UV divergent) coupling
of short- and long-distance physics due to its nonlocality. Another strategy, first proposed
in [30] and used by the QCDSF collaboration, is to bound the zero-mode fluctuations to a
finite range. Although more minimal, it is still a nonlocal modification of the theory and so
far finite-size effects for this scheme have not been investigated. More recently, two proposals
for local formulations of finite-volume QED emerged. The first one described in [31] proposes
to use massive photons to regulate zero-mode singularities, at the price of (softly) breaking
gauge invariance. The second one presented in [22], based on earlier works [32, 33], avoids
the zero-mode issue by using anti-periodic boundary conditions for Aµ(x). In this approach,
gauge invariance requires the fermion field to undergo a charge conjugation transformation
over a period, breaking electric charge conservation. These local approaches have the potential
to constitute cleaner approaches to finite-volume QED. All the calculations presented in this
review used QEDL or QEDTL, with the exception of QCDSF.

Once a finite-volume theory for QED is specified, there are various ways to compute QED
effects themselves on a given hadronic quantity. The most direct approach, first used in [23],
is to include QED directly in the lattice simulations and assemble correlation functions from
charged quark propagators. Another approach proposed in [12], is to exploit the perturbative
nature of QED, and compute the leading-order corrections directly in pure QCD as matrix
elements of the electromagnetic current. Both approaches have their advantages and disad-
vantages and as shown in [13], are not mutually exclusive. A critical comparative study can
be found in [34].

Finally, most of the calculations presented here made the choice of computing electromag-
netic corrections in the electro-quenched approximation. In this limit, one assumes that only
valence quarks are charged, which is equivalent to neglecting QED corrections to the fermionic
determinant. This approximation reduces dramatically the cost of lattice-QCD+QED calcu-
lations since it allows the reuse of previously generated QCD configurations. If QED is intro-
duced pertubatively through current insertions, the electro-quenched approximation avoids
computing disconnected contributions coming from the electromagnetic current in the vac-
uum, which are generally challenging to determine precisely. The electromagnetic contribu-
tions from sea quarks to hadron-mass splittings are known to be flavour-SU(3) and large-Nc

suppressed, thus electro-quenched simulations are expected to have an O(10%) accuracy for
the leading electromagnetic effects. This suppression is in principle rather weak and results
obtained from electro-quenched simulations might feature uncontrolled systematic errors. For
this reason, the use of the electro-quenched approximation constitutes the difference between
F and ◦ in the FLAG criterion for the inclusion of isospin-breaking effects.

3.1.4 Lattice determination of ms and mud

We now turn to a review of the lattice calculations of the light-quark masses and begin with
ms, the isospin-averaged up- and down-quark mass mud, and their ratio. Most groups quote
only mud, not the individual up- and down-quark masses. We then discuss the ratio mu/md
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and the individual determinations of mu and md.
Quark masses have been calculated on the lattice since the mid-nineties. However, early

calculations were performed in the quenched approximation, leading to unquantifiable sys-
tematics. Thus, in the following, we only review modern, unquenched calculations, which
include the effects of light sea quarks.

Tables 6 and 7 list the results of Nf = 2 + 1 and Nf = 2 + 1 + 1 lattice calculations of ms

and mud. These results are given in the MS scheme at 2 GeV, which is standard nowadays,
though some groups are starting to quote results at higher scales (e.g., Ref. [35]). The tables
also show the colour coding of the calculations leading to these results. As indicated earlier in
this review, we treat calculations with different numbers, Nf , of dynamical quarks separately.

Nf = 2 + 1 lattice calculations

We turn now to Nf = 2 + 1 calculations. These and the corresponding results for mud

and ms are summarized in Tab. 6. Given the very high precision of a number of the results,
with total errors on the order of 1%, it is important to consider the effects neglected in
these calculations. Isospin-breaking and electromagnetic effects are small on mud and ms,
and have been approximately accounted for in the calculations that will be retained for our
averages. We have already commented that the effect of the omission of the charm quark in
the sea is expected to be small, below our current precision, and we do not add any additional
uncertainty due to these effects in the final averages.

The only new computation since the previous FLAG edition is the determination of light-
quark masses by the ALPHA collaboration [61]. This work uses nonperturbatively O(a)
improved Wilson fermions (a subset of the CLS ensembles [62]). The renormalization is
performed nonperturbatively in the SF scheme from 200 MeV up to the electroweak scale
∼ 100 GeV [63]. This nonperturbative running over such large energy scales avoids any use
of perturbation theory at low energy scales, but adds a cost in terms of uncertainty: the
running alone propagates to ≈ 1% of the error in quark masses. This turns out to be one
of the dominant pieces of uncertainty for the case of ms. On the other hand, for the case of
mud, the uncertainty is dominated by the chiral extrapolations. The ensembles used include
four values of the lattice spacing below 0.09 fm, which qualifies for a F in the continuum
extrapolation, and pion masses down to 200 MeV. This value lies just at the boundary of the
F rating, but since the chiral extrapolation is a substantial source of systematic uncertainty,
we opted to rate the work with a ◦ . In any case, this work enters in the average and their
results show a reasonable agreement with the FLAG average.

We now comment in some detail on previous works that also contribute to the averages.
RBC/UKQCD 14 [38] significantly improves on their RBC/UKQCD 12B [35] work by

adding three new domain wall fermion simulations to three used previously. Two of the new
simulations are performed at essentially physical pion masses (Mπ ' 139 MeV) on lattices of
about 5.4 fm in size and with lattice spacings of 0.114 fm and 0.084 fm. It is complemented
by a third simulation with Mπ ' 371 MeV, a ' 0.063 fm and a rather small L ' 2.0 fm.
Altogether, this gives them six simulations with six unitary (msea = mval) Mπ’s in the range
of 139 to 371 MeV, and effectively three lattice spacings from 0.063 to 0.114 fm. They perform
a combined global continuum and chiral fit to all of their results for the π and K masses and
decay constants, the Ω baryon mass and two Wilson-flow parameters. Quark masses in these
fits are renormalized and run nonperturbatively in the RI-SMOM scheme. This is done by
computing the relevant renormalization constant for a reference ensemble, and determining
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those for other simulations relative to it by adding appropriate parameters in the global fit.
This calculation passes all of our selection criteria.

Nf = 2 + 1 MILC results for light-quark masses go back to 2004 [55, 56]. They use rooted
staggered fermions. By 2009 their simulations covered an impressive range of parameter space,
with lattice spacings going down to 0.045 fm, and valence-pion masses down to approximately
180 MeV [49]. The most recent MILC Nf = 2 + 1 results, i.e., MILC 10A [44] and MILC
09A [49], feature large statistics and 2-loop renormalization. Since these data sets subsume
those of their previous calculations, these latest results are the only ones that need to be kept
in any world average.

The BMW 10A, 10B [41, 42] calculation still satisfies our stricter selection criteria. They
reach the physical up- and down-quark mass by interpolation instead of by extrapolation.
Moreover, their calculation was performed at five lattice spacings ranging from 0.054 to
0.116 fm, with full nonperturbative renormalization and running and in volumes of up to
(6 fm)3, guaranteeing that the continuum limit, renormalization, and infinite-volume extrap-
olation are controlled. It does neglect, however, isospin-breaking effects, which are small on
the scale of their error bars.

Finally, we come to another calculation which satisfies our selection criteria, HPQCD 10
[45]. It updates the staggered-fermions calculation of HPQCD 09A [48]. In these papers,
the renormalized mass of the strange quark is obtained by combining the result of a precise
calculation of the renormalized charm-quark mass, mc, with the result of a calculation of
the quark-mass ratio, mc/ms. As described in Ref. [60] and in Sec. 3.2, HPQCD determines
mc by fitting Euclidean-time moments of the c̄c pseudoscalar density two-point functions,
obtained numerically in lattice QCD, to fourth-order, continuum perturbative expressions.
These moments are normalized and chosen so as to require no renormalization with staggered
fermions. Since mc/ms requires no renormalization either, HPQCD’s approach displaces the
problem of lattice renormalization in the computation of ms to one of computing continuum
perturbative expressions for the moments. To calculate mud HPQCD 10 [45] use the MILC
09 determination of the quark-mass ratio ms/mud [50].

HPQCD 09A [48] obtains mc/ms = 11.85(16) [48] fully nonperturbatively, with a precision
slightly larger than 1%. HPQCD 10’s determination of the charm-quark mass, mc(mc) =
1.268(6),2 is even more precise, achieving an accuracy better than 0.5%.

This discussion leaves us with five results for our final average for ms: ALPHA 19 [61],
MILC 09A [49], BMW 10A, 10B [41, 42], HPQCD 10 [45] and RBC/UKQCD 14 [38]. As-
suming that the result from HPQCD 10 is 100% correlated with that of MILC 09A, as it is
based on a subset of the MILC 09A configurations, we find ms = 92.2(1.1) MeV with a χ2/dof
= 1.65.

For the light-quark massmud, the results satisfying our criteria are ALPHA 19, RBC/UKQCD
14B, BMW 10A, 10B, HPQCD 10, and MILC 10A. For the error, we include the same 100%
correlation between statistical errors for the latter two as for the strange case, resulting in
the following (at scale 2 GeV in the MS scheme, and χ2/dof=1.4),

mud = 3.381(40) MeV Refs. [36, 38, 41, 42, 44, 45],
Nf = 2 + 1 : (34)

ms = 92.2(1.0) MeV Refs. [36, 38, 41, 42, 45, 49].

2To obtain this number, we have used the conversion from µ = 3 GeV to mc given in Ref. [60].

10 Updated Feb. 2023

http://arxiv.org/abs/2111.09849


Y. Aoki et al. FLAG Review 2021 2111.09849

And the RGI values

MRGI
ud = 4.695(56)m(54)Λ MeV Refs. [36, 38, 41, 42, 44, 45],

Nf = 2 + 1 : (35)
MRGI
s = 128.1(1.4)m(1.5)Λ MeV Refs. [36, 38, 41, 42, 45, 49].

Nf = 2 + 1 + 1 lattice calculations

Since the previous review a new computation of ms,mud has appeared, ETM 21A [64].
Using twisted-mass fermions with an added clover term to suppress O(a2) effects between the
neutral and charged pions, this work represents a significant improvement over ETM 14 [65].
Renormalization is performed nonperturbatively in the RI-MOM scheme. Their ensembles
comprise three lattice spacings (0.095, 0.082, and 0.069 fm), two volumes for the finest lattice
spacings with pion masses reaching down to the physical point in the two finest lattices
allowing a controlled chiral extrapolation. Their volumes are large, with mπL between four
and five. These characteristics of their ensembles pass the most stringent FLAG criteria in
all categories. This work extracts quark masses from two different quantities, one based on
the meson spectrum and the other based on the baryon spectrum. Results obtained with
these two methods agree within errors. The latter agrees well with the FLAG average while
the former is high in comparison (there is good agreement with their previous results, ETM
14 [65]). This work was not published by the FLAG deadline, but in this web update it enters
the averages.

There are three other works that enter in light-quark mass averages: FNAL/MILC/TUMQCD 18 [66]
(which contributes both to the average of mud and ms), and the mud determinations in
HPQCD 18 [67] and HPQCD 14A [68].

While the results of HPQCD 14A and HPQCD 18 agree well (using different methods),
there are several tensions in the determination of ms. The most significant discrepancy is
between the results of the ETMC collaboration and other results. But also two recent and
very precise determinations (HPQCD 18 and FNAL/MILC/TUMQCD 18) show a tension.
Overall there is a rough agreement between the different determinations with χ2/dof = 1.2
(that we use to scale the error according to the standard FLAG averaging procedure). In
the case of mud on the other hand only two works contribute to the average: ETM 14 and
FNAL/MILC/TUMQCD 18. They disagree, with the FNAL/MILC/TUMQCD 18 value
basically matching the Nf = 2 + 1 result. The large χ2/dof ≈ 1.7 increases significantly the
error of the average. These large values of the χ2 are difficult to understand in terms of a
statistical fluctuation. On the other hand the Nf = 2 + 1 and Nf = 2 + 1 + 1 averages show
a good agreement, which increases our confidence in the averages quoted below.

The Nf = 2 + 1 + 1 results are summarized in Tab. 7. Note that the results of Ref. [68]
are reported as ms(2 GeV;Nf = 3) and those of Ref. [65] as mud(s)(2 GeV;Nf = 4). We
convert the former to Nf = 4 and obtain ms(2 GeV;Nf = 4) = 93.7(8)MeV. The av-
erage of ETM 21A, FNAL/MILC/TUMQCD 18, HPQCD 18, ETM 14 and HPQCD 14A
is 93.46(58)MeV with χ2/dof = 1.3. For the light-quark average we use ETM 21A, ETM
14 and FNAL/MILC/TUMQCD 18 with an average 3.427(51) and a χ2/dof = 4.5. We
note these χ2 values are large. For the case of the light-quark masses there is a clear ten-
sion between the ETM results and the FNAL/MILC/TUMQCD results. In the case of ms

there is also some tension between the recent and very precise results of HPQCD 18 and
FNAL/MILC/TUMQCD 18, although the total average does not show a large χ2/dof. We
also note that the 2+1-flavour values are consistent with the four-flavour ones, so in all cases
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we have decided to simply quote averages according to FLAG rules, including stretching
factors for the errors based on χ2 values of our fits.

mud = 3.427(51) MeV Refs. [64–66],
Nf = 2 + 1 + 1 : (36)

ms = 93.46(58) MeV Refs. [64–68],

and the RGI values

MRGI
ud = 4.759(71)m(55)Λ MeV Refs. [64–66],

Nf = 2 + 1 + 1 : (37)
MRGI
s = 129.8(0.8)m(1.5)Λ MeV Refs. [64–68].

In Figs. 1 and 2 the lattice results listed in Tabs. 6 and 7 and the FLAG averages obtained
at each value of Nf are presented and compared with various phenomenological results.

80 90 100

=
+

+
=

+
ph

en
o.

MeV
Vainshtein 78
Narison 06
Jamin 06
Chetyrkin 06
Dominguez 09

MILC 09A
HPQCD 09A
PACS-CS 09
Blum 10
RBC/UKQCD 10A
HPQCD 10
PACS-CS 10
BMW 10A, 10B
PACS-CS 12
RBC/UKQCD 12
RBC/UKQCD 14B
Maezawa 16
ALPHA 19
FLAG average for = +

ETM 14
HPQCD 14A 
FNAL/MILC/TUMQCD 18
HPQCD 18  
ETM 21A
FLAG average for = + +

Figure 1: MS mass of the strange quark (at 2 GeV scale) in MeV. The upper two panels show
the lattice results listed in Tabs. 6 and 7, while the bottom panel collects sum rule results [69–
73]. Diamonds and squares represent results based on perturbative and nonperturbative
renormalization, respectively. The black squares and the grey bands represent our averages
(34) and (36). The significance of the colours is explained in Sec. 2.

3.1.5 Lattice determinations of ms/mud

The lattice results for ms/mud are summarized in Tab. 8. In the ratio ms/mud, one of the
sources of systematic error—the uncertainties in the renormalization factors—drops out. Also
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Figure 2: Mean mass of the two lightest quarks, mud = 1
2(mu + md). The bottom panel

shows results based on sum rules [69, 72, 74] (for more details see Fig. 1).

other systematic effects (like the effect of the scale setting) are reduced in these ratios. This
might explain that despite the discrepancies that are present in the individual quark mass
determinations, the ratios show an overall very good agreement.

Nf = 2 + 1 lattice calculations

ALPHA 19 [61], discussed already, is the only new result for this section. The other works
contributing to this average are RBC/UKQCD 14B, which replaces RBC/UKQCD 12 (see
Sec. 3.1.4), and the results of MILC 09A and BMW 10A, 10B.

The results show very good agreement with a χ2/dof = 0.14. The final uncertainty
(≈ 0.5%) is smaller than the ones of the quark masses themselves. At this level of precision,
the uncertainties in the electromagnetic and strong isospin-breaking corrections might not
be completely negligible. Nevertheless, we decided not to add any uncertainty associated
with this effect. The main reason is that most recent determinations try to estimate this
uncertainty themselves and found an effect smaller than naive power counting estimates (see
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Nf = 2 + 1 + 1 section),

Nf = 2 + 1 : ms/mud = 27.42 (12) Refs. [38, 41, 42, 49, 61] . (38)

Nf = 2 + 1 + 1 lattice calculations

For Nf = 2 + 1 + 1 there are four results, ETM 21 [64], MILC 17 [75], ETM 14 [65] and
FNAL/MILC 14A [76], all of which satisfy our selection criteria.

All these works have been discussed in the previous FLAG edition [77], except the new
result ETM 21A, that we have already examined. The fit has χ2/dof ≈ 1.7, and the result
shows reasonable agreement with the Nf = 2 + 1 result.

Nf = 2 + 1 + 1 : ms/mud = 27.227 (81) Refs. [64, 65, 75, 76], (39)

which corresponds to an overall uncertainty equal to 0.4%. It is worth noting that [75]
estimates the EM effects in this quantity to be ∼ 0.18% (or 0.049 which is less than the
quoted error above).

All the lattice results listed in Tab. 8 as well as the FLAG averages for each value of Nf

are reported in Fig. 3 and compared with χPT and sum rules.

3.1.6 Lattice determination of mu and md

In addition to reviewing computations of individual mu and md quark masses, we will also
determine FLAG averages for the parameter ε related to the violations of Dashen’s theorem

ε =
(∆M2

K −∆M2
π)γ

∆M2
π

, (40)

where ∆M2
π = M2

π+ −M2
π0 and ∆M2

K = M2
K+ −M2

K0 are the pion and kaon squared mass
splittings, respectively. The superscript γ, here and in the following, denotes corrections
that arise from electromagnetic effects only. This parameter is often a crucial intermediate
quantity in the extraction of the individual light-quark masses. Indeed, it can be shown, using
the G-parity symmetry of the pion triplet, that ∆M2

π does not receive O(δm) isospin-breaking
corrections. In other words

∆M2
π = (∆M2

π)γ and ε =
(∆M2

K)γ

∆M2
π

− 1 , (41)

at leading-order in the isospin-breaking expansion. The difference (∆M2
π)SU(2) was esti-

mated in previous editions of FLAG through the εm parameter. However, consistent with our
leading-order truncation of the isospin-breaking expansion, it is simpler to ignore this term.
Once known, ε allows one to consistently subtract the electromagnetic part of the kaon-mass
splitting to obtain the QCD splitting (∆M2

K)SU(2). In contrast with the pion, the kaon QCD
splitting is sensitive to δm, and, in particular, proportional to it at leading order in χPT.
Therefore, the knowledge of ε allows for the determination of δm from a chiral fit to lattice-
QCD data. Originally introduced in another form in [82], ε vanishes in the SU(3) chiral
limit, a result known as Dashen’s theorem. However, in the 1990’s numerous phenomeno-
logical papers pointed out that ε might be an O(1) number, indicating a significant failure
of SU(3) χPT in the description of electromagnetic effects on light-meson masses. However,
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Figure 3: Results for the ratio ms/mud. The upper part indicates the lattice results listed in
Tab. 8 together with the FLAG averages for each value of Nf . The lower part shows results
obtained from χPT and sum rules [72, 78–81].

the phenomenological determinations of ε feature some level of controversy, leading to the
rather imprecise estimate ε = 0.7(5) given in the first edition of FLAG. Starting with the
FLAG 19 edition of the review, we quote more precise averages for ε, directly obtained from
lattice-QCD+QED simulations. We refer the reader to earlier editions of FLAG and to the
review [83] for discusions of the phenomenological determinations of ε.

The quality criteria regarding finite-volume effects for calculations including QED are
presented in Sec. 2.1.1. Due to the long-distance nature of the electromagnetic interaction,
these effects are dominated by a power law in the lattice spatial size. The coefficients of this
expansion depend on the chosen finite-volume formulation of QED. For QEDL, these effects
on the squared mass M2 of a charged meson are given by [18, 25, 28]

∆FVM
2 = αM2

{
c1

ML
+

2c1

(ML)2
+O

[
1

(ML)3

]}
, (42)

with c1 ' −2.83730. It has been shown in [18] that the two first orders in this expansion are
exactly known for hadrons, and are equal to the pointlike case. However, the O[1/(ML)3]
term and higher orders depend on the structure of the hadron. The universal corrections for
QEDTL can also be found in [18]. In all this part, for all computations using such universal
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formulae, the QED finite-volume quality criterion has been applied with nmin = 3, otherwise
nmin = 1 was used.

Since FLAG 19, six new results have been reported for nondegenerate light-quark masses.
In theNf = 2+1+1 sector, MILC 18 [20] computed ε usingNf = 2+1 asqtad electro-quenched
QCD+QEDTL simulations and extracted the ratio mu/md from a new set of Nf = 2 + 1 + 1
HISQ QCD simulations. Although ε comes from Nf = 2 + 1 simulations, (∆M2

K)SU(2),
which is about three times larger than (∆M2

K)γ , has been determined in the Nf = 2 + 1 + 1
theory. We therefore chose to classify this result as a four-flavour one. This result is explicitly
described by the authors as an update of MILC 17 [75]. In MILC 17 [75], mu/md is determined
as a side-product of a global analysis of heavy-meson decay constants, using a preliminary
version of ε from MILC 18 [20]. In FNAL/MILC/TUMQCD 18 [66] the ratio mu/md from
MILC 17 [75] is used to determine the individual masses mu and md from a new calculation of
mud. The work RM123 17 [13] is the continuation of the Nf = 2 work named RM123 13 [12]
in the previous edition of FLAG. This group now uses Nf = 2 + 1 + 1 ensembles from
ETM 10 [84], however, still with a rather large minimum pion mass of 270 MeV, leading to
the ◦ rating for chiral extrapolations. In the Nf = 2 + 1 sector, BMW 16A [16] reuses the
data set produced from their determination of the light-baryon octet-mass splittings [14] using
electro-quenched QCD+QEDTL smeared clover fermion simulations. Finally, MILC 16 [85],
which is a preliminary result for the value of ε published in MILC 18 [20], also provides a
Nf = 2 + 1 computation of the ratio mu/md.

MILC 09A [49] uses the mass difference between K0 and K+, from which they subtract
electromagnetic effects using Dashen’s theorem with corrections, as discussed in the introduc-
tion of this section. The up and down sea quarks remain degenerate in their calculation, fixed
to the value of mud obtained from Mπ0 . To determine mu/md, BMW 10A, 10B [41, 42] follow
a slightly different strategy. They obtain this ratio from their result for ms/mud combined
with a phenomenological determination of the isospin-breaking quark-mass ratio Q = 22.3(8),
from η → 3π decays [86] (the decay η → 3π is very sensitive to QCD isospin breaking, but
fairly insensitive to QED isospin breaking). Instead of subtracting electromagnetic effects
using phenomenology, RBC 07 [8] and Blum 10 [9] actually include a quenched electromag-
netic field in their calculation. This means that their results include corrections to Dashen’s
theorem, albeit only in the presence of quenched electromagnetism. Since the up and down
quarks in the sea are treated as degenerate, very small isospin corrections are neglected, as in
MILC’s calculation. PACS-CS 12 [39] takes the inclusion of isospin-breaking effects one step
further. Using reweighting techniques, it also includes electromagnetic and mu −md effects
in the sea. However, they do not correct for the large finite-volume effects coming from elec-
tromagnetism in their MπL ∼ 2 simulations, but provide rough estimates for their size, based
on Ref. [24]. QCDSF/UKQCD 15 [87] uses QCD+QED dynamical simulations performed at
the SU(3)-flavour-symmetric point, but at a single lattice spacing, so they do not enter our
average. The smallest partially quenched (msea 6= mval) pion mass is greater than 200 MeV,
so our chiral-extrapolation criteria require a ◦ rating. Concerning finite-volume effects, this
work uses three spatial extents L of 1.6 fm, 2.2 fm, and 3.3 fm. QCDSF/UKQCD 15 claims
that the volume dependence is not visible on the two largest volumes, leading them to assume
that finite-size effects are under control. As a consequence of that, the final result for quark
masses does not feature a finite-volume extrapolation or an estimation of the finite-volume
uncertainty. However, in their work on the QED corrections to the hadron spectrum [87]
based on the same ensembles, a volume study shows some level of compatibility with the
QEDL finite-volume effects derived in [25]. We see two issues here. Firstly, the analytical
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Figure 4: Lattice results and FLAG averages at Nf = 2+1 and 2+1+1 for the up-down-quark
masses ratio mu/md, together with the current PDG estimate.

result quoted from [25] predicts large, O(10%) finite-size effects from QED on the meson
masses at the values of MπL considered in QCDSF/UKQCD 15, which is inconsistent with
the statement made in the paper. Secondly, it is not known that the zero-mode regularization
scheme used here has the same volume scaling as QEDL. We therefore chose to assign the
� rating for finite volume to QCDSF/UKQCD 15. Finally, for Nf = 2 + 1 + 1, ETM 14 [65]
uses simulations in pure QCD, but determines mu −md from the slope ∂M2

K/∂mud and the
physical value for the QCD kaon-mass splitting taken from the phenomenological estimate in
FLAG 13.

Lattice results for mu, md and mu/md are summarized in Tab. 9. The colour coding is
specified in detail in Sec. 2.1. Considering the important progress in the last years on including
isospin-breaking effects in lattice simulations, we are now in a position where averages for
mu and md can be made without the need of phenomenological inputs. Therefore, lattice
calculations of the individual quark masses using phenomenological inputs for isospin-breaking
effects will be coded � .

We start by recalling the Nf = 2 FLAG average for the light-quark masses, entirely
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coming from RM123 13 [12],

mu = 2.40(23) MeV Ref. [12] ,

Nf = 2 : md = 4.80(23) MeV Ref. [12] , (43)

mu/md = 0.50(4) Ref. [12] ,

with errors of roughly 10%, 5% and 8%, respectively. In these results, the errors are obtained
by combining the lattice statistical and systematic errors in quadrature. For Nf = 2 + 1, the
only result, which qualifies for entering the FLAG average for quark masses, is BMW 16A [16],

mu = 2.27(9) MeV Ref. [16] ,

Nf = 2 + 1 : md = 4.67(9) MeV Ref. [16] , (44)

mu/md = 0.485(19) Ref. [16] ,

with errors of roughly 4%, 2% and 4%, respectively. This estimate is slightly more pre-
cise than in the previous edition of FLAG. More importantly, it now comes entirely from
a lattice-QCD+QED calculation, whereas phenomenological input was used in previous edi-
tions. These numbers result in the following RGI averages

MRGI
u = 3.15(12)m(4)Λ MeV Ref. [16] ,

Nf = 2 + 1 : (45)MRGI
d = 6.49(12)m(7)Λ MeV Ref. [16] .

Finally, for Nf = 2 + 1 + 1, RM123 17 [13] and FNAL/MILC/TUMQCD 18 [66] enter the
average for the individual mu and md masses, and RM123 17 [13] and MILC 18 [20] enter the
average for the ratio mu/md, giving

mu = 2.14(8) MeV Ref. [13, 66] ,

Nf = 2 + 1 + 1 : md = 4.70(5) MeV Ref. [13, 66] , (46)

mu/md = 0.465(24) Ref. [13, 20] .

with errors of roughly 4%, 1% and 5%, respectively. One can observe some marginal dis-
crepancies between results coming from the MILC collaboration and RM123 17 [13]. More
specifically, adding all sources of uncertainties in quadrature, one obtains a 1.7σ discrep-
ancy between RM123 17 [13] and MILC 18 [20] for mu/md, and a 2.2σ discrepancy between
RM123 17 [13] and FNAL/MILC/TUMQCD 18 [66] for mu. However, the values of md and
ε are in very good agreement between the two groups. These discrepancies are presently too
weak to constitute evidence for concern, and will be monitored as more lattice groups provide
results for these quantities. The RGI averages for mu and md are

MRGI
u = 2.97(11)m(3)Λ MeV Ref. [13, 66] ,

Nf = 2 + 1 + 1 : (47)MRGI
d = 6.53(7)m(8)Λ MeV Ref. [13, 66] .

Every result for mu and md used here to produce the FLAG averages relies on electro-
quenched calculations, so there is some interest to comment on the size of quenching effects.
Considering phenomenology and the lattice results presented here, it is reasonable for a rough
estimate to use the value (∆M2

K)γ ∼ 2000 MeV2 for the QED part of the kaon-mass splitting.
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Using the arguments presented in Sec. 3.1.3, one can assume that the QED sea contribution
represents O(10%) of (∆M2

K)γ . Using SU(3) PQχPT+QED [15, 89] gives a ∼ 5% effect.
Keeping the more conservative 10% estimate and using the experimental value of the kaon-
mass splitting, one finds that the QCD kaon-mass splitting (∆M2

K)SU(2) suffers from a reduced
3% quenching uncertainty. Considering that this splitting is proportional to mu − md at
leading order in SU(3) χPT, we can estimate that a similar error will propagate to the quark
masses. So the individual up and down masses look mildly affected by QED quenching.
However, one notices that ∼ 3% is the level of error in the new FLAG averages, and increasing
significantly this accuracy will require using fully unquenched calculations.

In view of the fact that a massless up quark would solve the strong CP problem, many
authors have considered this an attractive possibility, but the results presented above exclude
this possibility: the value of mu in Eq. (44) differs from zero by 26 standard deviations. We
conclude that nature solves the strong CP problem differently.

Finally, we conclude this section by giving the FLAG averages for ε defined in Eq. (40).
For Nf = 2 + 1 + 1, we average the results of RM123 17 [13] and MILC 18 [20] with the value
of (∆M2

K)γ from BMW 14 [18] combined with Eq. (41), giving

Nf = 2 + 1 + 1 : (48)ε = 0.79(6) Ref. [13, 18, 20] .

Although BMW 14 [18] focuses on hadron masses and did not extract the light-quark
masses, they are the only fully unquenched QCD+QED calculation to date that qualifies to
enter a FLAG average. With the exception of renormalization, which is not discussed in the
paper, this work has a F rating for every FLAG criterion considered for the mu and md

quark masses. For Nf = 2 + 1 we use the results from BMW 16A [16],

Nf = 2 + 1 : (49)ε = 0.73(17) Ref. [16] .

It is important to notice that the ε uncertainties from BMW 16A and RM123 17 are
dominated by estimates of the QED quenching effects. Indeed, in contrast with the quark
masses, ε is expected to be rather sensitive to the sea-quark QED contributions. Using the
arguments presented in Sec. 3.1.3, if one conservatively assumes that the QED sea contribu-
tions represent O(10%) of (∆M2

K)γ , then Eq. (41) implies that ε will have a quenching error
of ∼ 0.15 for (∆M2

K)γ ∼ 2000 MeV2, representing a large ∼ 20% relative error. It is inter-
esting to observe that such a discrepancy does not appear between BMW 15 and RM123 17,
although the ∼ 10% accuracy of both results might not be sufficient to resolve these effects.
On the other hand, in the context of SU(3) chiral perturbation theory, Bijnens and Daniels-
son [15] show that the QED quenching effects on ε do not depend on unknown LECs at NLO
and are therefore computable at that order. In that approach, MILC 18 finds the effect at
NLO to be only 5%. To conclude, although the controversy around the value of ε has been
significantly reduced by lattice-QCD+QED determinations, computing this at few-percent
accuracy requires simulations with charged sea quarks.

3.1.7 Estimates for R and Q

The quark-mass ratios

R ≡ ms −mud

md −mu
and Q2 ≡

m2
s −m2

ud

m2
d −m2

u

(50)
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compare SU(3) breaking with isospin breaking. Both numbers only depend on the ratios
ms/mud and mu/md,

R =
1

2

(
ms

mud
− 1

)
1 + mu

md

1− mu
md

and Q2 =
1

2

(
ms

mud
+ 1

)
R . (51)

The quantity Q is of particular interest because of a low-energy theorem [90], which relates
it to a ratio of meson masses,

Q2
M ≡

M̂2
K

M̂2
π

M̂2
K − M̂2

π

M̂2
K0 − M̂2

K+

, M̂2
π ≡ 1

2(M̂2
π+ + M̂2

π0) , M̂2
K ≡ 1

2(M̂2
K+ + M̂2

K0) . (52)

(We remind the reader that the ˆ denotes a quantity evaluated in the α → 0 limit.) Chiral
symmetry implies that the expansion of Q2

M in powers of the quark masses (i) starts with Q2

and (ii) does not receive any contributions at NLO:

QM
NLO

= Q . (53)

We recall here the Nf = 2 estimates for Q and R from FLAG 16,

R = 40.7(3.7)(2.2) , Q = 24.3(1.4)(0.6) , (54)

where the second error comes from the phenomenological inputs that were used. For Nf =
2 + 1, we use Eqs. (38) and (44) and obtain

R = 38.1(1.5) , Q = 23.3(0.5) , (55)

where now only lattice results have been used. For Nf = 2 + 1 + 1 we obtain

R = 35.9(1.7) , Q = 22.5(0.5) , (56)

which are quite compatible with two- and three-flavour results. It is interesting to notice that
the most recent phenomenological determination of R and Q from η → 3π decay [91] gives
the values R = 34.4(2.1) and Q = 22.1(7), which are marginally discrepant with some of the
averages presented here. The authors of [91, 92] point out that this discrepancy is likely due to
surprisingly large corrections to the approximation in Eq. (53) used in the phenomenological
analysis.

Our final results for the masses mu, md, mud, ms and the mass ratios mu/md, ms/mud,
R, Q are collected in Tabs. 10 and 11.
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mud ms

ALPHA 19 [36] A ◦ F F F e 3.54(12)(9) 95.7(2.5)(2.4)
Maezawa 16 [37] A � F F F d – 92.0(1.7)
RBC/UKQCD 14B	 [38] A F F F F d 3.31(4)(4) 90.3(0.9)(1.0)
RBC/UKQCD 12	 [35] A F ◦ F F d 3.37(9)(7)(1)(2) 92.3(1.9)(0.9)(0.4)(0.8)
PACS-CS 12? [39] A F � � F b 3.12(24)(8) 83.60(0.58)(2.23)
Laiho 11 [40] C ◦ F F ◦ − 3.31(7)(20)(17) 94.2(1.4)(3.2)(4.7)
BMW 10A, 10B+ [41, 42] A F F F F c 3.469(47)(48) 95.5(1.1)(1.5)
PACS-CS 10 [43] A F � � F b 2.78(27) 86.7(2.3)
MILC 10A [44] C ◦ F F ◦ − 3.19(4)(5)(16) –
HPQCD 10∗∗ [45] A ◦ F F − − 3.39(6) 92.2(1.3)
RBC/UKQCD 10A [46] A ◦ ◦ F F a 3.59(13)(14)(8) 96.2(1.6)(0.2)(2.1)

Blum 10† [9] A ◦ � ◦ F − 3.44(12)(22) 97.6(2.9)(5.5)
PACS-CS 09 [47] A F � � F b 2.97(28)(3) 92.75(58)(95)
HPQCD 09A⊕ [48] A ◦ F F − − 3.40(7) 92.4(1.5)
MILC 09A [49] C ◦ F F ◦ − 3.25 (1)(7)(16)(0) 89.0(0.2)(1.6)(4.5)(0.1)
MILC 09 [50] A ◦ F F ◦ − 3.2(0)(1)(2)(0) 88(0)(3)(4)(0)
PACS-CS 08 [51] A F � � � − 2.527(47) 72.72(78)
RBC/UKQCD 08 [52] A ◦ � F F − 3.72(16)(33)(18) 107.3(4.4)(9.7)(4.9)
CP-PACS/
JLQCD 07

[53] A � F F � − 3.55(19)(+56
−20) 90.1(4.3)(+16.7

−4.3 )

HPQCD 05 [54] A ◦ ◦ ◦ ◦ − 3.2(0)(2)(2)(0)‡ 87(0)(4)(4)(0)‡

MILC 04, HPQCD/
MILC/UKQCD 04

[55, 56] A ◦ ◦ ◦ � − 2.8(0)(1)(3)(0) 76(0)(3)(7)(0)

	 The results are given in the MS scheme at 3 instead of 2 GeV. We run them down to 2 GeV using
numerically integrated 4-loop running [57, 58] with Nf = 3 and with the values of αs(MZ), mb, and
mc taken from Ref. [59]. The running factor is 1.106. At three loops it is only 0.2% smaller, indicating
that perturbative running uncertainties are small. We neglect them here.

? The calculation includes electromagnetic and mu 6= md effects through reweighting.
+ The fermion action used is tree-level improved.
∗∗ ms is obtained by combining mc and HPQCD 09A’s mc/ms = 11.85(16) [48]. Finally, mud is

determined from ms with the MILC 09 result for ms/mud. Since mc/ms is renormalization group
invariant in QCD, the renormalization and running of the quark masses enter indirectly through that
of mc (see below).

† The calculation includes quenched electromagnetic effects.
⊕ What is calculated is mc/ms = 11.85(16). ms is then obtained by combining this result with the

determination mc(mc) = 1.268(9) GeV from Ref. [60]. Finally, mud is determined from ms with the
MILC 09 result for ms/mud.

‡ The bare numbers are those of MILC 04. The masses are simply rescaled, using the ratio of the 2-loop
to 1-loop renormalization factors.

a The masses are renormalized nonperturbatively at a scale of 2 GeV in a couple of Nf = 3 RI-SMOM
schemes. A careful study of perturbative matching uncertainties has been performed by comparing
results in the two schemes in the region of 2 GeV to 3 GeV [46].

b The masses are renormalized and run nonperturbatively up to a scale of 40 GeV in the Nf = 3 SF
scheme. In this scheme, nonperturbative and NLO running for the quark masses are shown to agree
well from 40 GeV all the way down to 3 GeV [43].

c The masses are renormalized and run nonperturbatively up to a scale of 4 GeV in the Nf = 3 RI-MOM
scheme. In this scheme, nonperturbative and N3LO running for the quark masses are shown to agree
from 6 GeV down to 3 GeV to better than 1% [42].

d All required running is performed nonperturbatively.

e Running is performed nonperturbatively from 200 MeV to the electroweak scale ∼ 100 GeV.

Table 6: Nf = 2 + 1 lattice results for the masses mud and ms (MeV).
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mud ms

ETM 21A [64] A F F F F − 3.636(66)(+60
−57) 98.7(2.4)(+4.0

−3.2)

HPQCD 18† [67] A F F F F − 94.49(96)
FNAL/MILC/TUMQCD 18 [66] A F F F F − 3.404(14)(21) 92.52(40)(56)
HPQCD 14A ⊕ [68] A F F F − − 93.7(8)
ETM 14⊕ [65] A ◦ F F F − 3.70(13)(11) 99.6(3.6)(2.3)

† Bare-quark masses are renormalized nonperturbatively in the RI-SMOM scheme at scales µ ∼ 2 − 5
GeV for different lattice spacings and translated to the MS scheme. Perturbative running is then used
to run all results to a reference scale µ = 3 GeV.

⊕ As explained in the text, ms is obtained by combining the results mc(5 GeV;Nf = 4) = 0.8905(56) GeV
and (mc/ms)(Nf = 4) = 11.652(65), determined on the same data set. A subsequent scale and scheme
conversion, performed by the authors, leads to the value 93.6(8). In the table, we have converted this
to ms(2 GeV;Nf = 4), which makes a very small change.

Table 7: Nf = 2 + 1 + 1 lattice results for the masses mud and ms (MeV).
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ms/mud

ETM 21A [64] 2+1+1 A F F F 27.17(32)+56
−38

MILC 17 ‡ [75] 2+1+1 A F F F 27.178(47)+86
−57

FNAL/MILC 14A [76] 2+1+1 A F F F 27.35(5)+10
−7

ETM 14 [65] 2+1+1 A ◦ F ◦ 26.66(32)(2)

ALPHA 19 [61] 2+1 A ◦ F F 27.0(1.0)(0.4)
RBC/UKQCD 14B [38] 2+1 A F F F 27.34(21)
RBC/UKQCD 12	 [35] 2+1 A F ◦ F 27.36(39)(31)(22)
PACS-CS 12? [39] 2+1 A F � � 26.8(2.0)
Laiho 11 [40] 2+1 C ◦ F F 28.4(0.5)(1.3)
BMW 10A, 10B+ [41, 42] 2+1 A F F F 27.53(20)(8)
RBC/UKQCD 10A [46] 2+1 A ◦ ◦ F 26.8(0.8)(1.1)

Blum 10† [9] 2+1 A ◦ � ◦ 28.31(0.29)(1.77)
PACS-CS 09 [47] 2+1 A F � � 31.2(2.7)
MILC 09A [49] 2+1 C ◦ F F 27.41(5)(22)(0)(4)
MILC 09 [50] 2+1 A ◦ F F 27.2(1)(3)(0)(0)
PACS-CS 08 [51] 2+1 A F � � 28.8(4)
RBC/UKQCD 08 [52] 2+1 A ◦ � F 28.8(0.4)(1.6)
MILC 04, HPQCD/
MILC/UKQCD 04

[55, 56] 2+1 A ◦ ◦ ◦ 27.4(1)(4)(0)(1)

‡ The calculation includes electromagnetic effects.
	 The errors are statistical, chiral and finite volume.
? The calculation includes electromagnetic and mu 6= md effects through reweighting.
+ The fermion action used is tree-level improved.
† The calculation includes quenched electromagnetic effects.

Table 8: Lattice results for the ratio ms/mud.
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Nf mud ms ms/mud

2+1+1 3.410(43) 93.44(68) 27.23(10)

2+1 3.364(41) 92.03(88) 27.42(12)

Table 10: Our estimates for the strange-quark and the average up-down-quark masses in
the MS scheme at running scale µ = 2 GeV. Mass values are given in MeV. In the results
presented here, the error is the one which we obtain by applying the averaging procedure of
Sec. 2.3 to the relevant lattice results.

Nf mu md mu/md R Q

2+1+1 2.14(8) 4.70(5) 0.465(24) 35.9(1.7) 22.5(0.5)

2+1 2.27(9) 4.67(9) 0.485(19) 38.1(1.5) 23.3(0.5)

Table 11: Our estimates for the masses of the two lightest quarks and related, strong isospin-
breaking ratios. Again, the masses refer to the MS scheme at running scale µ = 2 GeV. Mass
values are given in MeV.
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3.2 Charm-quark mass

In the following, we collect and discuss the lattice determinations of the MS charm-quark
mass mc. Most of the results have been obtained by analyzing the lattice-QCD simulations of
two-point heavy-light- or heavy-heavy-meson correlation functions, using as input the experi-
mental values of the D, Ds, and charmonium mesons. Some groups use the moments method.
The latter is based on the lattice calculation of the Euclidean time moments of pseudoscalar-
pseudoscalar correlators for heavy-quark currents followed by an OPE expansion dominated
by perturbative QCD effects, which provides the determination of both the heavy-quark mass
and the strong-coupling constant αs.

The heavy-quark actions adopted by various lattice collaborations have been discussed
in previous FLAG reviews [6, 77, 93], and their descriptions can be found in Sec. A.1.3 of
FLAG 19 [77]. While the charm mass determined with the moments method does not need
any lattice evaluation of the mass-renormalization constant Zm, the extraction of mc from
two-point heavy-meson correlators does require the nonperturbative calculation of Zm. The
lattice scale at which Zm is obtained is usually at least of the order 2–3 GeV, and therefore it
is natural in this review to provide the values of mc(µ) at the renormalization scale µ = 3 GeV.
Since the choice of a renormalization scale equal to mc is still commonly adopted (as by the
PDG [1]), we have collected in Tab. 12 the lattice results for both mc(mc) and mc(3 GeV),
obtained for Nf = 2 + 1 and 2 + 1 + 1. For Nf = 2, interested readers are referred to previous
reviews [6, 93].

When not directly available in the published work, we apply a conversion factor using
perturbative QCD evolution at five loops to run down from µ = 3 GeV to the scales µ = mc

and 2 GeV of 0.7739(60) and 0.9026(23), respectively, where the error comes from the uncer-
tainty in ΛQCD. We use ΛQCD = 297(12) MeV for Nf = 4 (see Sec. 9). Perturbation theory
uncertainties, estimated as the difference between results that use 4- and 5-loop running, are
significantly smaller than the parametric uncertainty coming from ΛQCD. For µ = mc, the
former is about about 2.5 times smaller. Given the high precision of many of these results,
future works should take the uncertainties in ΛQCD and perturbation theory seriously.

In the next subsections we review separately the results for mc with three or four flavours
of quarks in the sea.

3.2.1 Nf = 2 + 1 results

Since the last review [77], there are two new results, Petreczky 19 [97] and ALPHA 21 [96].
Petreczky 19 employs the HISQ action on ten ensembles with ten lattice spacings down to
0.025 fm, physical strange-quark mass, and two light-quark masses, the lightest correspond-
ing to 161 MeV pions. Their study incorporates lattices with 11 different sizes, ranging from
1.6 to 5.4 fm. The masses are computed from moments of pseudoscalar quarkonium corre-
lation functions, and MS masses are extracted with 4-loop continuum perturbation theory.
Thus this work easily rates green stars in all categories. ALPHA 21 uses the O(a)-improved
Wilson-clover action with five lattice spacings from 0.087 to 0.039 fm, produced by the CLS
collaboration. For each lattice spacing, several light sea-quark masses are used in a global
chiral-continuum extrapolation (the lightest pion mass for one ensemble is 198 MeV). The
authors also use nonperturbative renormalization and running through application of step-
scaling and the Schrödinger functional scheme. Finite-volume effects are investigated at one
lattice spacing and only for ∼ 400 MeV pions on the smallest two volumes where results
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mc(mc) mc(3 GeV)

ETM 21A [64] 2+1+1 P F F F F 1.339(22)(+19
−10)(10)† 1.036(17)(+15

−8 )
HPQCD 20A [94] 2+1+1 A F F F F 1.2719(78) 0.9841(51)
HPQCD 18 [67] 2+1+1 A F F F F 1.2757(84) 0.9896(61)
FNAL/MILC/
TUMQCD 18

[66] 2+1+1 A F F F − 1.273(4)(1)(10) 0.9837(43)(14)(33)(5)

HPQCD 14A [68] 2+1+1 A F F F − 1.2715(95) 0.9851(63)
ETM 14A [95] 2+1+1 A ◦ F ◦ F 1.3478(27)(195) 1.0557(22)(153)∗

ETM 14 [65] 2+1+1 A ◦ F ◦ F 1.348(46) 1.058(35)∗

ALPHA 21 [96] 2+1 A+ F F F F 1.296(19) 1.007(16)
Petreczky 19 [97] 2+1 A F F F F 1.265(10) 1.001(16)
Maezawa 16 [37] 2+1 A � F F F 1.267(12)
JLQCD 16 [98] 2+1 A ◦ F F − 1.2871(123) 1.0033(96)
χQCD 14 [99] 2+1 A ◦ ◦ ◦ F 1.304(5)(20) 1.006(5)(22)
HPQCD 10 [45] 2+1 A ◦ F ◦ − 1.273(6) 0.986(6)
HPQCD 08B [60] 2+1 A ◦ F ◦ − 1.268(9) 0.986(10)

PDG [1] 1.27(2)

† We applied the running factor 0.7739(60) for µ = 3 GeV to mc. The errors are statistical, systematic,
and the uncertainty in the running factor.

∗ A running factor equal to 0.900 between the scales µ = 2 GeV and µ = 3 GeV was applied by us.
+ Published after the FLAG deadline.

Table 12: Lattice results for the MS charm-quark mass mc(mc) and mc(3 GeV) in GeV,
together with the colour coding of the calculations used to obtain them.

are compatible within statistical errors. ALPHA 21 satisfies the FLAG criteria for green-star
ratings in all of the categories listed in Tab. 12. Descriptions of the other works in this section
can be found in the last review [77].

According to our rules on the publication status, the FLAG average for the charm-quark
mass at Nf = 2 + 1 is obtained by combining the results HPQCD 10, χQCD 14, JLQCD 16,
Petreczky 19, and ALPHA 21,

mc(mc) = 1.276(5) GeV Refs. [45, 96–99] , (57)
Nf = 2 + 1:

mc(3 GeV) = 0.994(4) GeV Refs. [45, 96–99] , (58)

where the error on mc(mc) includes a stretching factor
√
χ2/dof ' 1.1 as discussed in Sec. 2.2.

This result corresponds to the following RGI average

MRGI
c = 1.527(6)m(14)Λ GeV Refs. [45, 96–99] . (59)
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3.2.2 Nf = 2 + 1 + 1 results

For a discussion of older results, see the previous FLAG reviews. Since FLAG 19 two groups
have produced updated values with charm quarks in the sea.

HPQCD 20A [94] is an update of HPQCD 18, including a new finer ensemble (a ≈ 0.045
fm) and EM corrections computed in the quenched approximation of QED for the first time.
Besides these new items, the analysis is largely unchanged from HPQCD 18 except for an
added α3

s correction to the SMOM-to-MS conversion factor and tuning the bare charm mass
via the J/ψ mass rather than the ηc. Their new value in pure QCD is mc(3 GeV) = 0.9858(51)
GeV which is quite consistent with HPQCD 18 and the FLAG 19 average. The effects of
quenched QED in both the bare charm-quark mass and the renormalization constant are
small. Both effects are precisely determined, and the overall effect shifts the mass down
slightly to mc(3 GeV) = 0.9841(51) where the uncertainty due to QED is invisible in the final
error. The shift from their pure QCD value due to quenched QED is about −0.2%.

ETM 21A [64] is a new work that follows a similar methodology as ETM 14, but with
significant improvements. Notably, a clover-term is added to the twisted mass fermion action
which suppresses O(a2) effects between the neutral and charged pions. Additional improve-
ments include new ensembles lying very close to the physical mass point, better control of
nonperturbative renormalization systematics, and use of both meson and baryon correlation
functions to determine the quark mass. They use the RI-MOM scheme for nonperturbative
renormalization. The analysis comprises ten ensembles in total with three lattice spacings
(0.095, 0.082, and 0.069 fm), two volumes for the finest lattice spacings and four for the other
two, and pion masses down to 134 MeV for the finest ensemble. The values of mπL range
mostly from almost four to greater than five. According to the FLAG criteria, green stars are
earned in all categories. The authors find mc(3 GeV) = 1.036(17)(+15

−8 ) GeV. In Tab. 12 we
have applied a factor of 0.7739(60) to run from 3 GeV to mc. As in FLAG 19, the new value
is consistent with ETM 14 and ETM 14A, but is still high compared to the FLAG average.
The authors plan future improvements, including a finer lattice spacing for better control of
the continuum limit and a new renormalization scheme, like RI-SMOM.

Six results enter the FLAG average for Nf = 2 + 1 + 1 quark flavours: ETM 14, ETM
14A, HPQCD 14A, FNAL/MILC/TUMQCD 18, HPQCD 20A, and ETM 21A. We note that
while the ETM determinations of mc agree well with each other, they are incompatible with
HPQCD 14A, FNAL/MILC/TUMQCD 18, and HPQCD 20A by several standard deviations.
While the ETM 14 and ETM 14A use the same configurations, the analyses are quite different
and independent, and ETM 21A is a new result on new lattices with improved methodology.
As mentioned earlier, mud and ms values by ETM are also systematically high compared to
their respective averages. Combining all six results yields yields

mc(mc) = 1.280(13) GeV Refs. [64–66, 68, 94, 95] , (60)
Nf = 2 + 1 + 1:

mc(3 GeV) = 0.989(10) GeV Refs. [64–66, 68, 94, 95] , (61)

where the errors include large stretching factors
√
χ2/dof ≈ 2.0 and 2.4, respectively. We

have assumed 100% correlation for statistical errors between ETM 14 and ETM 14A results
and the same for HPQCD 14A, HPQCD 20A, and FNAL/MILC/TUMQCD 18.

These are obviously poor χ2 values, and the stretching factors are quite large. While
it may be prudent in such a case to quote a range of values covering the central values of
all results that pass the quality criteria, we believe in this case that would obscure rather
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than clarify the situation. From Fig. 5 we note that not only do ETM 21A, ETM 14A,
and ETM 14 lie well above the other 2+1+1 results, but also above all of the 2+1 flavour
results. A similar trend is apparent for the light-quark masses (see Figs. 1 and 2) while for
mass ratios there is better agreement (Figs. 3, 4 and 6). The latter suggests there may be
underestimated systematic uncertainties associated with scale setting and/or renormalization
which have not been detected. Finally we note the ETM results are significantly higher
than the PDG average. For these reasons, which admittedly are not entirely satisfactory, we
continue to quote an average with a stretching factor as in previous reviews.

The RGI average reads as follows,

MRGI
c = 1.519(15)m(14)Λ GeV Refs. [64–66, 68, 94, 95] . (62)

Figure 5 presents the values of mc(mc) given in Tab. 12 along with the FLAG averages
obtained for 2 + 1 and 2 + 1 + 1 flavours.
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HPQCD 08B
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QCD 14
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ETM 14A
HPQCD 14A 
FNAL/MILC/TUMQCD 18
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ETM 21A

FLAG average for = + +

( )

Figure 5: The charm-quark mass for 2 + 1 and 2 + 1 + 1 flavours. For the latter a large
stretching factor is used for the FLAG average due to poor χ2 from our fit.

3.2.3 Lattice determinations of the ratio mc/ms

Because some of the results for quark masses given in this review are obtained via the quark-
mass ratio mc/ms, we review these lattice calculations, which are listed in Tab. 13, as well.

The Nf = 2+1 results from χQCD 14 and HPQCD 09A [48] are from the same calculations
that were described for the charm-quark mass in the previous review. Maezawa 16 does not
pass our chiral-limit test (see the previous review), though we note that it is quite consistent
with the other values. Combining χQCD 14 and HPQCD 09A, we obtain the same result
reported in FLAG 19,

Nf = 2 + 1: mc/ms = 11.82(16) Refs. [48, 99], (63)
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mc/ms

ETM 21A [64] 2+1+1 P F F F 11.48(12)(+25
−19)

FNAL/MILC/TUMQCD 18 [66] 2+1+1 A F F F 11.784(11)(17)(00)(08)
HPQCD 14A [68] 2+1+1 A F F F 11.652(35)(55)
FNAL/MILC 14A [76] 2+1+1 A F F F 11.747(19)(+59

−43)
ETM 14 [65] 2+1+1 A ◦ F ◦ 11.62(16)

Maezawa 16 [37] 2+1 A � F F 11.877(91)
χQCD 14 [99] 2+1 A ◦ ◦ ◦ 11.1(8)
HPQCD 09A [48] 2+1 A ◦ F F 11.85(16)

Table 13: Lattice results for the quark-mass ratio mc/ms, together with the colour coding of
the calculations used to obtain them.

with a χ2/dof ' 0.85.
Turning to Nf = 2+1+1, there is a new result from ETM 21A (see the previous section for

details). The errors have actually increased compared to ETM 14, due to larger uncertainties
in the baryon sector which enter their average with the meson sector. See the earlier reviews
for a discussion of previous results.

We note that some tension exists between the HPQCD 14A and FNAL/MILC/TUMQCD
results. Combining these with ETM 14 and ETM 21A yields

Nf = 2 + 1 + 1: mc/ms = 11.766(30) Refs. [64–66, 68], (64)

where the error includes the stretching factor
√
χ2/dof ' 1.4. We have assumed a 100%

correlation of statistical errors for FNAL/MILC/TUMQCD 18 and HPQCD 14A.
Results for mc/ms are shown in Fig. 6 together with the FLAG averages for Nf = 2 + 1

and 2 + 1 + 1 flavours.
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Figure 6: Lattice results for the ratio mc/ms listed in Tab. 13 and the FLAG averages
corresponding to 2 + 1 and 2 + 1 + 1 quark flavours. The latter average includes a large
stretching factor on the error due a poor χ2 from our fit.

3.3 Bottom-quark mass

Now we review the lattice results for the MS bottom-quark mass mb. Related heavy-quark
actions and observables have been discussed in previous FLAG reviews [6, 77, 93], and de-
scriptions can be found in Sec. A.1.3 of FLAG 19 [77]. In Tab. 14 we collect results for
mb(mb) obtained with Nf = 2 + 1 and 2 + 1 + 1 sea-quark flavours. Available results for the
quark-mass ratio mb/mc are also reported. After discussing the new results we evaluate the
corresponding FLAG averages.

3.3.1 Nf = 2 + 1

There is one new three-flavour result since the last review, Petreczky 19, which was described
already in the charm-quark section. The new result rates green stars, so our new average
with HPQCD 10 is (both works quote values in the Nf = 5 theory, so we simply use those
values),

Nf = 2 + 1 : mb(mb) = 4.171(20) GeV Ref. [45, 97] . (65)

The corresponding four-flavour RGI average is

Nf = 2 + 1 : MRGI
b = 6.881(33)m(54)Λ GeV Ref. [45, 97] . (66)
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mb(mb) mb/mc

HPQCD 21 [100] 2+1+1 A F F F − X 4.209(21)++ 4.586(12)∗∗

FNAL/MILC/TUM 18 [66] 2+1+1 A F ◦ F − X 4.201(12)(1)(8)(1) 4.578(5)(6)(0)(1)
Gambino 17 [101] 2+1+1 A ◦ F ◦ F X 4.26(18)
ETM 16B [102] 2+1+1 A ◦ F ◦ F X 4.26(3)(10)+ 4.42(3)(8)

HPQCD 14B [103] 2+1+1 A F F F F X 4.196(0)(23)†

ETM 14B [104] 2+1+1 C ◦ F ◦ F X 4.26(7)(14) 4.40(6)(5)
HPQCD 14A [68] 2+1+1 A F F F − X 4.162(48) 4.528(14)(52)

Petreczky19 [97] 2+1 A F F F F X 4.188(37) 4.586(43)
Maezawa 16 [37] 2+1 A � F F F X 4.184(89) 4.528(57)
HPQCD 13B [105] 2+1 A � ◦ − − X 4.166(43)
HPQCD 10 [45] 2+1 A F F F − X 4.164(23)? 4.51(4)

ETM 13B [106] 2 A ◦ F ◦ F X 4.31(9)(8)
ALPHA 13C [107] 2 A F F F F X 4.21(11)
ETM 11A [108] 2 A ◦ F ◦ F X 4.29(14)

PDG [1] 4.18+0.02
−0.03

++ We quote the four-flavour result. For Nf = 5, value is 4.202(21).
∗∗ The ratio is quoted in the MS scheme for µ = 3 GeV because of the different charges of the bottom

and charm quarks.
+ The lattice spacing used in ETM 14B has been updated here.
† Only two pion points are used for chiral extrapolation.
? The number that is given is mb(10 GeV, Nf = 5) = 3.617(25) GeV.

Table 14: Lattice results for the MS bottom-quark mass mb(mb) in GeV, together with the
systematic error ratings for each. Available results for the quark-mass ratio mb/mc are also
reported.

3.3.2 Nf = 2 + 1 + 1

HPQCD 21 [100] is an update of HPQCD 14A (and replaces it in our average), including EM
corrections for the first time for the b-quark mass. Four flavours of HISQ quarks are used on
MILC ensembles with lattice spacings from about 0.09 to 0.03 fm. Ensembles with physical
and unphysical mass sea-quarks are used. Quenched QED is used to obtain the dominant
O(α) effect. The ratio of bottom- to charm-quark masses is computed in a completely non-
perturbative formulation, and the b-quark mass is extracted using the value of mc(3 GeV)
from HPQCD 20A. Since EM effects are included, the QED renormalization scale enters the
ratio which is quoted for 3 GeV and Nf = 4. The total error on the new result is more
than two times smaller than for HPQCD 14A, but is only slightly smaller compared to the
NRQCD result reported in HPQCD 14B. The inclusion of QED shifts the ratio mb/mc up
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slightly from the pure QCD value by about one standard deviation, and the value of mb(mb)
is consistent, within errors, to the other pure QCD results entering our average. Therefore
we quote a single average.

HPQCD 14B employs the NRQCD action [103] to treat the b quark. The b-quark mass
is computed with the moments method, that is, from Euclidean-time moments of two-point,
heavy-heavy-meson correlation functions (see also Sec. 9.8 for a description of the method).

In HPQCD 14B the b-quark mass is computed from ratios of the moments Rn of heavy
current-current correlation functions, namely,[

Rnrn−2

Rn−2rn

]1/2 M̄kin

2mb
=

M̄Υ,ηb

2m̄b(µ)
, (67)

where rn are the perturbative moments calculated at N3LO, M̄kin is the spin-averaged kinetic
mass of the heavy-heavy vector and pseudoscalar mesons and M̄Υ,ηb is the experimental
spin average of the Υ and ηb masses. The average kinetic mass M̄kin is chosen since in the
lattice calculation the splitting of the Υ and ηb states is inverted. In Eq. (67), the bare
mass mb appearing on the left-hand side is tuned so that the spin-averaged mass agrees
with experiment, while the mass mb at the fixed scale µ = 4.18 GeV is extrapolated to the
continuum limit using three HISQ (MILC) ensembles with a ≈ 0.15, 0.12 and 0.09 fm and
two pion masses, one of which is the physical one. Their final result is mb(µ = 4.18 GeV) =
4.207(26) GeV, where the error is from adding systematic uncertainties in quadrature only
(statistical errors are smaller than 0.1% and ignored). The errors arise from renormalization,
perturbation theory, lattice spacing, and NRQCD systematics. The finite-volume uncertainty
is not estimated, but at the lowest pion mass they have mπL ' 4, which leads to the tag F .

The next four-flavour result [102] is from the ETM collaboration and updates their pre-
liminary result appearing in a conference proceedings [104]. The calculation is performed on
a set of configurations generated with twisted-Wilson fermions with three lattice spacings in
the range 0.06 to 0.09 fm and with pion masses in the range 210 to 440 MeV. The b-quark
mass is determined from a ratio of heavy-light pseudoscalar meson masses designed to yield
the quark pole mass in the static limit. The pole mass is related to the MS mass through
perturbation theory at N3LO. The key idea is that by taking ratios of ratios, the b-quark
mass is accessible through fits to heavy-light(strange)-meson correlation functions computed
on the lattice in the range ∼ 1–2 ×mc and the static limit, the latter being exactly 1. By
simulating below mb, taking the continuum limit is easier. They find mb(mb) = 4.26(3)(10)
GeV, where the first error is statistical and the second systematic. The dominant errors come
from setting the lattice scale and fit systematics.

Gambino et al. [101] use twisted-mass-fermion ensembles from the ETM collaboration and
the ETM ratio method as in ETM 16. Three values of the lattice spacing are used, ranging
from 0.062 to 0.089 fm. Several volumes are also used. The light-quark masses produce pions
with masses from 210 to 450 MeV. The main difference with ETM 16 is that the authors use
the kinetic mass defined in the heavy-quark expansion (HQE) to extract the b-quark mass
instead of the pole mass.

The final b-quark mass result is FNAL/MILC/TUM 18 [66]. The mass is extracted from
the same fit and analysis done for the charm quark mass. Note that relativistic HISQ valence
masses reach the physical b mass on the two finest lattice spacings (a = 0.042 fm, 0.03 fm)
at physical and 0.2 ms light-quark mass, respectively. In lattice units the heavy valence
masses correspond to aMRGI > 0.90, making the continuum extrapolation challenging, but
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the authors investigated the effect of leaving out the heaviest points from the fit, and the
result did not noticeably change. Their results are also consistent with an analysis dropping
the finest lattice from the fit. Since the b-quark mass region is only reached with two lattice
spacings, we rate this work with a green circle for the continuum extrapolation. Note however
that for other values of the quark masses they use up to five values of the lattice spacing
(cf. their charm-quark mass determination).

All of the above results enter our average. We note that here the ETM 16 result is
consistent with the average and a stretching factor on the error is not used. The average and
error is dominated by the very precise FNAL/MILC/TUM 18 value,

Nf = 2 + 1 + 1 : mb(mb) = 4.203(11) GeV Refs. [66, 68, 100–103] . (68)

We have included a 100% correlation on the statistical errors of ETM 16 and Gambino 17,
since the same ensembles are used in both. While FNAL/MILC/TUM 18 and HPQCD 21
also use the same MILC HISQ ensembles, the statistical error in the HPQCD 21 analysis is
negligible, so we do not include a correlation between them. The average has χ2/dof = 0.02.

The above translates to the RGI average

Nf = 2 + 1 + 1 : MRGI
b = 6.934(18)m(55)Λ GeV Refs. [66, 68, 100–103] . (69)

All the results for mb(mb) discussed above are shown in Fig. 7 together with the FLAG
averages corresponding to Nf = 2 + 1 and 2 + 1 + 1 quark flavours.

4.1 4.3 4.5 4.7

=
+

+
=

+

GeV
PDG
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HPQCD 13B 
Maezawa 16 
Petreczky 19 

FLAG average for = +

HPQCD 14A 
ETM 16
HPQCD 14B 
Gambino 17
FNAL/MILC/TUMQCD 18
HPQCD 21

FLAG average for = + +

( )

Figure 7: The b-quark mass for Nf = 2 + 1 and 2 + 1 + 1 flavours. The updated PDG value
from Ref. [1] is reported for comparison.
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