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Abstract

We review lattice results related to pion, kaon, D-meson, B-meson, and nucleon physics
with the aim of making them easily accessible to the nuclear and particle physics com-
munities. More specifically, we report on the determination of the light-quark masses,
the form factor f;(0) arising in the semileptonic K — 7 transition at zero momentum
transfer, as well as the decay constant ratio fx/f, and its consequences for the CKM ma-
trix elements Vs and V4. Furthermore, we describe the results obtained on the lattice
for some of the low-energy constants of SU(2)r, x SU(2)g and SU(3)r, x SU(3)r Chiral
Perturbation Theory. We review the determination of the By parameter of neutral kaon
mixing as well as the additional four B parameters that arise in theories of physics beyond
the Standard Model. For the heavy-quark sector, we provide results for m, and my as
well as those for the decay constants, form factors, and mixing parameters of charmed
and bottom mesons and baryons. These are the heavy-quark quantities most relevant for
the determination of CKM matrix elements and the global CKM unitarity-triangle fit.
We review the status of lattice determinations of the strong coupling constant a;. We
consider nucleon matrix elements, and review the determinations of the axial, scalar and
tensor bilinears, both isovector and flavor diagonal. Finally, in this review we have added
a new section reviewing determinations of scale-setting quantities.
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1 Introduction

Flavour physics provides an important opportunity for exploring the limits of the Standard
Model of particle physics and for constraining possible extensions that go beyond it.
As the LHC explores a new energy frontier and as experiments continue to extend the
precision frontier, the importance of flavour physics will grow, both in terms of searches
for signatures of new physics through precision measurements and in terms of attempts to
construct the theoretical framework behind direct discoveries of new particles. Crucial to
such searches for new physics is the ability to quantify strong-interaction effects. Large-
scale numerical simulations of lattice QCD allow for the computation of these effects from
first principles. The scope of the Flavour Lattice Averaging Group (FLAG) is to review
the current status of lattice results for a variety of physical quantities that are important
for flavour physics. Set up in November 2007, it comprises experts in Lattice Field Theory,
Chiral Perturbation Theory and Standard Model phenomenology. Our aim is to provide
an answer to the frequently posed question “What is currently the best lattice value for
a particular quantity?” in a way that is readily accessible to those who are not expert in
lattice methods. This is generally not an easy question to answer; different collaborations
use different lattice actions (discretizations of QCD) with a variety of lattice spacings
and volumes, and with a range of masses for the u- and d-quarks. Not only are the
systematic errors different, but also the methodology used to estimate these uncertainties
varies between collaborations. In the present work, we summarize the main features of
each of the calculations and provide a framework for judging and combining the different
results. Sometimes it is a single result that provides the “best” value; more often it is
a combination of results from different collaborations. Indeed, the consistency of values
obtained using different formulations adds significantly to our confidence in the results.

The first four editions of the FLAG review were made public in 2010 [1], 2013 [2],
2016 [3], and 2019 [4] (and will be referred to as FLAG 10, FLAG 13, FLAG 16, and
FLAG 19, respectively). The fourth edition reviewed results related to both light (u-
, d- and s-), and heavy (c- and b-) flavours. The quantities related to pion and kaon
physics were light-quark masses, the form factor f,(0) arising in semileptonic K —
transitions (evaluated at zero momentum transfer), the decay constants fx and f,, the
By parameter from neutral kaon mixing, and the kaon mixing matrix elements of new
operators that arise in theories of physics beyond the Standard Model. Their implications
for the CKM matrix elements V,,; and V,,4 were also discussed. Furthermore, results were
reported for some of the low-energy constants of SU(2), x SU(2)g and SU(3), x SU(3)r
Chiral Perturbation Theory. The quantities related to D- and B-meson physics that
were reviewed were the masses of the charm and bottom quarks together with the decay
constants, form factors, and mixing parameters of B- and D-mesons. These are the
heavy-light quantities most relevant to the determination of CKM matrix elements and
the global CKM unitarity-triangle fit. The current status of lattice results on the QCD
coupling s was reviewed. Last but not least, we reviewed calculations of nucleon matrix
elements of flavor nonsinglet and singlet bilinear operators, including the nucleon axial
charge g4 and the nucleon sigma term. These results are relevant for constraining Vg4,
for searches for new physics in neutron decays and other processes, and for dark matter
searches.

In the present paper we provide updated results for all the above-mentioned quantities,
but also extend the scope of the review by adding a section on scale setting, Sec. 11. The
motivation for adding this section is that uncertainties in the value of the lattice spacing
a are a major source of error for the calculation of a wide range of quantities. Thus we felt
that a systematic compilation of results, comparing the different approaches to setting
the scale, and summarizing the present status, would be a useful resource for the lattice
community. An additional update is the inclusion, in Sec. 6.2, of a brief description of
the status of lattice calculations of K — 7w decay amplitudes. Although some aspects



of these calculations are not yet at the stage to be included in our averages, they are
approaching this stage, and we felt that, given their phenomenological relevance, a brief
review was appropriate.

For the most precisely determined quantities, isospin breaking—both from the up-
down quark mass difference and from QED—must be included. A short review of methods
used to include QED in lattice-QCD simulations is given in Sec. 3.1.3. An important issue
here is that, in the context of a QED+QCD theory, the separation into QED and QCD
contributions to a given physical quantity is ambiguous—there are several ways of defining
such a separation. This issue is discussed from different viewpoints in the section on
quark masses—see Sec. 3.1.1—and that on scale setting—see Sec. 11. We stress, however,
that the physical observable in QCD-+QED is defined unambiguously. Any ambiguity
only arises because we are trying to separate a well-defined, physical quantity into two
unphysical parts that provide useful information for phenomenology.

Our main results are collected in Tabs. 1, 2, 3, 4 and 5. As is clear from the tables,
for most quantities there are results from ensembles with different values for Ny. In most
cases, there is reasonable agreement among results with Ny =2, 241, and 2+ 1+ 1. As
precision increases, we may some day be able to distinguish among the different values of
Ny, in which case, presumably 2+ 1+ 1 would be the most realistic. (If isospin violation
is critical, then 1+1+1 or 14+ 1+ 141 might be desired.) At present, for some quantities
the errors in the Ny = 2 + 1 results are smaller than those with Ny =2+ 1+1 (e.g., for
m.), while for others the relative size of the errors is reversed. Our suggestion to those
using the averages is to take whichever of the Ny =241 or Ny = 2 + 1 4 1 results has
the smaller error. We do not recommend using the Ny = 2 results, except for studies of
the Ny-dependence of condensates and o, as these have an uncontrolled systematic error
coming from quenching the strange quark.

Our plan is to continue providing FLAG updates, in the form of a peer reviewed paper,
roughly on a triennial basis. This effort is supplemented by our more frequently updated
website http://flag.unibe.ch [5], where figures as well as pdf-files for the individual
sections can be downloaded. The papers reviewed in the present edition have appeared
before the closing date 30 April 2021.!

"Working groups were given the option of including papers submitted to arxiv.org before the closing date
but published after this date. This flexibility allows this review to be up-to-date at the time of submission. A
single paper of this type was included.
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This review is organized as follows. In the remainder of Sec. 1 we summarize the
composition and rules of FLAG and discuss general issues that arise in modern lattice
calculations. In Sec. 2, we explain our general methodology for evaluating the robustness
of lattice results. We also describe the procedures followed for combining results from
different collaborations in a single average or estimate (see Sec. 2.2 for our definition of
these terms). The rest of the paper consists of sections, each dedicated to a set of closely
connected physical quantities, or, for the final section, to the determination of the lattice
scale. Each of these sections is accompanied by an Appendix with explicatory notes.?

In previous editions, we have provided, in an appendix, a glossary summarizing some
standard lattice terminology and describing the most commonly used lattice techniques
and methodologies. Since no significant updates in this information have occurred since
our previous edition, we have decided, in the interests of reducing the length of this
review, to omit this glossary, and refer the reader to FLAG 19 for this information [4].
This appendix also contained, in previous versions, a tabulation of the actions used in the
papers that were reviewed. Since this information is available in the discussions in the
separate sections, and is time-consuming to collect from the sections, we have dropped
these tables. We have, however, kept a short appendix, Appendix B.1, describing the
parameterizations of semileptonic form factors that are used in Sec. 8. Moreover, in
Appendix A, we have added a summary and explanations of acronyms introduced in
the manuscript. Collaborations referred to by an acronym can be identified through the
corresponding bibliographic reference.

1.1 FLAG composition, guidelines and rules

FLAG strives to be representative of the lattice community, both in terms of the geo-
graphical location of its members and the lattice collaborations to which they belong. We
aspire to provide the nuclear- and particle-physics communities with a single source of
reliable information on lattice results.

In order to work reliably and efficiently, we have adopted a formal structure and a set
of rules by which all FLAG members abide. The collaboration presently consists of an
Advisory Board (AB), an Editorial Board (EB), and nine Working Groups (WG). The
role of the Advisory Board is to provide oversight of the content, procedures, schedule and
membership of FLAG, to help resolve disputes, to serve as a source of advice to the EB
and to FLAG as a whole, and to provide a critical assessment of drafts. They also give
their approval of the final version of the preprint before it is rendered public. The Edito-
rial Board coordinates the activities of FLAG, sets priorities and intermediate deadlines,
organizes votes on FLAG procedures, writes the introductory sections, and takes care of
the editorial work needed to amalgamate the sections written by the individual working
groups into a uniform and coherent review. The working groups concentrate on writing
the review of the physical quantities for which they are responsible, which is subsequently
circulated to the whole collaboration for critical evaluation.

The current list of FLAG members and their Working Group assignments is:

e Advisory Board (AB): G. Colangelo, M. Golterman, P. Hernandez, T. Onogi,
and R. Van de Water
e Editorial Board (EB): S. Gottlieb, A. Jiittner, S. Hashimoto, S.R. Sharpe,

and U. Wenger
e Working Groups (coordinator listed first):

— Quark masses T. Blum, A. Portelli, and A. Ramos
— Vs, Vaud T. Kaneko, J. N. Simone, S. Simula, and N. Tantalo

2TIn some cases, in order to keep the length of this review within reasonable bounds, we have dropped these
notes for older data, since they can be found in previous FLAG reviews [1-4] .
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— LEC S. Diirr, H. Fukaya, and U.M. Heller

— Bg P. Dimopoulos, X. Feng, and G. Herdoiza
— fB.y: ID(ys BB Y. Aoki, M. Della Morte, and C. Monahan
— b and c semileptonic and radiative decays E. Lunghi, S. Meinel,

S. Simula and A. Vaquero
— Qg S. Sint, R. Horsley, and P. Petreczky
— NME R. Gupta, S. Collins, A. Nicholson, and H. Wittig
— Scale setting R. Sommer, N. Tantalo, and U. Wenger

The most important FLAG guidelines and rules are the following:

e the composition of the AB reflects the main geographical areas in which lattice
collaborations are active, with members from America, Asia/Oceania, and Europe;

e the mandate of regular members is not limited in time, but we expect that a certain
turnover will occur naturally;

e whenever a replacement becomes necessary this has to keep, and possibly improve,
the balance in FLAG, so that different collaborations, from different geographical
areas are represented;

e in all working groups the members must belong to different lattice collaborations;

e a paper is in general not reviewed (nor colour-coded, as described in the next section)
by any of its authors;

e lattice collaborations will be consulted on the colour coding of their calculation;
e there are also internal rules regulating our work, such as voting procedures.

As for FLAG 19, for this review we sought the advice of external reviewers once a
complete draft of the review was available. For each review section, we have asked one
lattice expert (who could be a FLAG alumnus/alumna) and one nonlattice phenomenolo-
gist for a critical assessment. The one exception is the scale-setting section, where only a
lattice expert has been asked to provide input. This is similar to the procedure followed
by the Particle Data Group in the creation of the Review of Particle Physics. The re-
viewers provide comments and feedback on scientific and stylistic matters. They are not
anonymous, and enter into a discussion with the authors of the WG. Our aim with this
additional step is to make sure that a wider array of viewpoints enter into the discussions,
so as to make this review more useful for its intended audience.

1.2 Citation policy

We draw attention to this particularly important point. As stated above, our aim is to
make lattice-QCD results easily accessible to those without lattice expertise, and we are
well aware that it is likely that some readers will only consult the present paper and not
the original lattice literature. It is very important that this paper not be the only one
cited when our results are quoted. We strongly suggest that readers also cite the original
sources. In order to facilitate this, in Tabs. 1, 2, 3, 4, and 5, besides summarizing the
main results of the present review, we also cite the original references from which they
have been obtained. In addition, for each figure we make a bibtex file available on our
webpage [5] which contains the bibtex entries of all the calculations contributing to the
FLAG average or estimate. The bibliography at the end of this paper should also make
it easy to cite additional papers. Indeed, we hope that the bibliography will be one of the
most widely used elements of the whole paper.

16



1.3 General issues

Several general issues concerning the present review are thoroughly discussed in Sec. 1.1
of our initial 2010 paper [1], and we encourage the reader to consult the relevant pages.
In the remainder of the present subsection, we focus on a few important points. Though
the discussion has been duly updated, it is similar to that of Sec. 1.2 in the previous three
reviews [2-4].

The present review aims to achieve two distinct goals: first, to provide a description
of the relevant work done on the lattice; and, second, to draw conclusions on the basis of
that work, summarizing the results obtained for the various quantities of physical interest.

The core of the information about the work done on the lattice is presented in the form
of tables, which not only list the various results, but also describe the quality of the data
that underlie them. We consider it important that this part of the review represents a
generally accepted description of the work done. For this reason, we explicitly specify the
quality requirements used and provide sufficient details in appendices so that the reader
can verify the information given in the tables.?

On the other hand, the conclusions drawn on the basis of the available lattice results are
the responsibility of FLAG alone. Preferring to err on the side of caution, in several cases
we draw conclusions that are more conservative than those resulting from a plain weighted
average of the available lattice results. This cautious approach is usually adopted when the
average is dominated by a single lattice result, or when only one lattice result is available
for a given quantity. In such cases, one does not have the same degree of confidence in
results and errors as when there is agreement among several different calculations using
different approaches. The reader should keep in mind that the degree of confidence cannot
be quantified, and it is not reflected in the quoted errors.

Each discretization has its merits, but also its shortcomings. For most topics covered
in this review we have an increasingly broad database, and for most quantities lattice
calculations based on totally different discretizations are now available. This is illustrated
by the dense population of the tables and figures in most parts of this review. Those cal-
culations that do satisfy our quality criteria indeed lead, in almost all cases, to consistent
results, confirming universality within the accuracy reached. The consistency between
independent lattice results, obtained with different discretizations, methods, and simula-
tion parameters, is an important test of lattice QCD, and observing such consistency also
provides further evidence that systematic errors are fully under control.

In the sections dealing with heavy quarks and with ag, the situation is not the same.
Since the b-quark mass can barely be resolved with current lattice spacings, most lattice
methods for treating b quarks use effective field theory at some level. This introduces
additional complications not present in the light-quark sector. An overview of the is-
sues specific to heavy-quark quantities is given in the introduction of Sec. 8. For B- and
D-meson leptonic decay constants, there already exists a good number of different inde-
pendent calculations that use different heavy-quark methods, but there are only a few
independent calculations of semileptonic B, Ay, and D form factors and of B — B mixing
parameters. For a, most lattice methods involve a range of scales that need to be resolved
and controlling the systematic error over a large range of scales is more demanding. The
issues specific to determinations of the strong coupling are summarized in Sec. 9.

Number of sea quarks in lattice simulations:

Lattice-QCD simulations currently involve two, three or four flavours of dynamical quarks.
Most simulations set the masses of the two lightest quarks to be equal, while the strange
and charm quarks, if present, are heavier (and tuned to lie close to their respective physi-
cal values). Our notation for these simulations indicates which quarks are nondegenerate,

3We also use terms like “quality criteria”, “rating”, “colour coding”, etc., when referring to the classification

of results, as described in Sec. 2.
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eg., Ne=24+1if my, =mg <mgand Ny =241+ 1if my = mg < ms; < me. Calcula-
tions with Ny = 2, i.e., two degenerate dynamical flavours, often include strange valence
quarks interacting with gluons, so that bound states with the quantum numbers of the
kaons can be studied, albeit neglecting strange sea-quark fluctuations. The quenched ap-
proximation (Ny = 0), in which all sea-quark contributions are omitted, has uncontrolled
systematic errors and is no longer used in modern lattice simulations with relevance to
phenomenology. Accordingly, we will review results obtained with Ny = 2, Ny =2+ 1,
and Ny = 24141, but omit earlier results with Ny = 0. The only exception concerns the
QCD coupling constant a. Since this observable does not require valence light quarks, it
is theoretically well defined also in the Ny = 0 theory, which is simply pure gluodynamics.
The Ny-dependence of as, or more precisely of the related quantity roAgg, is a theoretical
issue of considerable interest; here r( is a quantity with the dimension of length that sets
the physical scale, as discussed in Sec. 11. We stress, however, that only results with
Ny > 3 are used to determine the physical value of o, at a high scale.

Lattice actions, simulation parameters, and scale setting:

The remarkable progress in the precision of lattice calculations is due to improved al-
gorithms, better computing resources, and, last but not least, conceptual developments.
Examples of the latter are improved actions that reduce lattice artifacts and actions that
preserve chiral symmetry to very good approximation. A concise characterization of the
various discretizations that underlie the results reported in the present review is given in
Appendix A.1 of FLAG 19.

Physical quantities are computed in lattice simulations in units of the lattice spacing
so that they are dimensionless. For example, the pion decay constant that is obtained
from a simulation is fra, where a is the spacing between two neighboring lattice sites.
(All simulations with results quoted in this review use hypercubic lattices, i.e., with the
same spacing in all four Euclidean directions.) To convert these results to physical units
requires knowledge of the lattice spacing a at the fixed values of the bare QCD parameters
(quark masses and gauge coupling) used in the simulation. This is achieved by requir-
ing agreement between the lattice calculation and experimental measurement of a known
quantity, which thus “sets the scale” of a given simulation. Given the central importance
of this procedure, we include in this edition of FLAG a dedicated section, Sec. 11, dis-
cussing the issues and results.

Renormalization and scheme dependence:

Several of the results covered by this review, such as quark masses, the gauge coupling,
and B-parameters, are for quantities defined in a given renormalization scheme and at
a specific renormalization scale. The schemes employed (e.g., regularization-independent
MOM schemes) are often chosen because of their specific merits when combined with
the lattice regularization. For a brief discussion of their properties, see Appendix A.3 of
FLAG 19. The conversion of the results obtained in these so-called intermediate schemes
to more familiar regularization schemes, such as the MS-scheme, is done with the aid
of perturbation theory. It must be stressed that the renormalization scales accessible in
simulations are limited, because of the presence of an ultraviolet (UV) cutoff of ~ 7/a.
To safely match to MS, a scheme defined in perturbation theory, Renormalization Group
(RG) running to higher scales is performed, either perturbatively or nonperturbatively
(the latter using finite-size scaling techniques).

Extrapolations:

Because of limited computing resources, lattice simulations are often performed at unphys-
ically heavy pion masses, although results at the physical point have become increasingly
common. Further, numerical simulations must be done at nonzero lattice spacing, and
in a finite (four-dimensional) volume. In order to obtain physical results, lattice data
are obtained at a sequence of pion masses and a sequence of lattice spacings, and then
extrapolated to the physical pion mass and to the continuum limit. In principle, an ex-
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trapolation to infinite volume is also required. However, for most quantities discussed in
this review, finite-volume effects are exponentially small in the linear extent of the lattice
in units of the pion mass, and, in practice, one often verifies volume independence by
comparing results obtained on a few different physical volumes, holding other parameters
fixed. To control the associated systematic uncertainties, these extrapolations are guided
by effective theories. For light-quark actions, the lattice-spacing dependence is described
by Symanzik’s effective theory [125, 126]; for heavy quarks, this can be extended and/or
supplemented by other effective theories such as Heavy-Quark Effective Theory (HQET).
The pion-mass dependence can be parameterized with Chiral Perturbation Theory (xPT),
which takes into account the Nambu-Goldstone nature of the lowest excitations that oc-
cur in the presence of light quarks. Similarly, one can use Heavy-Light Meson Chiral
Perturbation Theory (HMyPT) to extrapolate quantities involving mesons composed of
one heavy (b or ¢) and one light quark. One can combine Symanzik’s effective theory with
xPT to simultaneously extrapolate to the physical pion mass and the continuum; in this
case, the form of the effective theory depends on the discretization. See Appendix A.4 of
FLAG 19 for a brief description of the different variants in use and some useful references.
Finally, xPT can also be used to estimate the size of finite-volume effects measured in
units of the inverse pion mass, thus providing information on the systematic error due to
finite-volume effects in addition to that obtained by comparing simulations at different
volumes.

Ezcited-state contamination:

In all the hadronic matrix elements discussed in this review, the hadron in question is
the lightest state with the chosen quantum numbers. This implies that it dominates the
required correlation functions as their extent in Euclidean time is increased. Excited-state
contributions are suppressed by e *FA7 where AF is the gap between the ground and
excited states, and A7 the relevant separation in Euclidean time. The size of AE depends
on the hadron in question, and in general is a multiple of the pion mass. In practice, as
discussed at length in Sec. 10, the contamination of signals due to excited-state contribu-
tions is a much more challenging problem for baryons than for the other particles discussed
here. This is in part due to the fact that the signal-to-noise ratio drops exponentially for
baryons, which reduces the values of A7 that can be used.

Critical slowing down:

The lattice spacings reached in recent simulations go down to 0.05 fm or even smaller. In
this regime, long autocorrelation times slow down the sampling of the configurations [127—
136]. Many groups check for autocorrelations in a number of observables, including the
topological charge, for which a rapid growth of the autocorrelation time is observed with
decreasing lattice spacing. This is often referred to as topological freezing. A solution to
the problem consists in using open boundary conditions in time [137], instead of the more
common antiperiodic ones. More recently, two other approaches have been proposed, one
based on a multiscale thermalization algorithm [138, 139] and another based on defining
QCD on a nonorientable manifold [140]. The problem is also touched upon in Sec. 9.2.1,
where it is stressed that attention must be paid to this issue. While large scale simula-
tions with open boundary conditions are already far advanced [141], few results reviewed
here have been obtained with any of the above methods. It is usually assumed that the
continuum limit can be reached by extrapolation from the existing simulations, and that
potential systematic errors due to the long autocorrelation times have been adequately
controlled. Partially or completely frozen topology would produce a mixture of different
0 vacua, and the difference from the desired 6§ = 0 result may be estimated in some cases
using chiral perturbation theory, which gives predictions for the #-dependence of the phys-
ical quantity of interest [142, 143]. These ideas have been systematically and successfully
tested in various models in [144, 145], and a numerical test on MILC ensembles indicates
that the topology dependence for some of the physical quantities reviewed here is small,
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consistent with theoretical expectations [146].

Simulation algorithms and numerical errors:

Most of the modern lattice-QCD simulations use exact algorithms such as those of Refs. [147,
148], which do not produce any systematic errors when exact arithmetic is available. In
reality, one uses numerical calculations at double (or in some cases even single) precision,
and some errors are unavoidable. More importantly, the inversion of the Dirac operator is
carried out iteratively and it is truncated once some accuracy is reached, which is another
source of potential systematic error. In most cases, these errors have been confirmed to be
much less than the statistical errors. In the following we assume that this source of error
is negligible. Some of the most recent simulations use an inexact algorithm in order to
speed up the computation, though it may produce systematic effects. Currently available
tests indicate that errors from the use of inexact algorithms are under control [149)].

2 Quality criteria, averaging and error estimation

The essential characteristics of our approach to the problem of rating and averaging
lattice quantities have been outlined in our first publication [1]. Our aim is to help the
reader assess the reliability of a particular lattice result without necessarily studying the
original article in depth. This is a delicate issue, since the ratings may make things appear
simpler than they are. Nevertheless, it safeguards against the possibility of using lattice
results, and drawing physics conclusions from them, without a critical assessment of the
quality of the various calculations. We believe that, despite the risks, it is important to
provide some compact information about the quality of a calculation. We stress, however,
the importance of the accompanying detailed discussion of the results presented in the
various sections of the present review.

2.1 Systematic errors and colour code

The major sources of systematic error are common to most lattice calculations. These
include, as discussed in detail below, the chiral, continuum, and infinite-volume extrap-
olations. To each such source of error for which systematic improvement is possible we
assign one of three coloured symbols: green star, unfilled green circle (which replaced
in Ref. [2] the amber disk used in the original FLAG review [1]) or red square. These
correspond to the following ratings:
the parameter values and ranges used to generate the data sets allow for a satisfac-
tory control of the systematic uncertainties;
the parameter values and ranges used to generate the data sets allow for a reasonable
attempt at estimating systematic uncertainties, which however could be improved;
m the parameter values and ranges used to generate the data sets are unlikely to allow
for a reasonable control of systematic uncertainties.
The appearance of a red tag, even in a single source of systematic error of a given lattice
result, disqualifies it from inclusion in the global average.

Note that in the first two editions [1, 2], FLAG used the three symbols in order to rate
the reliability of the systematic errors attributed to a given result by the paper’s authors.
Starting with FLAG 16 [3] the meaning of the symbols has changed slightly—they now
rate the quality of a particular simulation, based on the values and range of the chosen
parameters, and its aptness to obtain well-controlled systematic uncertainties. They do
not rate the quality of the analysis performed by the authors of the publication. The
latter question is deferred to the relevant sections of the present review, which contain
detailed discussions of the results contributing (or not) to each FLAG average or estimate.

For most quantities the colour-coding system refers to the following sources of system-
atic errors: (i) chiral extrapolation; (ii) continuum extrapolation; (iii) finite volume. As
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we will see below, renormalization is another source of systematic uncertainties in several
quantities. This we also classify using the three coloured symbols listed above, but now
with a different rationale: they express how reliably these quantities are renormalized,
from a field-theoretic point of view (namely, nonperturbatively, or with 2-loop or 1-loop
perturbation theory).

Given the sophisticated status that the field has attained, several aspects, besides those
rated by the coloured symbols, need to be evaluated before one can conclude whether a
particular analysis leads to results that should be included in an average or estimate. Some
of these aspects are not so easily expressible in terms of an adjustable parameter such
as the lattice spacing, the pion mass or the volume. As a result of such considerations,
it sometimes occurs, albeit rarely, that a given result does not contribute to the FLAG
average or estimate, despite not carrying any red tags. This happens, for instance, when-
ever aspects of the analysis appear to be incomplete (e.g., an incomplete error budget), so
that the presence of inadequately controlled systematic effects cannot be excluded. This
mostly refers to results with a statistical error only, or results in which the quoted error
budget obviously fails to account for an important contribution.

Of course, any colour coding has to be treated with caution; we emphasize that the
criteria are subjective and evolving. Sometimes, a single source of systematic error domi-
nates the systematic uncertainty and it is more important to reduce this uncertainty than
to aim for green stars for other sources of error. In spite of these caveats, we hope that
our attempt to introduce quality measures for lattice simulations will prove to be a useful
guide. In addition, we would like to stress that the agreement of lattice results obtained
using different actions and procedures provides further validation.

2.1.1 Systematic effects and rating criteria

The precise criteria used in determining the colour coding are unavoidably time-dependent;
as lattice calculations become more accurate, the standards against which they are mea-
sured become tighter. For this reason FLAG reassesses criteria with each edition and as
a result some of the quality criteria (the one on chiral extrapolation for instance) have
been tightened up over time [1-4].

In the following, we present the rating criteria used in the current report. While these
criteria apply to most quantities without modification there are cases where they need
to be amended or additional criteria need to be defined. For instance, when discussing
results obtained in the e-regime of chiral perturbation theory in Sec. 5 the finite volume
criterion listed below for the p-regime is no longer appropriate.* Similarly, the discussion
of the strong coupling constant in Sec. 9 requires tailored criteria for renormalization,
perturbative behaviour, and continuum extrapolation. Finally, in the section on nuclear
matrix elements, Sec. 10, the chiral extrapolation criterion is made slightly stronger, and
a new criterion is adopted for excited-state contributions. In such cases, the modified
criteria are discussed in the respective sections. Apart from only a few exceptions the
following colour code applies in the tables:

e Chiral extrapolation:
My min < 200 MeV, with three or more pion masses used in the extrapolation
or two values of M, with one lying within 10 MeV of 135MeV (the physical
neutral pion mass) and the other one below 200 MeV
200 MeV < My min < 400 MeV, with three or more pion masses used in the
extrapolation
or two values of M, with My nin < 200 MeV
or a single value of M, lying within 10 MeV of 135 MeV (the physical neutral
pion mass)

*We refer to Sec. 5.1 for an explanation of the various regimes of chiral perturbation theory.

21



m otherwise

This criterion is unchanged from FLAG 19. In Sec. 10 the upper end of the range
for My min in the green circle criterion is lowered to 300 MeV, as in FLAG 19.

e Continuum extrapolation:

at least three lattice spacings and at least two points below 0.1 fm and a range
of lattice spacings satisfying [amax/@min]> > 2
at least two lattice spacings and at least one point below 0.1 fm and a range of
lattice spacings satisfying [amax/@min]? > 1.4
m otherwise
It is assumed that the lattice action is O(a)-improved (i.e., the discretization er-
rors vanish quadratically with the lattice spacing); otherwise this will be explicitly
mentioned. For unimproved actions an additional lattice spacing is required. This
condition is unchanged from FLAG 19.

e Finite-volume effects:

The finite-volume colour code used for a result is chosen to be the worse of the QCD
and the QED codes, as described below. If only QCD is used the QED colour code
is ignored.
— For QCD:

[Mir min/My 5a)? exp{4 — My min[L(My min)|max} < 1, or at least three volumes

(M min/Myr 5] exp{3 — Mz min[L(My min)|max} < 1, or at least two volumes

m otherwise

where we have introduced [L(My min)]max, which is the maximum box size used in
the simulations performed at the smallest pion mass My min, as well as a fiducial
pion mass My fq, which we set to 200 MeV (the cutoff value for a green star in the
chiral extrapolation). It is assumed here that calculations are in the p-regime of
chiral perturbation theory, and that all volumes used exceed 2 fm. The rationale
for this condition is as follows. Finite volume effects contain the universal factor
exp{—L M}, and if this were the only contribution a criterion based on the values
of My minL would be appropriate. However, as pion masses decrease, one must
also account for the weakening of the pion couplings. In particular, 1-loop chiral
perturbation theory [150] reveals a behaviour proportional to M2 exp{—L M,}. Our
condition includes this weakening of the coupling, and ensures, for example, that
simulations with My min = 135 MeV and L M nin = 3.2 are rated equivalently to
those with M min = 200 MeV and L My min = 4.
— For QED (where applicable):

1/([Mz min L( Mz min)]max)™™® < 0.02, or at least four volumes

1/([Mz min L(Mz min)]max)™™* < 0.04, or at least three volumes

m otherwise

Because of the infrared-singular structure of QED, electromagnetic finite-volume
effects decay only like a power of the inverse spatial extent. In several cases like
mass splittings [151, 152] or leptonic decays [153], the leading corrections are known
to be universal, i.e., independent of the structure of the involved hadrons. In such
cases, the leading universal effects can be directly subtracted exactly from the lattice
data. We denote ny;, the smallest power of % at which such a subtraction cannot be
done. In the widely used finite-volume formulation QED; , one always has npyi, < 3
due to the nonlocality of the theory [154]. The QED criteria are used here only in
Sec. 3. Both QCD and QED criteria are unchanged from FLAG 19.

e Tsospin breaking effects (where applicable):

all leading isospin breaking effects are included in the lattice calculation
isospin breaking effects are included using the electro-quenched approximation
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m otherwise

This criterion is used for quantities which are breaking isospin symmetry or which
can be determined at the sub-percent accuracy where isospin breaking effects, if not
included, are expected to be the dominant source of uncertainty. In the current
edition, this criterion is only used for the up- and down-quark masses, and related
quantities (e, @2 and R?). The criteria for isospin breaking effects are unchanged
from FLAG 19.

e Renormalization (where applicable):

nonperturbative
1-loop perturbation theory or higher with a reasonable estimate of truncation
errors

m otherwise

In Ref. [1], we assigned a red square to all results which were renormalized at 1-loop
in perturbation theory. In FLAG 13 [2], we decided that this was too restrictive,
since the error arising from renormalization constants, calculated in perturbation
theory at 1-loop, is often estimated conservatively and reliably. These criteria have
remained unchanged since then.

e Renormalization Group (RG) running (where applicable):

For scale-dependent quantities, such as quark masses or By, it is essential that con-
tact with continuum perturbation theory can be established. Various different meth-
ods are used for this purpose (cf. Appendix A.3 in FLAG 19 [4]): Regularization-
independent Momentum Subtraction (RI/MOM), the Schrodinger functional, and
direct comparison with (resummed) perturbation theory. Irrespective of the par-
ticular method used, the uncertainty associated with the choice of intermediate
renormalization scales in the construction of physical observables must be brought
under control. This is best achieved by performing comparisons between nonper-
turbative and perturbative running over a reasonably broad range of scales. These
comparisons were initially only made in the Schrodinger functional approach, but
are now also being performed in RI/MOM schemes. We mark the data for which
information about nonperturbative running checks is available and give some details,
but do not attempt to translate this into a colour code.

The pion mass plays an important role in the criteria relevant for chiral extrapolation
and finite volume. For some of the regularizations used, however, it is not a trivial matter
to identify this mass. In the case of twisted-mass fermions, discretization effects give rise
to a mass difference between charged and neutral pions even when the up- and down-quark
masses are equal: the charged pion is found to be the heavier of the two for twisted-mass
Wilson fermions (cf. Ref. [155]). In early works, typically referring to Ny = 2 simulations
(e.g., Refs. [155] and [91]), chiral extrapolations are based on chiral perturbation theory
formulae which do not take these regularization effects into account. After the importance
of accounting for isospin breaking when doing chiral fits was shown in Ref. [156], later
works, typically referring to Ny = 2 4+ 1 + 1 simulations, have taken these effects into
account [7]. We use M+ for My min in the chiral-extrapolation rating criterion. On the
other hand, we identify My min with the root mean square (RMS) of M, +, M- and Mo
in the finite-volume rating criterion.

In the case of staggered fermions, discretization effects give rise to several light states
with the quantum numbers of the pion.> The mass splitting among these “taste” partners
represents a discretization effect of O(a?), which can be significant at large lattice spacings
but shrinks as the spacing is reduced. In the discussion of the results obtained with
staggered quarks given in the following sections, we assume that these artifacts are under

SWe refer the interested reader to a number of reviews on the subject [157-161].
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control. We conservatively identify My min with the root mean square (RMS) average
of the masses of all the taste partners, both for chiral-extrapolation and finite-volume
criteria.

In some of the simulations, the fermion formulations employed for the valence quarks
are different from those used for the sea quarks. Even when the fermion formulations are
the same, there are cases where the sea and valence quark masses differ. In such cases, we
use the smaller of the valence-valence and valence-sea M, . values in the finite-volume
criteria, since either of these channels may give the leading contribution depending on
the quantity of interest at the one-loop level of chiral perturbation theory. For the chiral-
extrapolation criteria, on the other hand, we use the unitary point, where the sea and
valence quark masses are the same, to define M, .

The strong coupling «; is computed in lattice QCD with methods differing substan-
tially from those used in the calculations of the other quantities discussed in this review.
Therefore, we have established separate criteria for a; results, which will be discussed in
Sec. 9.2.1.

In the section on nuclear matrix elements, Sec. 10, an additional criterion is used.
This concerns the level of control over contamination from excited states, which is a more
challenging issue for nucleons than for mesons. In response to an improved understanding
of the impact of this contamination, the excited-state contamination criterion has been
made more stringent compared to that in FLAG 19.

2.1.2 Heavy-quark actions

For the b quark, the discretization of the heavy-quark action follows a very different
approach from that used for light flavours. There are several different methods for treating
heavy quarks on the lattice, each with its own issues and considerations. Most of these
methods use Effective Field Theory (EFT) at some point in the computation, either via
direct simulation of the EFT, or by using EFT as a tool to estimate the size of cutoff
errors, or by using EFT to extrapolate from the simulated lattice quark masses up to
the physical b-quark mass. Because of the use of an EFT, truncation errors must be
considered together with discretization errors.

The charm quark lies at an intermediate point between the heavy and light quarks. In
our earlier reviews, the calculations involving charm quarks often treated it using one of
the approaches adopted for the b quark. Since FLAG 16 [3], however, most calculations
simulate the charm quark using light-quark actions. This has become possible thanks to
the increasing availability of dynamical gauge field ensembles with fine lattice spacings.
But clearly, when charm quarks are treated relativistically, discretization errors are more
severe than those of the corresponding light-quark quantities.

In order to address these complications, the heavy-quark section adds an additional,
bipartite, treatment category to the rating system. The purpose of this criterion is to
provide a guideline for the level of action and operator improvement needed in each
approach to make reliable calculations possible, in principle.

A description of the different approaches to treating heavy quarks on the lattice can
be found in Appendix A.1.3 of FLAG 19 [4]. For truncation errors we use HQET power
counting throughout, since this review is focused on heavy-quark quantities involving B
and D mesons rather than bottomonium or charmonium quantities. Here we describe the
criteria for how each approach must be implemented in order to receive an acceptable
rating (V') for both the heavy-quark actions and the weak operators. Heavy-quark im-
plementations without the level of improvement described below are rated not acceptable
(m). The matching is evaluated together with renormalization, using the renormaliza-
tion criteria described in Sec. 2.1.1. We emphasize that the heavy-quark implementations
rated as acceptable and described below have been validated in a variety of ways, such as
via phenomenological agreement with experimental measurements, consistency between
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independent lattice calculations, and numerical studies of truncation errors. These tests
are summarized in Sec. 8.

Relativistic heavy-quark actions:

at least tree-level O(a) improved action and weak operators
This is similar to the requirements for light-quark actions. All current implementations
of relativistic heavy-quark actions satisfy this criterion.

NRQCD:

tree-level matched through O(1/my,) and improved through O(a?)
The current implementations of NRQCD satisfy this criterion, and also include tree-level
corrections of O(1/m?) in the action.
HQET:

tree-level matched through O(1/my,) with discretization errors starting at O(a?)
The current implementation of HQET by the ALPHA collaboration satisfies this criterion,
since both action and weak operators are matched nonperturbatively through O(1/my,).
Calculations that exclusively use a static-limit action do not satisfy this criterion, since
the static-limit action, by definition, does not include 1/m;, terms. We therefore include
static computations in our final estimates only if truncation errors (in 1/my,) are discussed
and included in the systematic uncertainties.

Light-quark actions for heavy quarks:
discretization errors starting at O(a?) or higher

This applies to calculations that use the twisted-mass Wilson action, a nonperturbatively
improved Wilson action, domain wall fermions or the HISQ action for charm-quark quan-
tities. It also applies to calculations that use these light quark actions in the charm region
and above together with either the static limit or with an HQET-inspired extrapolation to
obtain results at the physical b-quark mass. In these cases, the continuum-extrapolation
criteria described earlier must be applied to the entire range of heavy-quark masses used
in the calculation.

2.1.3 Conventions for the figures

For a coherent assessment of the present situation, the quality of the data plays a key
role, but the colour coding cannot be carried over to the figures. On the other hand,
simply showing all data on equal footing might give the misleading impression that the
overall consistency of the information available on the lattice is questionable. Therefore,
in the figures we indicate the quality of the data in a rudimentary way, using the following
symbols:
B corresponds to results included in the average or estimate (i.e., results that con-
tribute to the black square below);
[J corresponds to results that are not included in the average but pass all quality
criteria;
U corresponds to all other results;
B corresponds to FLAG averages or estimates; they are also highlighted by a gray
vertical band.
The reason for not including a given result in the average is not always the same: the result
may fail one of the quality criteria; the paper may be unpublished; it may be superseded
by newer results; or it may not offer a complete error budget.
Symbols other than squares are used to distinguish results with specific properties and
are always explained in the caption.’

SFor example, for quark-mass results we distinguish between perturbative and nonperturbative renormal-
ization, for low-energy constants we distinguish between the p- and e-regimes, and for heavy-flavour results we
distinguish between those from leptonic and semi-leptonic decays.
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Often, nonlattice data are also shown in the figures for comparison. For these we use
the following symbols:

® corresponds to nonlattice results;

A corresponds to Particle Data Group (PDG) results.

2.2 Averages and estimates

FLAG results of a given quantity are denoted either as averages or as estimates. Here we
clarify this distinction. To start with, both averages and estimates are based on results
without any red tags in their colour coding. For many observables there are enough
independent lattice calculations of good quality, with all sources of error (not merely
those related to the colour-coded criteria), as analyzed in the original papers, appearing
to be under control. In such cases, it makes sense to average these results and propose
such an average as the best current lattice number. The averaging procedure applied to
this data and the way the error is obtained is explained in detail in Sec. 2.3. In those
cases where only a sole result passes our rating criteria (colour coding), we refer to it
as our FLAG average, provided it also displays adequate control of all other sources of
systematic uncertainty.

On the other hand, there are some cases in which this procedure leads to a result that,
in our opinion, does not cover all uncertainties. Systematic errors are by their nature often
subjective and difficult to estimate, and may thus end up being underestimated in one or
more results that receive green symbols for all explicitly tabulated criteria. Adopting a
conservative policy, in these cases we opt for an estimate (or a range), which we consider
as a fair assessment of the knowledge acquired on the lattice at present. This estimate is
not obtained with a prescribed mathematical procedure, but reflects what we consider the
best possible analysis of the available information. The hope is that this will encourage
more detailed investigations by the lattice community.

There are two other important criteria that also play a role in this respect, but that
cannot be colour coded, because a systematic improvement is not possible. These are: i)
the publication status, and %) the number of sea-quark flavours Ny. As far as the former
criterion is concerned, we adopt the following policy: we average only results that have
been published in peer-reviewed journals, i.e., they have been endorsed by referee(s). The
only exception to this rule consists in straightforward updates of previously published
results, typically presented in conference proceedings. Such updates, which supersede the
corresponding results in the published papers, are included in the averages. Note that
updates of earlier results rely, at least partially, on the same gauge-field-configuration
ensembles. For this reason, we do not average updates with earlier results. Nevertheless,
all results are listed in the tables,” and their publication status is identified by the following
symbols:

e Publication status:
A published or plain update of published results
P preprint
C conference contribution

In the present edition, the publication status on the 30th of April 2021 is relevant. If
the paper appeared in print after that date, this is accounted for in the bibliography, but
does not affect the averages.®

As noted above, in this review we present results from simulations with Ny = 2,
Ny =241 and Ny = 2+ 14 1 (except for roAyg where we also give the Ny = 0
result). We are not aware of an a priori way to quantitatively estimate the difference

"Whenever figures turn out to be overcrowded, older, superseded results are omitted. However, all the most
recent results from each collaboration are displayed.
8 As noted above in footnote 1, one exception to this deadline was made, Ref. [65].
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between results produced in simulations with a different number of dynamical quarks.
We therefore average results at fixed Ny separately; averages of calculations with different
Ny are not provided.

To date, no significant differences between results with different values of Ny have
been observed in the quantities listed in Tabs. 1, 2, 3, 4, and 5. In particular, differences
between results from simulations with Ny = 2 and Ny = 2 4+ 1 would reflect Zweig-
rule violations related to strange-quark loops. Although not of direct phenomenological
relevance, the size of such violations is an interesting theoretical issue per se, and one
that can be quantitatively addressed only with lattice calculations. It remains to be
seen whether the status presented here will change in the future, since this will require
dedicated Ny = 2 and Ny = 2 + 1 calculations, which are not a priority of present lattice
work.

The question of differences between results with Ny =2+ 1 and Ny =2+ 1+ 1is
more subtle. The dominant effect of including the charm sea quark is to shift the lattice
scale, an effect that is accounted for by fixing this scale nonperturbatively using physical
quantities. For most of the quantities discussed in this review, it is expected that residual
effects are small in the continuum limit, suppressed by a,(m.) and powers of A2/m?2. Here
A is a hadronic scale that can only be roughly estimated and depends on the process under
consideration. Note that the A?/m? effects have been addressed in Refs. [162-166], and
found to be small for the quantities considered. Assuming that such effects are generically
small, it might be reasonable to average the results from Ny =2+ 1and Ny =24+1+1
simulations, although we do not do so here.

2.3 Averaging procedure and error analysis

In the present report, we repeatedly average results obtained by different collaborations,
and estimate the error on the resulting averages. Here we provide details on how averages
are obtained.

2.3.1 Averaging — generic case

We follow the procedure of the previous two editions [2, 3], which we describe here in full
detail.

One of the problems arising when forming averages is that not all of the data sets are
independent. In particular, the same gauge-field configurations, produced with a given
fermion discretization, are often used by different research teams with different valence-
quark lattice actions, obtaining results that are not really independent. Our averaging
procedure takes such correlations into account.

Consider a given measurable quantity ), measured by M distinct, not necessarily un-
correlated, numerical experiments (simulations). The result of each of these measurement
is expressed as

where z; is the value obtained by the i*"" experiment (i = 1,---, M) and al(a) (for a =
1,--+, E) are the various errors. Typically 02(1) stands for the statistical error and JZ(“)

(o > 2) are the different systematic errors from various sources. For each individual result,
we estimate the total error o; by adding statistical and systematic errors in quadrature:

Qi = z*o;,

04
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With the weight factor of each total error estimated in standard fashion,

o2

Wi = w ) (3)
i=1%

the central value of the average over all simulations is given by

M
LTav = Z-Tzwz (4)
i=1

The above central value corresponds to a x2 weighted average, evaluated by adding
statistical and systematic errors in quadrature. If the fit is not of good quality (x2,;,/dof >
1), the statistical and systematic error bars are stretched by a factor S = /x?/dof.
Next, we examine error budgets for individual calculations and look for potentially
correlated uncertainties. Specific problems encountered in connection with correlations
between different data sets are described in the text that accompanies the averaging. If
there is reason to believe that a source of error is correlated between two calculations, a
100% correlation is assumed. The correlation matrix C;; for the set of correlated lattice
results is estimated by a prescription due to Schmelling [167]. This consists in defining

7 = 2 [ 9

[e3

with Z; running only over those errors of z; that are correlated with the corresponding
errors of the measurement x;. This expresses the part of the uncertainty in z; that is
correlated with the uncertainty in x;. If no such correlations are known to exist, then we
take 0;,; = 0. The diagonal and off-diagonal elements of the correlation matrix are then
taken to be

Ci' = 0'2 (7':1’7M) )
Cij = 04505 (i #7J) - (6)

Finally, the error of the average is estimated by

M M
or = .Y wiw;Cyj (7)
i=1 j=1
and the FLAG average is
Qav = Tay £ Oay . (8)

2.3.2 Nested averaging

We have encountered one case where the correlations between results are more involved,
and a nested averaging scheme is required. This concerns the B-meson bag parameters
discussed in Sec. 8.2. In the following, we describe the details of the nested averaging
scheme. This is an updated version of the section added in the web update of the FLAG
16 report.

The issue arises for a quantity @ that is given by a ratio, Q = Y/Z. In most simula-
tions, both Y and Z are calculated, and the error in () can be obtained in each simulation
in the standard way. However, in other simulations only Y is calculated, with Z taken
from a global average of some type. The issue to be addressed is that this average value
Z has errors that are correlated with those in Q.
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In the example that arises in Sec. 8.2, Q = Bp, Y = Bpf and Z = f3. In one
of the simulations that contribute to the average, Z is replaced by Z, the PDG average
for f2 [168] (obtained with an averaging procedure similar to that used by FLAG). This
simulation is labeled with ¢ = 1, so that

Q== (9)

The other simulations have results labeled (), with j > 2. In this set up, the issue is that
Z is correlated with the Q;, j > 2.9
We begin by decomposing the error in ()1 in the same schematic form as above,

) (B)
o o o Yo~
Q=m0 B ... g B 4 2197
7 Z 7 7

(10)

Here the last term represents the error propagating from that in Z, while the others arise
from errors in Y;. For the remaining @Q; (j > 2) the decomposition is as in Eq. (1). The
total error of Q1 then reads

ONE @)\ 2 (B)\ 2 2
Oy, Oy, Oy, Yy
() () e () Y o

while that for the Q; (j > 2) is

sz- = <0;1)>2 + (05»2))2 4+ (O’ﬁE))Z . (12)

Correlations between @Q; and Qy, (j,k > 2) are taken care of by Schmelling’s prescription,
as explained above. What is new here is how the correlations between @1 and Q; (j > 2)
are taken into account.

To proceed, we recall from Eq. (7) that o5 is given by

M
027: Z wlZyw[Z];C[Z] . (13)

i.3'=1

Here the indices ¢ and j' run over the M’ simulations that contribute to Z, which, in
general, are different from those contributing to the results for ). The weights w[Z] and
correlation matrix C[Z] are given an explicit argument Z to emphasize that they refer
to the calculation of this quantity and not to that of Q. C[Z] is calculated using the
Schmelling prescription [Egs. (5)—(7)] in terms of the errors, J[Z]l(-,a), taking into account
the correlations between the different calculations of Z.

We now generalize Schmelling’s prescription for o;;;, Eq. (5), to that for oy, (k > 2),
i.e., the part of the error in ()1 that is correlated with Q. We take

1 / (a) 2 }/12 M/
o =\ = O[]+ D wlzlewlZ) ClZlon (14)

The first term under the square root sums those sources of error in Y7 that are correlated
with Q. Here we are using a more explicit notation from that in Eq. (5), with () < &

9There is also a small correlation between Y; and Z, but we follow the original Ref. [77] and do not take this
into account. Thus, the error in @Q; is obtained by simple error propagation from those in Y; and Z. Ignoring
this correlation is conservative, because, as in the calculation of By, the correlations between Bpf3 and f3
tend to lead to a cancelation of errors. By ignoring this effect we are making a small overestimate of the error
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indicating that the sum is restricted to the values of « for which the error Ug,?) is correlated

with Q. The second term accounts for the correlations within Z with Qy, and is the
nested part of the present scheme. The new matrix C[Z]; j ) is a restriction of the full
correlation matrix C[Z], and is defined as follows. Its diagonal elements are given by

ClZliiresk = (0[Z]ier)? (@=1--- M), (15)
(@[Zver)? = D (0l2]5)2, (16)
() 63k

(@)

where the summation Z/(a) 1 over () is restricted to those o[Z];;" that are correlated

with Q. The off-diagonal elements are

ClZlijrosk = 0lZlinjorolZ]jiek (@ #3), (17)
/
o Zvgon = | > (alZ]5)2, (18)
(a)>j'k

where the summation Z/(a) ok Over (a) is restricted to U[Z]E,O‘) that are correlated with
both Zj/ and Qk-
The last quantity that we need to define is oy;;.

T (19)

where the summation Z/(a) 1 Is restricted to those 0,(60‘) that are correlated with one of

the terms in Eq. (11).

In summary, we construct the correlation matrix C;; using Eq. (6), as in the generic
case, except the expressions for o1, and o1 are now given by Egs. (14) and (19), respec-
tively. All other o;,; are given by the original Schmelling prescription, Eq. (5). In this
way we extend the philosophy of Schmelling’s approach while accounting for the more
involved correlations.
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3 Quark masses

Authors: T. Blum, A. Portelli, A. Ramos

Quark masses are fundamental parameters of the Standard Model. An accurate de-
termination of these parameters is important for both phenomenological and theoretical
applications. The bottom- and charm-quark masses, for instance, are important sources
of parametric uncertainties in several Higgs decay modes. The up-, down- and strange-
quark masses govern the amount of explicit chiral symmetry breaking in QCD. From a
theoretical point of view, the values of quark masses provide information about the flavour
structure of physics beyond the Standard Model. The Review of Particle Physics of the
Particle Data Group contains a review of quark masses [169], which covers light as well as
heavy flavours. Here we also consider light- and heavy-quark masses, but focus on lattice
results and discuss them in more detail. We do not discuss the top quark, however, be-
cause it decays weakly before it can hadronize, and the nonperturbative QCD dynamics
described by present day lattice simulations is not relevant. The lattice determination
of light- (up, down, strange), charm- and bottom-quark masses is considered below in
Secs. 3.1, 3.2, and 3.3, respectively.

Quark masses cannot be measured directly in experiment because quarks cannot be
isolated, as they are confined inside hadrons. From a theoretical point of view, in QCD
with Ny flavours, a precise definition of quark masses requires one to choose a particu-
lar renormalization scheme. This renormalization procedure introduces a renormalization
scale i, and quark masses depend on this renormalization scale according to the Renor-
malization Group (RG) equations. In mass-independent renormalization schemes the RG
equations read

T — ). (20)
where the function 7(g) is the anomalous dimension, which depends only on the value
of the strong coupling oy = g%/(4n). Note that in QCD 7(g) is the same for all quark
flavours. The anomalous dimension is scheme dependent, but its perturbative expansion

_\ §—=0 _

7(9) '~ = % (do + dig® +...) (21)
has a leading coefficient dy = 8/(47)?, which is scheme independent.!’ Equation (20),
being a first order differential equation, can be solved exactly by using Eq. (21) as the
boundary condition. The formal solution of the RG equation reads

g(w) (x
M; = (1) [2bog? ()] /) exp {‘/ dr [58 B bdaj } =

where by = (11 — 2N;/3)/(4m)? is the universal leading perturbative coefficient in the
expansion of the g-function

B(g) = uj—z 920~ g% (bo +bag® +...) (23)
which governs the running of the strong coupling. The renormalization group invariant
(RGI) quark masses M; are formally integration constants of the RG Eq. (20). They are
scale independent, and due to the universality of the coefficient dy, they are also scheme
independent. Moreover, they are nonperturbatively defined by Eq. (22). They only
depend on the number of flavours /Ny, making them a natural candidate to quote quark

masses and compare determinations from different lattice collaborations. Nevertheless, it

1%We follow the conventions of Gasser and Leutwyler [170].
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is customary in the phenomenology community to use the MS scheme at a scale p = 2
GeV to compare different results for light-quark masses, and use a scale equal to its own
mass for the charm and bottom quarks. In this review, we will quote the final averages
of both quantities.

Results for quark masses are always quoted in the four-flavour theory. Ny =241
results have to be converted to the four-flavour theory. Fortunately, the charm quark is
heavy (Aqcp/me)? < 1, and this conversion can be performed in perturbation theory
with negligible (~ 0.2%) perturbative uncertainties. Nonperturbative corrections in this
matching are more difficult to estimate. Since these effects are suppressed by a factor of
1/N., and a factor of the strong coupling at the scale of the charm mass, naive power
counting arguments would suggest that the effects are ~ 1%. In practice, numerical non-
perturbative studies [162, 164, 171] have found this power counting argument to be an
overestimate by one order of magnitude in the determination of simple hadronic quan-
tities or the A-parameter. Moreover, lattice determinations do not show any significant
deviation between the Ny = 2+ 1 and Ny = 2 + 1 + 1 simulations. For example, the
difference in the final averages for the mass of the strange quark m, between Ny =2 +1
and Ny =2+ 1+ 1 determinations is about 1.3%, or about one standard deviation.

We quote all final averages at 2 GeV in the MS scheme and also the RGI values (in
the four-flavour theory). We use the exact RG Eq. (22). Note that to use this equation
we need the value of the strong coupling in the MS scheme at a scale u = 2 GeV. All our
results are obtained from the RG equation in the MS scheme and the 5-loop beta function
together with the value of the A-parameter in the four-flavour theory A% = 294(12) MeV
obtained in this review (see Sec. 9). In the uncertainties of the RGI masses we separate
the contributions from the determination of the quark masses and the propagation of the

uncertainty of AI(\;IL). These are identified with the subscripts m and A, respectively.
Conceptually, all lattice determinations of quark masses contain three basic ingredi-
ents:

1. Tuning the lattice bare-quark masses to match the experimental values of some
quantities. Pseudo-scalar meson masses provide the most common choice, since they
have a strong dependence on the values of quark masses. In pure QCD with Ny quark
flavours these values are not known, since the electromagnetic interactions affect
the experimental values of meson masses. Therefore, pure QCD determinations use
model/lattice information to determine the location of the physical point. This is
discussed at length in Sec. 3.1.1.

2. Renormalization of the bare-quark masses. Bare-quark masses determined with the
above-mentioned criteria have to be renormalized. Many of the latest determinations
use some nonperturbatively defined scheme. One can also use perturbation theory
to connect directly the values of the bare-quark masses to the values in the MS
scheme at 2 GeV. Experience shows that 1-loop calculations are unreliable for the
renormalization of quark masses: usually at least two loops are required to have
trustworthy results.

3. If quark masses have been nonperturbatively renormalized, for example, to some
MOM/SF scheme, the values in this scheme must be converted to the phenomeno-
logically useful values in the MS scheme (or to the scheme/scale independent RGI
masses). Either option requires the use of perturbation theory. The larger the en-
ergy scale of this matching with perturbation theory, the better, and many recent
computations in MOM schemes do a nonperturbative running up to 3-4 GeV. Com-
putations in the SF scheme allow us to perform this running nonperturbatively over
large energy scales and match with perturbation theory directly at the electro-weak
scale ~ 100 GeV.

32 Updated Feb. 2023



Note that many lattice determinations of quark masses make use of perturbation theory
at a scale of a few GeV.

We mention that lattice-QCD calculations of the b-quark mass have an additional
complication which is not present in the case of the charm and light quarks. At the
lattice spacings currently used in numerical simulations the direct treatment of the b
quark with the fermionic actions commonly used for light quarks is very challenging.
Only two determinations of the b-quark mass use this approach, reaching the physical
b-quark mass region at two lattice spacings with aM ~ 1. There are a few widely used
approaches to treat the b quark on the lattice, which have been already discussed in the
FLAG 13 review (see Sec. 8 of Ref. [2]). Those relevant for the determination of the
b-quark mass will be briefly described in Sec. 3.3.

3.1 DMasses of the light quarks

Light-quark masses are particularly difficult to determine because they are very small (for
the up and down quarks) or small (for the strange quark) compared to typical hadronic
scales. Thus, their impact on typical hadronic observables is minute, and it is difficult to
isolate their contribution accurately.

Fortunately, the spontaneous breaking of SU(3), x SU(3)g chiral symmetry provides
observables which are particularly sensitive to the light-quark masses: the masses of the
resulting Nambu-Goldstone bosons (NGB), i.e., pions, kaons, and eta. Indeed, the Gell-
Mann-Oakes-Renner relation [172] predicts that the squared mass of a NGB is directly
proportional to the sum of the masses of the quark and antiquark which compose it,
up to higher-order mass corrections. Moreover, because these NGBs are light, and are
composed of only two valence particles, their masses have a particularly clean statistical
signal in lattice-QCD calculations. In addition, the experimental uncertainties on these
meson masses are negligible. Thus, in lattice calculations, light-quark masses are typically
obtained by renormalizing the input quark mass and tuning them to reproduce NGB
masses, as described above.

3.1.1 The physical point and isospin symmetry

As mentioned in Sec. 2.1, the present review relies on the hypothesis that, at low energies,
the Lagrangian Lqcp + Lqrp describes nature to a high degree of precision. However,
most of the results presented below are obtained in pure QCD calculations, which do
not include QED. Quite generally, when comparing QCD calculations with experiment,
radiative corrections need to be applied. In pure QCD simulations, where the parameters
are fixed in terms of the masses of some of the hadrons, the electromagnetic contributions
to these masses must be discussed. How the matching is done is generally ambiguous
because it relies on the unphysical separation of QCD and QED contributions. In this
section, and in the following, we discuss this issue in detail. A related discussion, in the
context of scale setting, is given in Sec. 11.3. Of course, once QED is included in lattice
calculations, the subtraction of electromagnetic contributions is no longer necessary.

Let us start from the unambiguous case of QCD+QED. As explained in the introduc-
tion of this section, the physical quark masses are the parameters of the Lagrangian such
that a given set of experimentally measured, dimensionful hadronic quantities are repro-
duced by the theory. Many choices are possible for these quantities, but in practice many
lattice groups use pseudoscalar meson masses, as they are easily and precisely obtained
both by experiment, and through lattice simulations. For example, in the four-flavour
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case, one can solve the system

M+ (M, Mg, Mg, Me, @) MP (24)
Myt (e, ma, mg, me, ) = MPZY, (25)
Mo (Mo, M, Mg, M, @) Mg, (26)
Mpo(mu, ma,mg,me, ) = MpY, (27)

where we assumed that
e all the equations are in the continuum and infinite-volume limits;

e the overall scale has been set to its physical value, generally through some lattice-
scale setting procedure involving a fifth dimensionful input (see the discussion in
Sec. 11.3);

e the quark masses m, are assumed to be renormalized from the bare, lattice ones in
some given continuum renormalization scheme;

e o= % is the fine-structure constant expressed as function of the positron charge e,

generally set to the Thomson limit v = 0.007297352. .. [169];

e the mass Mj (my, mg, ms, mc, ) of the meson h is a function of the quark masses
and «. The functional dependence is generally obtained by choosing an appropriate
parameterization and performing a global fit to the lattice data;

e the superscript exp. indicates that the mass is an experimental input, lattice groups
use in general the values in the Particle Data Group review [169].

However, ambiguities arise with simulations of QCD only. In that case, there is no
experimentally measurable quantity that emerges from the strong interaction only. The
missing QED contribution is tightly related to isospin-symmetry breaking effects. Isospin
symmetry is explicitly broken by the differences between the up- and down-quark masses
om = m, — mg, and electric charges §Q) = @, — Q4. These effects are, respectively,
of order O(dm/Aqcp) and O(«), and are expected to be O(1%) of a typical isospin-
symmetric hadronic quantity. Strong and electromagnetic isospin-breaking effects are
of the same order and therefore cannot, in principle, be evaluated separately without
introducing strong ambiguities. Because these effects are small, they can be treated as a
perturbation,

X(my, mg, mg, me, &) = X (mya, ms, me) + 0mAx (myq, ms, me) + aBx (myq, ms, mg) ,)
28
for a given hadronic quantity X, where m,q = %(mu—i—md) is the average light-quark mass.
There are several things to notice here. Firstly, the neglected higher-order O(dm?, adm, a?)
corrections are expected to be O(10~%) relatively to X, which at the moment is way be-
yond the relative statistical accuracy that can be delivered by a lattice calculation. Sec-
ondly, this is not strictly speaking an expansion around the isospin-symmetric point, the
electromagnetic interaction has also symmetric contributions. From this last expression
the previous statements about ambiguities become clearer. Indeed, the only unambiguous
prediction one can perform is to solve Eqgs. (24)—(27) and use the resulting parameters to
obtain a prediction for X, which is represented by the left-hand side of Eq. (28). This pre-
diction will be the sum of the QCD isospin-symmetric part X, the strong isospin-breaking
effects X5V = §mAx, and the electromagnetic effects X7 = aBx. Obtaining any of
these terms individually requires extra, unphysical conditions to perform the separation.
To be consistent with previous editions of FLAG, we also define X = X 4+ X5U®@ {0 be
the a — 0 limit of X.
With pure QCD simulations, one typically solves Eqs. (24)—(27) by equating the QCD,
isospin-symmetric part of a hadron mass M, result of the simulations, with its experi-
mental value M, . This will result in an O(dm, o) mis-tuning of the theory parameters
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which will propagate as an error on predicted quantities. Because of this, in general,
one cannot predict hadronic quantities with a relative accuracy higher than O(1%) from
pure QCD simulations, independently on how the target X is sensitive to isospin-breaking
effects. If one performs a complete lattice prediction of the physical value of X, it can
be of phenomenological interest to define in some way X, X5V and X7. If we keep
Mayd, Ms and m. at their physical values in physical units, for a given renormalization
scheme and scale, then these three quantities can be extracted by setting successively and
simultaneously « and ém to 0. This is where the ambiguity lies: in general the dm = 0
point will depend on the renormalization scheme used for the quark masses. In the next
section, we give more details on that particular aspect and discuss the order of scheme
ambiguities.

3.1.2 Ambiguities in the separation of isospin-breaking contributions

In this section, we discuss the ambiguities that arise in the individual determination
of the QED contribution X” and the strong-isospin correction XU defined in the
previous section. Throughout this section, we assume that the isospin-symmetric quark
masses mqq, Mms and m. are always kept fixed in physical units to the values they take
at the QCD+QED physical point in some given renormalization scheme. Let us assume
that both up and down masses have been renormalized in an identical mass-independent
scheme which depends on some energy scale . We also assume that the renormalization
procedure respects chiral symmetry so that quark masses renormalize multiplicatively.
The renormalization constants of the quark masses are identical for a = 0 and therefore
the renormalized mass of a quark has the general form

Ma(1) = Zim ()1 + aQ2, 6% (1) + aQuor. Qu0S (1) + Q2P (Wmgo,  (29)

up to O(a?) corrections, where my o is the bare-quark mass, Qot. and QZ, are the sum of
all quark charges and squared charges, respectively, and @, is the quark charge, all in units
of in units of the positron charge e. Throughout this section, a subscript ud generally
denotes the average between up and down quantities and § the difference between the
up and the down quantities. The source of the ambiguities described in the previous
section is the mixing of the isospin-symmetric mass m,q and the difference ém through
renormalization. Using Eq. (29) one can make this mixing explicit at leading order in a:

My, ( ) 2 1 ) Mad,
(Mnd(;) ) = Zn(W[1+ aQtotﬁSg}) (1) + aMD (1) + oM@ ()] ( 57;1(}0) (30)

with the mixing matrices

W) — 50 Qua  50Q @ () — 52 (1) (Pnd i5Q2>
MO0 =60 (G5 59) a0 =020 (2 0T

(31)
where Quq = %(Qu + Qq) and 6Q = Q, — Qq are the average and difference of the up
and down charges, and similarly Q? , = %(Qz +Q2%) and 6Q* = Q2 — Q? for the squared
charges. Now let us assume that for the purpose of determining the different components
in Eq. (28), one starts by tuning the bare masses to obtain equal up and down masses,
for some small coupling «g at some scale g, i.e., dm(ug) = 0. At this specific point, one
can extract the pure QCD, and the QED corrections to a given quantity X by studying
the slope of a in Eq. (28). From these quantities the strong-isospin contribution can then
readily be extracted using a nonzero value of dm(ug). However, if now the procedure is
repeated at another coupling o and scale p with the same bare masses, it appears from
Eq. (30) that ém(u) # 0. More explicitly,

Zm (1)

m[aAz(u) — apAz(po)] (32)

om(p) = mua(po)
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with
Az (1) = Quor.0Q0% (1) + 6Q%6 ) (), (33)

up to higher-order corrections in o and . In other words, the definitions of X, X5V(2),
and X7 depend on the renormalization scale at which the separation was made. This
dependence, of course, has to cancel in the physical sum X. One can notice that at
no point did we mention the renormalization of « itself, which, in principle, introduces
similar ambiguities. However, the corrections coming from the running of a are O(a?)
relatively to X, which, as justified above, can be safely neglected. Finally, important
information is provided by Eq. (32): the scale ambiguities are O(am,q). For physical
quark masses, one generally has m,q >~ dm. So by using this approximation in the first-
order expansion Eq. (28), it is actually possible to define unambiguously the components
of X up to second-order isospin-breaking corrections. Therefore, in the rest of this review,
we will not keep track of the ambiguities in determining pure QCD or QED quantities.
However, in the context of lattice simulations, it is crucial to notice that m.,gq ~ dm is
only accurate at the physical point. In simulations at larger-than-physical pion masses,
scheme ambiguities in the separation of QCD and QED contributions are generally large.
Once more, the argument made here assumes that the isospin-symmetric quark masses
Mayd, Mg, and m, are kept fixed to their physical value in a given scheme while varying «.
Outside of this assumption there is an additional isospin-symmetric O(amy) ambiguity
between X and X".

Such separation in lattice QCD+QED simulation results appeared for the first time
in RBC 07 [173] and Blum 10 [174], where the scheme was implicitly defined around
the xPT expansion. In that setup, the dm(up) = 0 point is defined in pure QCD, i.e.,
o = 0 in the previous discussion. The QCD part of the kaon-mass splitting from the first
FLAG review [1] is used as an input in RM123 11 [175], which focuses on QCD isospin
corrections only. It therefore inherits from the convention that was chosen there, which
is also to set dm(pp) = 0 at zero QED coupling. The same convention was used in the
follow-up works RM123 13 [176] and RM123 17 [21]. The BMW collaboration was the
first to introduce a purely hadronic scheme in its electro-quenched study of the baryon
octet mass splittings [177]. In this work, the quark mass difference dm(u) is swapped with
the mass splitting AM? between the connected @ and dd pseudoscalar masses. Although
unphysical, this quantity is proportional [178] to dm(u) up to O(amyg) chiral corrections.
In this scheme, the quark masses are assumed to be equal at AM? = 0, and the O(amyq)
corrections to this statement are analogous to the scale ambiguities mentioned previously.
The same scheme was used for the determination of light-quark masses in BMW 16A [22]
and in the recent BMW prediction of the leading hadronic contribution to the muon
magnetic moment [119]. The BMW collaboration used a different hadronic scheme for
its determination of the nucleon-mass splitting in BMW 14 [151] using full QCD+QED
simulations. In this work, the dm = 0 point was fixed by imposing the baryon splitting
Ms,+ — Myx,— to cancel. This scheme is quite different from the other ones presented here,
in the sense that its intrinsic ambiguity is not O(am,q). What motivates this choice
here is that My+ — My,- = 0 in the limit where these baryons are point particles, so the
scheme ambiguity is suppressed by the compositeness of the ¥ baryons. This may sound
like a more difficult ambiguity to quantify, but this scheme has the advantage of being
defined purely by measurable quantities. Moreover, it has been demonstrated numerically
in BMW 14 [151] that, within the uncertainties of this study, the My+ —Mx- = 0 scheme is
equivalent to the AM? = 0 one, explicitly My+ — My- = —0.18(12)(6) MeV at AM? = 0.
The calculation QCDSF/UKQCD 15 [179] uses a “Dashen scheme,” where quark masses
are tuned such that flavour-diagonal mesons have equal masses in QCD and QCD+QED.
Although not explicitly mentioned by the authors of the paper, this scheme is simply
a reformulation of the AM? = 0 scheme mentioned previously. Finally, MILC 18 [23]
also used the AM? = 0 scheme and noticed its connection to the “Dashen scheme” from

36 Updated Feb. 2023



QCDSF/UKQCD 15.

Before the previous edition of this review, the contributions X, X°Y2) and X7 were
given for pion and kaon masses based on phenomenological information. Considerable
progress has been achieved by the lattice community to include isospin-breaking effects in
calculations, and it is now possible to determine these quantities precisely directly from a
lattice calculation. However, these quantities generally appear as intermediate products of
a lattice analysis, and are rarely directly communicated in publications. These quantities,
although unphysical, have a phenomenological interest, and we encourage the authors of
future calculations to quote them explicitly.

3.1.3 Inclusion of electromagnetic effects in lattice-QCD simulations

Electromagnetism on a lattice can be formulated using a naive discretization of the
Maxwell action S[A4,] = 1 [d'z > unOnAu(z) — 0,A,(z)]>. Even in its noncompact
form, the action remains gauge invariant. This is not the case for non-Abelian theories
for which one uses the traditional compact Wilson gauge action (or an improved version of
it). Compact actions for QED feature spurious photon-photon interactions which vanish
only in the continuum limit. This is one of the main reason why the noncompact action
is the most popular so far. It was used in all the calculations presented in this review.
Gauge-fixing is necessary for noncompact actions because of the usual infinite measure
of equivalent gauge orbits which contribute to the path integral. It was shown [180, 181]
that gauge-fixing is not necessary with compact actions, including in the construction of
interpolating operators for charged states.

Although discretization is straightforward, simulating QED in a finite volume is more
challenging. Indeed, the long range nature of the interaction suggests that important
finite-size effects have to be expected. In the case of periodic boundary conditions, the
situation is even more critical: a naive implementation of the theory features an isolated
zero-mode singularity in the photon propagator. It was first proposed in [182] to fix the
global zero-mode of the photon field A,,(x) in order to remove it from the dynamics. This
modified theory is generally named QEDry;. Although this procedure regularizes the
theory and has the right classical infinite-volume limit, it is nonlocal because of the zero-
mode fixing. As first discussed in [151], the nonlocality in time of QEDyy, prevents the
existence of a transfer matrix, and therefore a quantum-mechanical interpretation of the
theory. Another prescription named QED; , proposed in [183], is to remove the zero-mode
of A, (x) independently for each time slice. This theory, although still nonlocal in space, is
local in time and has a well-defined transfer matrix. Whether these nonlocalities constitute
an issue to extract infinite-volume physics from lattice-QCD+QED;, simulations is, at
the time of this review, still an open question. However, it is known through analytical
calculations of electromagnetic finite-size effects at O(«) in hadron masses [151, 152, 154,
176, 183-185], meson leptonic decays [185], and the hadronic vacuum polarization [186]
that QEDy, does not suffer from a problematic (e.g., UV divergent) coupling of short-
and long-distance physics due to its nonlocality. Another strategy, first proposed in [187]
and used by the QCDSF collaboration, is to bound the zero-mode fluctuations to a finite
range. Although more minimal, it is still a nonlocal modification of the theory and
so far finite-size effects for this scheme have not been investigated. More recently, two
proposals for local formulations of finite-volume QED emerged. The first one described
in [188] proposes to use massive photons to regulate zero-mode singularities, at the price
of (softly) breaking gauge invariance. The second one presented in [181], based on earlier
works [189, 190], avoids the zero-mode issue by using anti-periodic boundary conditions for
A, (x). In this approach, gauge invariance requires the fermion field to undergo a charge
conjugation transformation over a period, breaking electric charge conservation. These
local approaches have the potential to constitute cleaner approaches to finite-volume QED.
All the calculations presented in this review used QED;, or QED;,, with the exception
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of QCDSF.

Once a finite-volume theory for QED is specified, there are various ways to compute
QED effects themselves on a given hadronic quantity. The most direct approach, first
used in [182], is to include QED directly in the lattice simulations and assemble corre-
lation functions from charged quark propagators. Another approach proposed in [176],
is to exploit the perturbative nature of QED, and compute the leading-order corrections
directly in pure QCD as matrix elements of the electromagnetic current. Both approaches
have their advantages and disadvantages and as shown in [21], are not mutually exclusive.
A critical comparative study can be found in [191].

Finally, most of the calculations presented here made the choice of computing electro-
magnetic corrections in the electro-quenched approximation. In this limit, one assumes
that only valence quarks are charged, which is equivalent to neglecting QED corrections to
the fermionic determinant. This approximation reduces dramatically the cost of lattice-
QCD+QED calculations since it allows the reuse of previously generated QCD configura-
tions. If QED is introduced pertubatively through current insertions, the electro-quenched
approximation avoids computing disconnected contributions coming from the electromag-
netic current in the vacuum, which are generally challenging to determine precisely. The
electromagnetic contributions from sea quarks to hadron-mass splittings are known to be
flavour-SU (3) and large-N, suppressed, thus electro-quenched simulations are expected
to have an O(10%) accuracy for the leading electromagnetic effects. This suppression is
in principle rather weak and results obtained from electro-quenched simulations might
feature uncontrolled systematic errors. For this reason, the use of the electro-quenched
approximation constitutes the difference between % and © in the FLAG criterion for the
inclusion of isospin-breaking effects.

3.1.4 Lattice determination of mg and myg

We now turn to a review of the lattice calculations of the light-quark masses and begin
with mg, the isospin-averaged up- and down-quark mass m.q, and their ratio. Most
groups quote only myq, not the individual up- and down-quark masses. We then discuss
the ratio m, /mg and the individual determinations of m,, and mg.

Quark masses have been calculated on the lattice since the mid-nineties. However,
early calculations were performed in the quenched approximation, leading to unquantifi-
able systematics. Thus, in the following, we only review modern, unquenched calculations,
which include the effects of light sea quarks.

Tables 6 and 7 list the results of Ny = 241 and Ny = 2+1+1 lattice calculations of m,
and myq. These results are given in the MS scheme at 2 GeV, which is standard nowadays,
though some groups are starting to quote results at higher scales (e.g., Ref. [192]). The
tables also show the colour coding of the calculations leading to these results. As indicated
earlier in this review, we treat calculations with different numbers, Ny, of dynamical
quarks separately.

Ny =241 lattice calculations

We turn now to Ny = 2 4 1 calculations. These and the corresponding results for
myq and mg are summarized in Tab. 6. Given the very high precision of a number of
the results, with total errors on the order of 1%, it is important to consider the effects
neglected in these calculations. Isospin-breaking and electromagnetic effects are small on
mqyq and mg, and have been approximately accounted for in the calculations that will be
retained for our averages. We have already commented that the effect of the omission of
the charm quark in the sea is expected to be small, below our current precision, and we
do not add any additional uncertainty due to these effects in the final averages.

The only new computation since the previous FLAG edition is the determination of
light-quark masses by the ALPHA collaboration [20]. This work uses nonperturbatively
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O(a) improved Wilson fermions (a subset of the CLS ensembles [141]). The renormaliza-
tion is performed nonperturbatively in the SF scheme from 200 MeV up to the electroweak
scale ~ 100 GeV [207]. This nonperturbative running over such large energy scales avoids
any use of perturbation theory at low energy scales, but adds a cost in terms of uncer-
tainty: the running alone propagates to ~ 1% of the error in quark masses. This turns
out to be one of the dominant pieces of uncertainty for the case of mg. On the other
hand, for the case of m,q4, the uncertainty is dominated by the chiral extrapolations. The
ensembles used include four values of the lattice spacing below 0.09 fm, which qualifies for
a % in the continuum extrapolation, and pion masses down to 200 MeV. This value lies
just at the boundary of the % rating, but since the chiral extrapolation is a substantial

source of systematic uncertainty, we opted to rate the work with a ©o. In any case, this
work enters in the average and their results show a reasonable agreement with the FLAG
average.

We now comment in some detail on previous works that also contribute to the averages.

RBC/UKQCD 14 [10] significantly improves on their RBC/UKQCD 12B [192] work
by adding three new domain wall fermion simulations to three used previously. Two of
the new simulations are performed at essentially physical pion masses (M, ~ 139 MeV)
on lattices of about 5.4 fm in size and with lattice spacings of 0.114 fm and 0.084 fm. It is
complemented by a third simulation with M, ~ 371 MeV, a ~ 0.063 fm and a rather small
L ~ 2.0fm. Altogether, this gives them six simulations with six unitary (msea = Myal)
M,’s in the range of 139 to 371 MeV, and effectively three lattice spacings from 0.063 to
0.114 fm. They perform a combined global continuum and chiral fit to all of their results
for the m and K masses and decay constants, the {2 baryon mass and two Wilson-flow
parameters. Quark masses in these fits are renormalized and run nonperturbatively in the
RI-SMOM scheme. This is done by computing the relevant renormalization constant for
a reference ensemble, and determining those for other simulations relative to it by adding
appropriate parameters in the global fit. This calculation passes all of our selection
criteria.

Ny = 2+ 1 MILC results for light-quark masses go back to 2004 [201, 202]. They
use rooted staggered fermions. By 2009 their simulations covered an impressive range of
parameter space, with lattice spacings going down to 0.045 fm, and valence-pion masses
down to approximately 180 MeV [17]. The most recent MILC Ny = 2 + 1 results, i.e.,
MILC 10A [14] and MILC 09A [17], feature large statistics and 2-loop renormalization.
Since these data sets subsume those of their previous calculations, these latest results are
the only ones that need to be kept in any world average.

The BMW 10A, 10B [11, 12] calculation still satisfies our stricter selection criteria.
They reach the physical up- and down-quark mass by interpolation instead of by extrap-
olation. Moreover, their calculation was performed at five lattice spacings ranging from
0.054 to 0.116 fm, with full nonperturbative renormalization and running and in volumes
of up to (6 fm)3, guaranteeing that the continuum limit, renormalization, and infinite-
volume extrapolation are controlled. It does neglect, however, isospin-breaking effects,
which are small on the scale of their error bars.

Finally, we come to another calculation which satisfies our selection criteria, HPQCD 10
[13]. Tt updates the staggered-fermions calculation of HPQCD 09A [30]. In these papers,
the renormalized mass of the strange quark is obtained by combining the result of a precise
calculation of the renormalized charm-quark mass, m., with the result of a calculation
of the quark-mass ratio, m./ms. As described in Ref. [206] and in Sec. 3.2, HPQCD de-
termines m, by fitting Euclidean-time moments of the ¢c pseudoscalar density two-point
functions, obtained numerically in lattice QCD, to fourth-order, continuum perturbative
expressions. These moments are normalized and chosen so as to require no renormaliza-
tion with staggered fermions. Since m./ms requires no renormalization either, HPQCD’s
approach displaces the problem of lattice renormalization in the computation of mg to
one of computing continuum perturbative expressions for the moments. To calculate m,4
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HPQCD 10 [13] use the MILC 09 determination of the quark-mass ratio ms/m.q [161].

HPQCD 09A [30] obtains m./ms = 11.85(16) [30] fully nonperturbatively, with a
precision slightly larger than 1%. HPQCD 10’s determination of the charm-quark mass,
me(m.) = 1.268(6),!! is even more precise, achieving an accuracy better than 0.5%.

This discussion leaves us with five results for our final average for ms: ALPHA 19 [20],
MILC 09A [17], BMW 10A, 10B [11, 12], HPQCD 10 [13] and RBC/UKQCD 14 [10].
Assuming that the result from HPQCD 10 is 100% correlated with that of MILC 09A, as
it is based on a subset of the MILC 09A configurations, we find ms = 92.2(1.1) MeV with
a x2/dof = 1.65.

For the light-quark mass m,g, the results satisfying our criteria are ALPHA 19,
RBC/UKQCD 14B, BMW 104, 10B, HPQCD 10, and MILC 10A. For the error, we
include the same 100% correlation between statistical errors for the latter two as for the
strange case, resulting in the following (at scale 2 GeV in the MS scheme, and x?/dof=1.4),

Mg = 3.381(40) MeV Refs. [9-14],
Ny=2+1: 4
r=27 ms = 92.2(1.0) MeV Refs. [9-13, 17]. (34)
And the RGI values
MEGT = 4.695(56),,(54) x MeV Refs. [9-14],
Ny=2+1: e i (35)
MRCG = 198 1(1.4),,(1.5) 4 MeV Refs. [9-13, 17].

Ny =2+ 1+1 lattice calculations

Since the previous review a new computation of mg, m,q has appeared, ETM 21A [6].
Using twisted-mass fermions with an added clover term to suppress O(a?) effects between
the neutral and charged pions, this work represents a significant improvement over ETM
14 [7]. Renormalization is performed nonperturbatively in the RI-MOM scheme. Their
ensembles comprise three lattice spacings (0.095, 0.082, and 0.069 fm), two volumes for
the finest lattice spacings with pion masses reaching down to the physical point in the
two finest lattices allowing a controlled chiral extrapolation. Their volumes are large,
with m,L between four and five. These characteristics of their ensembles pass the most
stringent FLAG criteria in all categories. This work extracts quark masses from two
different quantities, one based on the meson spectrum and the other based on the baryon
spectrum. Results obtained with these two methods agree within errors. The latter
agrees well with the FLAG average while the former is high in comparison (there is good
agreement with their previous results, ETM 14 [7]). This work was not published by the
FLAG deadline, but in this web update it enters the averages.

There are three other works that enter in light-quark mass averages: FNAL/MILC/TUMQCD 18 [8]
(which contributes both to the average of m,4 and ms), and the m,q determinations in
HPQCD 18 [15] and HPQCD 14A [16].

While the results of HPQCD 14A and HPQCD 18 agree well (using different methods),
there are several tensions in the determination of m,. The most significant discrepancy is
between the results of the ETMC collaboration and other results. But also two recent and
very precise determinations (HPQCD 18 and FNAL/MILC/TUMQCD 18) show a tension.
Overall there is a rough agreement between the different determinations with x?/dof = 1.2
(that we use to scale the error according to the standard FLAG averaging procedure). In
the case of m,4 on the other hand only two works contribute to the average: ETM 14 and
FNAL/MILC/TUMQCD 18. They disagree, with the FNAL/MILC/TUMQCD 18 value
basically matching the Ny = 2 4 1 result. The large x?%/dof ~ 1.7 increases significantly
the error of the average. These large values of the x? are difficult to understand in terms

To obtain this number, we have used the conversion from =3 GeV to m. given in Ref. [206].

40 Updated Feb. 2023



of a statistical fluctuation. On the other hand the Ny =241 and Ny = 2+ 141 averages
show a good agreement, which increases our confidence in the averages quoted below.

The Ny = 2+ 1+ 1 results are summarized in Tab. 7. Note that the results of Ref. [16]
are reported as m4(2GeV; Ny = 3) and those of Ref. [7] as myq5)(2 GeV; Ny = 4). We
convert the former to Ny = 4 and obtain ms(2 GeV; Ny = 4) = 93.7(8)MeV. The average
of ETM 21A, FNAL/MILC/TUMQCD 18, HPQCD 18, ETM 14 and HPQCD 14A is
93.46(58)MeV with x2/dof = 1.3. For the light-quark average we use ETM 21A, ETM 14
and FNAL/MILC/TUMQCD 18 with an average 3.427(51) and a x?/dof = 4.5. We note
these x2 values are large. For the case of the light-quark masses there is a clear tension
between the ETM results and the FNAL/MILC/TUMQCD results. In the case of m
there is also some tension between the recent and very precise results of HPQCD 18 and
FNAL/MILC/TUMQCD 18, although the total average does not show a large x?/dof.
We also note that the 2+1-flavour values are consistent with the four-flavour ones, so in
all cases we have decided to simply quote averages according to FLAG rules, including
stretching factors for the errors based on x? values of our fits.

Mg = 3.427(51) MeV Refs. [6-8]
Np=2+41+1: v ’
fEatlA my = 93.46(58) MeV Refs. [6-8, 15, 16], 30
and the RGI values
N —ae1et: My = 4.759(71),,(55) 4 MeV Refs. [6-8], (37)

MECST = 129.8(0.8),,,(1.5) 5 MeV Refs. [6-8, 15, 16].

In Figs. 1 and 2 the lattice results listed in Tabs. 6 and 7 and the FLAG averages
obtained at each value of Ny are presented and compared with various phenomenological
results.

3.1.5 Lattice determinations of mg/m,q

The lattice results for mg/m,q are summarized in Tab. 8. In the ratio ms/myq, one of
the sources of systematic error—the uncertainties in the renormalization factors—drops
out. Also other systematic effects (like the effect of the scale setting) are reduced in these
ratios. This might explain that despite the discrepancies that are present in the individual
quark mass determinations, the ratios show an overall very good agreement.

Ny =241 lattice calculations

ALPHA 19 [20], discussed already, is the only new result for this section. The other
works contributing to this average are RBC/UKQCD 14B, which replaces RBC/UKQCD
12 (see Sec. 3.1.4), and the results of MILC 09A and BMW 10A, 10B.

The results show very good agreement with a y2/dof = 0.14. The final uncertainty
(= 0.5%) is smaller than the ones of the quark masses themselves. At this level of precision,
the uncertainties in the electromagnetic and strong isospin-breaking corrections might not
be completely negligible. Nevertheless, we decided not to add any uncertainty associated
with this effect. The main reason is that most recent determinations try to estimate this
uncertainty themselves and found an effect smaller than naive power counting estimates
(see Ny =241+ 1 section),

Ny=2+1:  my/meq=2742 (12)  Refs. [10-12, 17, 20]. (38)
Ny =24+ 1+1 lattice calculations
For Ny =2+ 1+ 1 there are four results, ETM 21 [6], MILC 17 [18], ETM 14 [7] and

FNAL/MILC 14A [19], all of which satisfy our selection criteria.
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Figure 1: MS mass of the strange quark (at 2 GeV scale) in MeV. The upper two panels show
the lattice results listed in Tabs. 6 and 7, while the bottom panel collects sum rule results [208—
212]. Diamonds and squares represent results based on perturbative and nonperturbative
renormalization, respectively. The black squares and the grey bands represent our averages
(34) and (36). The significance of the colours is explained in Sec. 2.

All these works have been discussed in the previous FLAG edition [4], except the new
result ETM 21A, that we have already examined. The fit has x?/dof ~ 1.7, and the result
shows reasonable agreement with the Ny = 2 4 1 result.

Np=2+4141:  mg/mug=27.227 (81)  Refs. [6, 7, 18, 19], (39)

which corresponds to an overall uncertainty equal to 0.4%. It is worth noting that [18]
estimates the EM effects in this quantity to be ~ 0.18% (or 0.049 which is less than the
quoted error above).

All the lattice results listed in Tab. 8 as well as the FLAG averages for each value of
Ny are reported in Fig. 3 and compared with xPT and sum rules.

3.1.6 Lattice determination of m, and my

In addition to reviewing computations of individual m, and mg quark masses, we will
also determine FLAG averages for the parameter € related to the violations of Dashen’s
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shows results based on sum rules [208, 211, 213] (for more details see Fig. 1).

theorem AL — AL
Mz — AM=)7
€= ( K 7r) , (40>
AM?2

where AM2 = M2, — M2, and AM} = M3, — M3, are the pion and kaon squared mass
splittings, respectively. The superscript v, here and in the following, denotes corrections
that arise from electromagnetic effects only. This parameter is often a crucial intermediate
quantity in the extraction of the individual light-quark masses. Indeed, it can be shown,
using the G-parity symmetry of the pion triplet, that AM2 does not receive O(dm)
isospin-breaking corrections. In other words

2 \y
2 _ 2\v _ (AMK) _
AM: = (AM?Z) and € 7AM§ 1, (41)
at leading-order in the isospin-breaking expansion. The difference (AM,%)SU(Z) was esti-

mated in previous editions of FLAG through the ¢, parameter. However, consistent with
our leading-order truncation of the isospin-breaking expansion, it is simpler to ignore
this term. Once known, € allows one to consistently subtract the electromagnetic part of

Mean mass of the two lightest quarks, myg = %(mu + mg). The bottom panel
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Figure 3: Results for the ratio ms/m,q. The upper part indicates the lattice results listed in
Tab. 8 together with the FLAG averages for each value of Ny. The lower part shows results
obtained from yPT and sum rules [211, 214-217].

the kaon-mass splitting to obtain the QCD splitting (AMIQ()SU(Q). In contrast with the
pion, the kaon QCD splitting is sensitive to m, and, in particular, proportional to it at
leading order in xPT. Therefore, the knowledge of € allows for the determination of dm
from a chiral fit to lattice-QCD data. Originally introduced in another form in [218], €
vanishes in the SU(3) chiral limit, a result known as Dashen’s theorem. However, in the
1990’s numerous phenomenological papers pointed out that € might be an O(1) number,
indicating a significant failure of SU(3) xPT in the description of electromagnetic effects
on light-meson masses. However, the phenomenological determinations of € feature some
level of controversy, leading to the rather imprecise estimate ¢ = 0.7(5) given in the first
edition of FLAG. Starting with the FLAG 19 edition of the review, we quote more precise
averages for €, directly obtained from lattice-QCD+QED simulations. We refer the reader
to earlier editions of FLAG and to the review [219] for discusions of the phenomenological
determinations of e.

The quality criteria regarding finite-volume effects for calculations including QED are
presented in Sec. 2.1.1. Due to the long-distance nature of the electromagnetic interaction,
these effects are dominated by a power law in the lattice spatial size. The coefficients of
this expansion depend on the chosen finite-volume formulation of QED. For QED;,, these
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effects on the squared mass M? of a charged meson are given by [151, 152, 154]

ApyM? = aM? {]\?L + (Jécj.j)Q +0 [(MIL)?)} } : (42)

with ¢; ~ —2.83730. It has been shown in [151] that the two first orders in this expan-
sion are exactly known for hadrons, and are equal to the pointlike case. However, the
O[1/(ML)?] term and higher orders depend on the structure of the hadron. The universal
corrections for QEDp, can also be found in [151]. In all this part, for all computations
using such universal formulae, the QED finite-volume quality criterion has been applied
with nyi, = 3, otherwise ny;, = 1 was used.

Since FLAG 19, six new results have been reported for nondegenerate light-quark
masses. In the Ny =2+ 1+ 1 sector, MILC 18 [23] computed € using Ny = 2+ 1 asqtad
electro-quenched QCD+QED;, simulations and extracted the ratio m, /mg from a new
set of Ny = 2+ 1+ 1 HISQ QCD simulations. Although € comes from Ny = 2 +1
simulations, (AM%)SY()| which is about three times larger than (AM#)”, has been
determined in the Ny = 2 + 1 4 1 theory. We therefore chose to classify this result
as a four-flavour one. This result is explicitly described by the authors as an update of
MILC 17 [18]. In MILC 17 [18], m,, /mg is determined as a side-product of a global analysis
of heavy-meson decay constants, using a preliminary version of e from MILC 18 [23]. In
FNAL/MILC/TUMQCD 18 [8] the ratio m,,/mg from MILC 17 [18] is used to determine
the individual masses m,, and mq from a new calculation of m,4. The work RM123 17 [21]
is the continuation of the Ny = 2 work named RM123 13 [176] in the previous edition of
FLAG. This group now uses Ny = 2+ 1+ 1 ensembles from ETM 10 [220], however, still
with a rather large minimum pion mass of 270 MeV, leading to the rating for chiral
extrapolations. In the Ny = 2+1 sector, BMW 16A [22] reuses the data set produced from
their determination of the light-baryon octet-mass splittings [177] using electro-quenched
QCD+QED~;, smeared clover fermion simulations. Finally, MILC 16 [221], which is a
preliminary result for the value of € published in MILC 18 [23], also provides a Ny = 2+1
computation of the ratio m,,/mg.

MILC 09A [17] uses the mass difference between K° and KT, from which they sub-
tract electromagnetic effects using Dashen’s theorem with corrections, as discussed in
the introduction of this section. The up and down sea quarks remain degenerate in
their calculation, fixed to the value of m,q obtained from M, o. To determine m,, /mg,
BMW 10A, 10B [11, 12] follow a slightly different strategy. They obtain this ratio from
their result for my/m,q combined with a phenomenological determination of the isospin-
breaking quark-mass ratio @ = 22.3(8), from n — 37 decays [222] (the decay n — 37
is very sensitive to QCD isospin breaking, but fairly insensitive to QED isospin break-
ing). Instead of subtracting electromagnetic effects using phenomenology, RBC 07 [173]
and Blum 10 [174] actually include a quenched electromagnetic field in their calculation.
This means that their results include corrections to Dashen’s theorem, albeit only in the
presence of quenched electromagnetism. Since the up and down quarks in the sea are
treated as degenerate, very small isospin corrections are neglected, as in MILC’s calcula-
tion. PACS-CS 12 [194] takes the inclusion of isospin-breaking effects one step further.
Using reweighting techniques, it also includes electromagnetic and m,, —myq effects in the
sea. However, they do not correct for the large finite-volume effects coming from elec-
tromagnetism in their ML ~ 2 simulations, but provide rough estimates for their size,
based on Ref. [183]. QCDSF/UKQCD 15 [223] uses QCD+QED dynamical simulations
performed at the SU(3)-flavour-symmetric point, but at a single lattice spacing, so they
do not enter our average. The smallest partially quenched (mgea 7# Mya1) pion mass is
greater than 200 MeV, so our chiral-extrapolation criteria require a © rating. Concern-
ing finite-volume effects, this work uses three spatial extents L of 1.6 fm, 2.2 fm, and
3.3 fm. QCDSF/UKQCD 15 claims that the volume dependence is not visible on the two
largest volumes, leading them to assume that finite-size effects are under control. As a
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Figure 4: Lattice results and FLAG averages at Ny = 2+1 and 2+41+1 for the up-down-quark
masses ratio m,,/mg, together with the current PDG estimate.

consequence of that, the final result for quark masses does not feature a finite-volume
extrapolation or an estimation of the finite-volume uncertainty. However, in their work
on the QED corrections to the hadron spectrum [223] based on the same ensembles, a vol-
ume study shows some level of compatibility with the QEDj, finite-volume effects derived
in [152]. We see two issues here. Firstly, the analytical result quoted from [152] predicts
large, O(10%) finite-size effects from QED on the meson masses at the values of M, L
considered in QCDSF/UKQCD 15, which is inconsistent with the statement made in the
paper. Secondly, it is not known that the zero-mode regularization scheme used here has
the same volume scaling as QED;,. We therefore chose to assign the m rating for finite
volume to QCDSF/UKQCD 15. Finally, for Ny =24 1+1, ETM 14 [7] uses simulations
in pure QCD, but determines m,, —mq from the slope M /Om,,q and the physical value
for the QCD kaon-mass splitting taken from the phenomenological estimate in FLAG 13.

Lattice results for m,,, mgq and m, /mg are summarized in Tab. 9. The colour coding
is specified in detail in Sec. 2.1. Considering the important progress in the last years on
including isospin-breaking effects in lattice simulations, we are now in a position where
averages for m, and my can be made without the need of phenomenological inputs.
Therefore, lattice calculations of the individual quark masses using phenomenological
inputs for isospin-breaking effects will be coded m.

We start by recalling the Ny = 2 FLAG average for the light-quark masses, entirely
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coming from RM123 13 [176],

my, = 2.40(23) MeV Ref. [176],
Ny =2: ma = 4.80(23) MeV Ref. [176], (43)
My /mg = 0.50(4) Ref. [176],

with errors of roughly 10%, 5% and 8%, respectively. In these results, the errors are
obtained by combining the lattice statistical and systematic errors in quadrature. For
Ny = 2 + 1, the only result, which qualifies for entering the FLAG average for quark
masses, is BMW 16A [22],

m, = 2.27(9) MeV Ref. [22],
Ny=2+1: mg = 4.67(9) MeV Ref. [22], (44)
my/mg = 0.485(19) Ref. [22],

with errors of roughly 4%, 2% and 4%, respectively. This estimate is slightly more precise
than in the previous edition of FLAG. More importantly, it now comes entirely from
a lattice-QCD+QED calculation, whereas phenomenological input was used in previous
editions. These numbers result in the following RGI averages

MECT = 3.15(12),,(4)A MeV Ref. [22],
Ny=2+1: MRS = 6.49(12),,(7) s MeV Ref. [22]. (45)

Finally, for Ny =2+ 141, RM123 17 [21] and FNAL/MILC/TUMQCD 18 [8] enter
the average for the individual m,, and mg masses, and RM123 17 [21] and MILC 18 [23]
enter the average for the ratio m, /mg, giving

my, = 2.14(8) MeV Ref. [8, 21],
Ny=2+1+1: mq = 4.70(5) MeV Ref. [8, 21], (46)
M /mg = 0.465(24) Ref. [21, 23].

with errors of roughly 4%, 1% and 5%, respectively. One can observe some marginal
discrepancies between results coming from the MILC collaboration and RM123 17 [21].
More specifically, adding all sources of uncertainties in quadrature, one obtains a 1.70
discrepancy between RM123 17 [21] and MILC 18 [23] for m,,/m4, and a 2.20 discrepancy
between RM123 17 [21] and FNAL/MILC/TUMQCD 18 [8] for m,,. However, the values
of my and € are in very good agreement between the two groups. These discrepancies
are presently too weak to constitute evidence for concern, and will be monitored as more
lattice groups provide results for these quantities. The RGI averages for m,, and mgy are

MBS =2.97(11),,,(3) A MeV Ref. [8, 21],
Ny=2+1+1: MECL = 6.53(7). (8) 2 MeV Ref. [8, 21].  (47)

Every result for m,, and mgy used here to produce the FLAG averages relies on electro-
quenched calculations, so there is some interest to comment on the size of quenching
effects. Considering phenomenology and the lattice results presented here, it is reasonable
for a rough estimate to use the value (AMZ)? ~ 2000 MeV? for the QED part of the
kaon-mass splitting. Using the arguments presented in Sec. 3.1.3, one can assume that the
QED sea contribution represents O(10%) of (AM2%)?. Using SU(3) PQxPT+QED [178,
225] gives a ~ 5% effect. Keeping the more conservative 10% estimate and using the
experimental value of the kaon-mass splitting, one finds that the QCD kaon-mass splitting
(AM;)SU(Q) suffers from a reduced 3% quenching uncertainty. Considering that this
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splitting is proportional to m, —mg at leading order in SU(3) xPT, we can estimate that
a similar error will propagate to the quark masses. So the individual up and down masses
look mildly affected by QED quenching. However, one notices that ~ 3% is the level of
error in the new FLAG averages, and increasing significantly this accuracy will require
using fully unquenched calculations.

In view of the fact that a massless up quark would solve the strong CP problem, many
authors have considered this an attractive possibility, but the results presented above
exclude this possibility: the value of m, in Eq. (44) differs from zero by 26 standard
deviations. We conclude that nature solves the strong CP problem differently.

Finally, we conclude this section by giving the FLAG averages for € defined in Eq. (40).
For Ny =241+ 1, we average the results of RM123 17 [21] and MILC 18 [23] with the
value of (AMZ%)Y from BMW 14 [151] combined with Eq. (41), giving

Ny=2+1+1: e = 0.79(6) Ref. [21, 23, 151]. (48)

Although BMW 14 [151] focuses on hadron masses and did not extract the light-quark
masses, they are the only fully unquenched QCD+QED calculation to date that qualifies
to enter a FLAG average. With the exception of renormalization, which is not discussed
in the paper, this work has a % rating for every FLAG criterion considered for the m,,
and mg quark masses. For Ny = 2 + 1 we use the results from BMW 16A [22],

Ny=2+1: e =0.73(17) Ref. [22]. (49)

It is important to notice that the e uncertainties from BMW 16A and RM123 17
are dominated by estimates of the QED quenching effects. Indeed, in contrast with the
quark masses, € is expected to be rather sensitive to the sea-quark QED contributions.
Using the arguments presented in Sec. 3.1.3, if one conservatively assumes that the QED
sea contributions represent O(10%) of (AMZ%)7, then Eq. (41) implies that ¢ will have
a quenching error of ~ 0.15 for (AM#%)? ~ 2000 MeV?, representing a large ~ 20%
relative error. It is interesting to observe that such a discrepancy does not appear between
BMW 15 and RM123 17, although the ~ 10% accuracy of both results might not be
sufficient to resolve these effects. On the other hand, in the context of SU(3) chiral
perturbation theory, Bijnens and Danielsson [178] show that the QED quenching effects
on € do not depend on unknown LECs at NLO and are therefore computable at that
order. In that approach, MILC 18 finds the effect at NLO to be only 5%. To conclude,
although the controversy around the value of € has been significantly reduced by lattice-
QCD+QED determinations, computing this at few-percent accuracy requires simulations
with charged sea quarks.

3.1.7 Estimates for R and

The quark-mass ratios

2 2
Mg — Myd m2 —m
— % and Q%= — “2d
Mg — My m2 —m2

R

(50)

compare SU (3) breaking with isospin breaking. Both numbers only depend on the ratios
ms/Myq and m, /mg,

1 s 14 2w 1 s
R:(m —1) ™4 and Q2=(m —|—1>R. (51)

2 \myq 1-— 2

ma
The quantity @ is of particular interest because of a low-energy theorem [226], which

relates it to a ratio of meson masses,

M% M — M? - - - - - -
2 K K s 2 2 2 2 2 2
Q% = V12 N2, AT M2 =L(M2 + M), ME=3(ME+Mpo). (52)
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(We remind the reader that the " denotes a quantity evaluated in the o — 0 limit.)
Chiral symmetry implies that the expansion of Q3%; in powers of the quark masses (i)
starts with Q2 and (ii) does not receive any contributions at NLO:

NLO
Qu = Q. (53)
We recall here the Ny = 2 estimates for ) and R from FLAG 16,
R =140.7(3.7)(2.2), Q = 24.3(1.4)(0.6) , (54)

where the second error comes from the phenomenological inputs that were used. For
Ny =241, we use Egs. (38) and (44) and obtain

R =38.1(1.5), Q =23.3(0.5) , (55)
where now only lattice results have been used. For Ny =2+ 1 4 1 we obtain
R =35.9(1.7), Q =22.5(0.5) , (56)

which are quite compatible with two- and three-flavour results. It is interesting to notice
that the most recent phenomenological determination of R and Q from 1 — 37 decay [227]
gives the values R = 34.4(2.1) and Q = 22.1(7), which are marginally discrepant with some
of the averages presented here. The authors of [227, 228] point out that this discrepancy
is likely due to surprisingly large corrections to the approximation in Eq. (53) used in the
phenomenological analysis.

Our final results for the masses m.,,, Mg, Mqyq, Mms and the mass ratios m, /mq, ms/mayaq,
R, Q are collected in Tabs. 10 and 11.
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v 5 F ¥ 8
Collaboration Ref. & ¥ OOQ & 5’0 &§ Mud ms
ALPHA 19 9 A e 3.54(12)(9) 95.7(2.5)(2.4)
Maezawa 16 193] A =m d - 92.0(1.7)
RBC/UKQCD 14B° [10] A d  3.31(4)(4) 90.3(0.9)(1.0)
RBC/UKQCD 12° [192] A d  3.37(9)(7)(1)(2)  92.3(1.9)(0.9)(0.4)(0.8)
PACS-CS 12 [194] A E = b 3.12(24)(8) 83.60(0.58)(2.23)
Laiho 11 [53] C — 3.31(7)(20)(17) 94.2(1.4)(3.2)(4.7)
BMW 10A, 10B* [11,12] A ¢ 3.469(47)(48) 95.5(1.1)(1.5)
PACS-CS 10 [195] A E = b 2.78(27) 86.7(2.3)
MILC 10A [14] C —  3.19(4)(5)(16)
HPQCD 10** [13] A - — 3.39(6) 92.2(1.3)
RBC/UKQCD 10A [121] A a  3.59(13)(14)(8) 96.2(1.6)(0.2)(2.1)
Blum 107 [174] A . — 3.44(12)(22) 97.6(2.9)(5.5)
PACS-CS 09 [196] A E = b 2.97(28)(3) 92.75(58)(95)
HPQCD 09A® [30] A — = 3.40(7) 92.4(1.5)
MILC 09A [17] C — 325 (1)(7)(16)(0)  89.0(0.2)(1.6)(4.5)(0.1)
MILC 09 [161] A —3.2(0)(1)(2)(0) 88(0)(3)(4)(0)
PACS-CS 08 [197] A B o= om - 2527(47) 72.72(78)
RBC/UKQCD 08 [198] A " —  3.72(16)(33)(18)  107.3(4.4)(9.7)(4.9)
fEQ%%CS? [199] A = ® —  3.55(19)(F39) 90.1(4.3)(+1%7)
HPQCD 05 [200] A - 3.2(0)(2)(2)(0)* 87(0)(4)(4)(0)*
MILC 04, HPQED/ 10, 501 A n - 280)1)3)0)  76(0)(3)(7)(0)

MILC/UKQCD 04

© The results are given in the MS scheme at 3 instead of 2 GeV. We run them down to 2 GeV using

numerically integrated 4-loop running [203, 204] with Ny = 3 and with the values of a(Mz), ms, and

me taken from Ref. [205]. The running factor is 1.106. At three loops it is only 0.2% smaller, indicating
that perturbative running uncertainties are small. We neglect them here.

The calculation includes electromagnetic and m,, # mq effects through reweighting.

The fermion action used is tree-level improved.

** 'ms is obtained by combining m. and HPQCD 09A’s m./ms = 11.85(16) [30]. Finally, muq is
determined from ms with the MILC 09 result for ms/mqq. Since mc./ms is renormalization group
invariant in QCD, the renormalization and running of the quark masses enter indirectly through that
of m. (see below).

' The calculation includes quenched electromagnetic effects.

® What is calculated is m./ms = 11.85(16). ms is then obtained by combining this result with the

determination mc(m.) = 1.268(9) GeV from Ref. [206]. Finally, m,q is determined from m with the

MILC 09 result for ms/mqyq.

The bare numbers are those of MILC 04. The masses are simply rescaled, using the ratio of the 2-loop

to 1-loop renormalization factors.

a The masses are renormalized nonperturbatively at a scale of 2 GeV in a couple of Ny = 3 RI-SMOM
schemes. A careful study of perturbative matching uncertainties has been performed by comparing
results in the two schemes in the region of 2 GeV to 3 GeV [121].

b The masses are renormalized and run nonperturbatively up to a scale of 40 GeV in the Ny = 3 SF
scheme. In this scheme, nonperturbative and NLO running for the quark masses are shown to agree
well from 40 GeV all the way down to 3 GeV [195].

¢ The masses are renormalized and run nonperturbatively up to a scale of 4 GeV in the Ny = 3 RI-MOM
scheme. In this scheme, nonperturbative and N®LO running for the quark masses are shown to agree
from 6 GeV down to 3 GeV to better than 1% [12].

d All required running is performed nonperturbatively.

e Running is performed nonperturbatively from 200 MeV to the electroweak scale ~ 100 GeV.

Table 6: Ny = 2+ 1 lattice results for the masses m,q and ms (MeV).
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Collaboration Ref. ) O < < 5 < Mud ms
ETM 21A 6] A —  3.636(66)(T%2)  98.7(2.4)(739)
HPQCD 187 [15] A - 94.49(96)
FNAL/MILC/TUMQCD 18 [8] A —  3.404(14)(21) 92.52(40)(56)
HPQCD 14A © [16] A - = 93.7(8)
ETM 14% 71 A —  3.70(13)(11) 99.6(3.6)(2.3)

T Bare-quark masses are renormalized nonperturbatively in the RI-SMOM scheme at scales uy ~ 2 —5
GeV for different lattice spacings and translated to the MS scheme. Perturbative running is then used
to run all results to a reference scale p = 3 GeV.

®  As explained in the text, m; is obtained by combining the results m.(5 GeV; Ny = 4) = 0.8905(56) GeV
and (m./ms)(Ny = 4) = 11.652(65), determined on the same data set. A subsequent scale and scheme
conversion, performed by the authors, leads to the value 93.6(8). In the table, we have converted this
to ms(2GeV; Ny = 4), which makes a very small change.

Table 7: Ny = 2+ 1+ 1 lattice results for the masses m,q and m; (MeV).
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Collaboration Ref. Ny ) & & & Ms/Mud
ETM 21A [6] 2+1+1 A 27.17(32) 3¢
MILC 17 # 18] 24141 A 27.178(47)+8S
FNAL/MILC 14A [19] 2+1+1 A 27.35(5) 710
ETM 14 [7] 2+141 A 26.66(32)(2)
ALPHA 19 [20] 241 A 27.0(1.0)(0.4)
RBC/UKQCD 14B [10] 241 A 27.34(21)
RBC/UKQCD 12° [192] 241 A 27.36(39)(31)(22)
PACS-CS 12* [194] 241 A u n 26.8(2.0)
Laiho 11 53] 241 C 28.4(0.5)(1.3)
BMW 10A, 10B* (11, 12] 2+1 A 27.53(20)(8)
RBC/UKQCD 10A [121] 241 A 26.8(0.8)(1.1)
Blum 107 [174] 241 A m 28.31(0.29)(1.77)
PACS-CS 09 [196] 2+1 A u n 31.2(2.7)
MILC 09A [17] 241 C 27.41(5)(22)(0)(4)
MILC 09 [161] 241 A 27.2(1)(3)(0)(0)
PACS-CS 08 [197] 2+1 A u n 28.8(4)
RBC/UKQCD 08 [198] 241 A . 28.8(0.4)(1.6)
MILC 04, HPQCD/ o) g1 941 A 27.4(1)(4)(0)(1)

MILC/UKQCD 04

The calculation includes electromagnetic effects.
The errors are statistical, chiral and finite volume.

O

The calculation includes electromagnetic and m, # mg effects through reweighting.
The fermion action used is tree-level improved.
The calculation includes quenched electromagnetic effects.

-~ +

Table 8: Lattice results for the ratio mg/myq.
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N f Myd ms ms/ Mud

2+1+1 3.410(43) 93.44(68) 27.23(10)

241 3.364(41) 92.03(88) 27.42(12)

Table 10: Our estimates for the strange-quark and the average up-down-quark masses in
the MS scheme at running scale p = 2GeV. Mass values are given in MeV. In the results
presented here, the error is the one which we obtain by applying the averaging procedure of
Sec. 2.3 to the relevant lattice results.

Ny M mq My /Mg R Q
24141 2.14(8) 4.70(5) 0.465(24) 35.9(1.7) 22.5(0.5)
241 2.27(9) 4.67(9) 0.485(19) 38.1(1.5) 23.3(0.5)

Table 11:  Our estimates for the masses of the two lightest quarks and related, strong isospin-
breaking ratios. Again, the masses refer to the MS scheme at running scale ; = 2 GeV. Mass
values are given in MeV.
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3.2 Charm-quark mass

In the following, we collect and discuss the lattice determinations of the MS charm-
quark mass .. Most of the results have been obtained by analyzing the lattice-QCD
simulations of two-point heavy-light- or heavy-heavy-meson correlation functions, using
as input the experimental values of the D, D, and charmonium mesons. Some groups use
the moments method. The latter is based on the lattice calculation of the Euclidean time
moments of pseudoscalar-pseudoscalar correlators for heavy-quark currents followed by an
OPE expansion dominated by perturbative QCD effects, which provides the determination
of both the heavy-quark mass and the strong-coupling constant c.

The heavy-quark actions adopted by various lattice collaborations have been discussed
in previous FLAG reviews [2—4], and their descriptions can be found in Sec. A.1.3 of FLAG
19 [4]. While the charm mass determined with the moments method does not need any
lattice evaluation of the mass-renormalization constant Z,,, the extraction of m,. from
two-point heavy-meson correlators does require the nonperturbative calculation of Z,,.
The lattice scale at which Z,, is obtained is usually at least of the order 2-3 GeV, and
therefore it is natural in this review to provide the values of M (1) at the renormalization
scale u = 3 GeV. Since the choice of a renormalization scale equal to . is still commonly
adopted (as by the PDG [169]), we have collected in Tab. 12 the lattice results for both
m(M.) and M.(3 GeV), obtained for Ny =2+ 1 and 2+ 1+ 1. For Ny = 2, interested
readers are referred to previous reviews [2, 3].

When not directly available in the published work, we apply a conversion factor using
perturbative QCD evolution at five loops to run down from pu = 3 GeV to the scales
w = . and 2 GeV of 0.7739(60) and 0.9026(23), respectively, where the error comes
from the uncertainty in Aqop. We use Aqep = 297(12) MeV for Ny = 4 (see Sec. 9).
Perturbation theory uncertainties, estimated as the difference between results that use
4- and 5-loop running, are significantly smaller than the parametric uncertainty coming
from Aqcp. For po = my, the former is about about 2.5 times smaller. Given the high
precision of many of these results, future works should take the uncertainties in Agcp
and perturbation theory seriously.

In the next subsections we review separately the results for m,. with three or four
flavours of quarks in the sea.

3.2.1 Ny =2+1 results

Since the last review [4], there are two new results, Petreczky 19 [28] and ALPHA 21
[29]. Petreczky 19 employs the HISQ action on ten ensembles with ten lattice spacings
down to 0.025 fm, physical strange-quark mass, and two light-quark masses, the lightest
corresponding to 161 MeV pions. Their study incorporates lattices with 11 different sizes,
ranging from 1.6 to 5.4 fm. The masses are computed from moments of pseudoscalar
quarkonium correlation functions, and MS masses are extracted with 4-loop continuum
perturbation theory. Thus this work easily rates green stars in all categories. ALPHA 21
uses the O(a)-improved Wilson-clover action with five lattice spacings from 0.087 to 0.039
fm, produced by the CLS collaboration. For each lattice spacing, several light sea-quark
masses are used in a global chiral-continuum extrapolation (the lightest pion mass for one
ensemble is 198 MeV). The authors also use nonperturbative renormalization and running
through application of step-scaling and the Schrédinger functional scheme. Finite-volume
effects are investigated at one lattice spacing and only for ~ 400 MeV pions on the smallest
two volumes where results are compatible within statistical errors. ALPHA 21 satisfies the
FLAG criteria for green-star ratings in all of the categories listed in Tab. 12. Descriptions
of the other works in this section can be found in the last review [4].

According to our rules on the publication status, the FLAG average for the charm-
quark mass at Ny = 2 4 1 is obtained by combining the results HPQCD 10, xQCD 14,

55 Updated Feb. 2023



L
$ £ § &
& g & 9 §
¥ ¥ §F e &
~ s 5 5 J
Collaboration ~ Ref. Ny § ¥ & & ¢ me(Me) me(3 GeV)
ETM 21A 6] 2+14+1 P 1.339(22) (1) (10)T  1.036(17)(F3%)
HPQCD 20A [25] 2+1+1 A 1.2719(78) 0.9841(51)
HPQCD 18 [15] 24141 A 1.2757(84) 0.9896(61)
FNAL/MILC/
TUMOCD 18 8] 2+41+1 A —  1.273(4)(1)(10) 0.9837(43)(14)(33)(5)
HPQCD 14A [16] 2+1+1 A —  1.2715(95) 0.9851(63)
ETM 14A [24] 2+1+1 A 1.3478(27)(195) 1.0557(22)(153)*
ETM 14 [7] 24141 A 1.348(46) 1.058(35)*
ALPHA 21 [29] 2+1 At 1.296(19) 1.007(16)
Petreczky 19 28] 2+1 A 1.265(10) 1.001(16)
Maezawa 16 [193] 2+1 A " 1.267(12)
JLQCD 16 [27] 2+1 A —  1.2871(123) 1.0033(96)
xQCD 14 [26] 2+1 A 1.304(5)(20) 1.006(5)(22)
HPQCD 10 [13] 2+1 A - 1.273(6) 0.986(6)
HPQCD 08B [206] 2+1 A - 1.268(9) 0.986(10)
PDG [169] 1.27(2)

f We applied the running factor 0.7739(60) for 1 = 3 GeV to m.. The errors are statistical, systematic,
and the uncertainty in the running factor.

* A running factor equal to 0.900 between the scales p = 2 GeV and p = 3 GeV was applied by us.

T Published after the FLAG deadline.

Table 12:  Lattice results for the MS charm-quark mass m.(m,.) and m.(3 GeV) in GeV,
together with the colour coding of the calculations used to obtain them.

JLQCD 16, Petreczky 19, and ALPHA 21,

e (M) = 1.276(5) GeV Refs. [13, 26-29], (57)

Np=2+1L: o(3 GeV) = 0.994(4) GeV Refs. [13, 26 29], (58)

where the error on m.(m.) includes a stretching factor y/x?/dof ~ 1.1 as discussed in
Sec. 2.2. This result corresponds to the following RGI average

MRS = 1.527(6),,(14) 5 CeV Refs. [13, 26-29] . (59)

3.2.2 Ny=2+1+1 results

For a discussion of older results, see the previous FLAG reviews. Since FLAG 19 two
groups have produced updated values with charm quarks in the sea.

HPQCD 20A [25] is an update of HPQCD 18, including a new finer ensemble (a ~ 0.045
fm) and EM corrections computed in the quenched approximation of QED for the first
time. Besides these new items, the analysis is largely unchanged from HPQCD 18 except
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for an added a2 correction to the SMOM-to-MS conversion factor and tuning the bare
charm mass via the J/¢¥ mass rather than the n.. Their new value in pure QCD is
Me(3 GeV) = 0.9858(51) GeV which is quite consistent with HPQCD 18 and the FLAG
19 average. The effects of quenched QED in both the bare charm-quark mass and the
renormalization constant are small. Both effects are precisely determined, and the overall
effect shifts the mass down slightly to m.(3 GeV) = 0.9841(51) where the uncertainty
due to QED is invisible in the final error. The shift from their pure QCD value due to
quenched QED is about —0.2%.

ETM 21A [6] is a new work that follows a similar methodology as ETM 14, but with
significant improvements. Notably, a clover-term is added to the twisted mass fermion
action which suppresses O(a?) effects between the neutral and charged pions. Additional
improvements include new ensembles lying very close to the physical mass point, better
control of nonperturbative renormalization systematics, and use of both meson and baryon
correlation functions to determine the quark mass. They use the RI-MOM scheme for
nonperturbative renormalization. The analysis comprises ten ensembles in total with three
lattice spacings (0.095, 0.082, and 0.069 fm), two volumes for the finest lattice spacings
and four for the other two, and pion masses down to 134 MeV for the finest ensemble.
The values of m, L range mostly from almost four to greater than five. According to the
FLAG criteria, green stars are earned in all categories. The authors find m.(3 GeV) =
1.036(17)(*3%) GeV. In Tab. 12 we have applied a factor of 0.7739(60) to run from 3 GeV
to m.. Asin FLAG 19, the new value is consistent with ETM 14 and ETM 14A, but is still
high compared to the FLAG average. The authors plan future improvements, including a
finer lattice spacing for better control of the continuum limit and a new renormalization
scheme, like RI-SMOM.

Six results enter the FLAG average for Ny = 2 4+ 1 4+ 1 quark flavours: ETM 14,
ETM 14A, HPQCD 14A, FNAL/MILC/TUMQCD 18, HPQCD 20A, and ETM 21A. We
note that while the ETM determinations of m,. agree well with each other, they are in-
compatible with HPQCD 14A, FNAL/MILC/TUMQCD 18, and HPQCD 20A by several
standard deviations. While the ETM 14 and ETM 14A use the same configurations, the
analyses are quite different and independent, and ETM 21A is a new result on new lat-
tices with improved methodology. As mentioned earlier, m,q and m, values by ETM are
also systematically high compared to their respective averages. Combining all six results
yields yields

Ny 24141 me(m.) = 1.280(13) GeV Refs. [6-8, 16, 24, 25], (60)
! ’ me(3 GeV) = 0.989(10) GeV Refs. [6-8, 16, 24, 25], (61)
where the errors include large stretching factors y/x?/dof =~ 2.0 and 2.4, respectively.
We have assumed 100% correlation for statistical errors between ETM 14 and ETM 14A
results and the same for HPQCD 14A, HPQCD 20A, and FNAL/MILC/TUMQCD 18.
These are obviously poor x? values, and the stretching factors are quite large. While
it may be prudent in such a case to quote a range of values covering the central values
of all results that pass the quality criteria, we believe in this case that would obscure
rather than clarify the situation. From Fig. 5 we note that not only do ETM 21A, ETM
14A, and ETM 14 lie well above the other 2+1+1 results, but also above all of the 2+1
flavour results. A similar trend is apparent for the light-quark masses (see Figs. 1 and
2) while for mass ratios there is better agreement (Figs. 3, 4 and 6). The latter suggests
there may be underestimated systematic uncertainties associated with scale setting and /or
renormalization which have not been detected. Finally we note the ETM results are
significantly higher than the PDG average. For these reasons, which admittedly are not
entirely satisfactory, we continue to quote an average with a stretching factor as in previous
reviews.
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The RGI average reads as follows,
MERCT = 1.519(15),,,(14)p GeV Refs. [6-8, 16, 24, 25]. (62)

Figure 5 presents the values of m.(7.) given in Tab. 12 along with the FLAG averages
obtained for 2+ 1 and 2+ 1 + 1 flavours.

FIAG2023 m.(m¢)

FLAG average for Ne=2+1+1

——
—a— ETM 21A
HIlH HPQCD 20A
HH HPQCD 18
HilH
HilH

24+1+1

FNAL/MILC/TUMQCD 18
HPQCD 14A
—— ETM 14A
i 1 ETM 14

Ne=

FLAG average for Ne=2+1

H—— ALPHA 21
Petreczky 19
Maezawa 16
il JLQCD 16
—Hl— xQCD 14
HPQCD 10
HPQCD 08B

Ne,=2+1

—h— PDG

1.25 1.30 1.35 1.40 GeV

Figure 5: The charm-quark mass for 2 + 1 and 2 + 1 + 1 flavours. For the latter a large
stretching factor is used for the FLAG average due to poor x? from our fit.

3.2.3 Lattice determinations of the ratio m./m;,

Because some of the results for quark masses given in this review are obtained via the
quark-mass ratio m./ms, we review these lattice calculations, which are listed in Tab. 13,
as well.

The Ny = 2+ 1 results from xQCD 14 and HPQCD 09A [30] are from the same cal-
culations that were described for the charm-quark mass in the previous review. Maezawa
16 does not pass our chiral-limit test (see the previous review), though we note that it is
quite consistent with the other values. Combining yQCD 14 and HPQCD 09A, we obtain
the same result reported in FLAG 19,

Ny=2+41:  m/m, =11.82(16)  Refs. [26, 30], (63)

with a x?/dof ~ 0.85.

Turning to Ny = 2 4+ 1 + 1, there is a new result from ETM 21A (see the previous
section for details). The errors have actually increased compared to ETM 14, due to
larger uncertainties in the baryon sector which enter their average with the meson sector.
See the earlier reviews for a discussion of previous results.

We note that some tension exists between the HPQCD 14A and FNAL/MILC/TUMQCD
results. Combining these with ETM 14 and ETM 21A yields
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ETM 21A 6] 24+1+1 P 11.48(12)(*23)
FNAL/MILC/TUMQCD 18  [g] 241+1 A 11.784(11)(17)(00)(08)
HPQCD 14A [16] 241+1 A 11.652(35)(55)
FNAL/MILC 14A [19] 241+1 A 11.747(19)(*59)
ETM 14 [7] 2+1+1 A 11.62(16)
Maezawa 16 [193] 2+1 A [ 11.877(91)
xQCD 14 [26] 241 A 11.1(8)
HPQCD 09A [30] 2+1 A 11.85(16)

Table 13: Lattice results for the quark-mass ratio m./ms, together with the colour coding of
the calculations used to obtain them.

Np=2+1+41:  me/ms=11766(30)  Refs. [6-8, 16], (64)

where the error includes the stretching factor y/x?/dof ~ 1.4. We have assumed a 100%
correlation of statistical errors for FNAL/MILC/TUMQCD 18 and HPQCD 14A.

Results for m./ms are shown in Fig. 6 together with the FLAG averages for Ny = 2+1
and 2 4+ 1+ 1 flavours.
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Figure 6: Lattice results for the ratio m./ms listed in Tab. 13 and the FLAG averages
corresponding to 2 + 1 and 2 + 1 4+ 1 quark flavours. The latter average includes a large
stretching factor on the error due a poor x? from our fit.

3.3 Bottom-quark mass

Now we review the lattice results for the MS bottom-quark mass ;. Related heavy-
quark actions and observables have been discussed in previous FLAG reviews [2—-4], and
descriptions can be found in Sec. A.1.3 of FLAG 19 [4]. In Tab. 14 we collect results for
My (M) obtained with Ny = 2+ 1 and 2+ 1 + 1 sea-quark flavours. Available results
for the quark-mass ratio mp/m. are also reported. After discussing the new results we
evaluate the corresponding FLAG averages.

3.3.1 Ny=2+1

There is one new three-flavour result since the last review, Petreczky 19, which was
described already in the charm-quark section. The new result rates green stars, so our
new average with HPQCD 10 is (both works quote values in the Ny = 5 theory, so we
simply use those values),

Ny=2+1: my(p) = 4.171(20) GeV Ref. [13, 28]. (65)
The corresponding four-flavour RGI average is

Np=2+1: MEPCT = 6.881(33),,(54) s GeV Ref. [13, 28]. (66)
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HPQCD 21 [31]  2+1+1 A - 4.209(21)F* 4.586(12)*"
FNAL/MILC/TUM 18  [8] 24141 A - 4.201(12)(1)(8)(1)  4.578(5)(6)(0)(1)
Gambino 17 [34] 2+1+1 A 4.26(18)
ETM 16B B3]  24+1+1 A 4.26(3)(10)* 4.42(3)(8)
HPQCD 14B [32] 24+14+1 A 4.196(0)(23)"
ETM 14B [229]  2+1+1 C 4.26(7)(14) 4.40(6)(5)
HPQCD 14A [16]  2+1+1 A - 4.162(48) 4.528(14)(52)
Petreczky19 (28] 241 A 4.188(37) 4.586(43)
Maezawa 16 (193] 241 A = 4.184(89) 4.528(57)
HPQCD 13B [230] 241 A = - - 4.166(43)
HPQCD 10 [13]  2+1 A - 4.164(23)* 4.51(4)
ETM 13B [60] 2 A 4.31(9)(8)
ALPHA 13C [231] 2 A 4.21(11)
ETM 11A [232] 2 A 4.29(14)
PDG [169] 4187902

*+ We quote the four-flavour result. For Ny = 5, value is 4.202(21).
** The ratio is quoted in the MS scheme for ; = 3 GeV because of the different charges of the bottom
and charm quarks.
T The lattice spacing used in ETM 14B has been updated here.
T Only two pion points are used for chiral extrapolation.
* The number that is given is my(10 GeV, Ny = 5) = 3.617(25) GeV.

Table 14: Lattice results for the MS bottom-quark mass m,(7%) in GeV, together with the
systematic error ratings for each. Available results for the quark-mass ratio my/m. are also
reported.

332 N;y=2+1+1

HPQCD 21 [31] is an update of HPQCD 14A (and replaces it in our average), including
EM corrections for the first time for the b-quark mass. Four flavours of HISQ quarks are
used on MILC ensembles with lattice spacings from about 0.09 to 0.03 fm. Ensembles
with physical and unphysical mass sea-quarks are used. Quenched QED is used to obtain
the dominant O(«) effect. The ratio of bottom- to charm-quark masses is computed in a
completely nonperturbative formulation, and the b-quark mass is extracted using the value
of m.(3 GeV) from HPQCD 20A. Since EM effects are included, the QED renormalization
scale enters the ratio which is quoted for 3 GeV and Ny = 4. The total error on the new
result is more than two times smaller than for HPQCD 14A, but is only slightly smaller
compared to the NRQCD result reported in HPQCD 14B. The inclusion of QED shifts the
ratio mp/m. up slightly from the pure QCD value by about one standard deviation, and
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the value of 7y (mp) is consistent, within errors, to the other pure QCD results entering
our average. Therefore we quote a single average.

HPQCD 14B employs the NRQCD action [32] to treat the b quark. The b-quark mass
is computed with the moments method, that is, from Euclidean-time moments of two-
point, heavy-heavy-meson correlation functions (see also Sec. 9.8 for a description of the
method).

In HPQCD 14B the b-quark mass is computed from ratios of the moments R,, of heavy
current-current correlation functions, namely,

|:Rnrn—2:| 1/ Mkin MT,nb

= 67
R, _or, 2my, 2’fnb(/1,) ’ ( )

where r,, are the perturbative moments calculated at N3LO, My, is the spin-averaged
kinetic mass of the heavy-heavy vector and pseudoscalar mesons and MT,nb is the expe-
rimental spin average of the Y and 7, masses. The average kinetic mass My, is chosen
since in the lattice calculation the splitting of the Y and 7, states is inverted. In Eq. (67),
the bare mass m; appearing on the left-hand side is tuned so that the spin-averaged
mass agrees with experiment, while the mass m; at the fixed scale p = 4.18 GeV is
extrapolated to the continuum limit using three HISQ (MILC) ensembles with a =~ 0.15,
0.12 and 0.09 fm and two pion masses, one of which is the physical one. Their final
result is 7, (e = 4.18 GeV) = 4.207(26) GeV, where the error is from adding systematic
uncertainties in quadrature only (statistical errors are smaller than 0.1% and ignored).
The errors arise from renormalization, perturbation theory, lattice spacing, and NRQCD
systematics. The finite-volume uncertainty is not estimated, but at the lowest pion mass
they have m,L ~ 4, which leads to the tag

The next four-flavour result [33] is from the ETM collaboration and updates their pre-
liminary result appearing in a conference proceedings [229]. The calculation is performed
on a set of configurations generated with twisted-Wilson fermions with three lattice spac-
ings in the range 0.06 to 0.09 fm and with pion masses in the range 210 to 440 MeV.
The b-quark mass is determined from a ratio of heavy-light pseudoscalar meson masses
designed to yield the quark pole mass in the static limit. The pole mass is related to the
MS mass through perturbation theory at N3LO. The key idea is that by taking ratios
of ratios, the b-quark mass is accessible through fits to heavy-light(strange)-meson corre-
lation functions computed on the lattice in the range ~ 1-2 x m, and the static limit,
the latter being exactly 1. By simulating below 7, taking the continuum limit is easier.
They find (M) = 4.26(3)(10) GeV, where the first error is statistical and the second
systematic. The dominant errors come from setting the lattice scale and fit systematics.

Gambino et al. [34] use twisted-mass-fermion ensembles from the ETM collaboration
and the ETM ratio method as in ETM 16. Three values of the lattice spacing are used,
ranging from 0.062 to 0.089 fm. Several volumes are also used. The light-quark masses
produce pions with masses from 210 to 450 MeV. The main difference with ETM 16 is
that the authors use the kinetic mass defined in the heavy-quark expansion (HQE) to
extract the b-quark mass instead of the pole mass.

The final b-quark mass result is FNAL/MILC/TUM 18 [8]. The mass is extracted from
the same fit and analysis done for the charm quark mass. Note that relativistic HISQ
valence masses reach the physical b mass on the two finest lattice spacings (a = 0.042
fm, 0.03 fm) at physical and 0.2 m, light-quark mass, respectively. In lattice units the
heavy valence masses correspond to a MRS > 0.90, making the continuum extrapolation
challenging, but the authors investigated the effect of leaving out the heaviest points from
the fit, and the result did not noticeably change. Their results are also consistent with
an analysis dropping the finest lattice from the fit. Since the b-quark mass region is only
reached with two lattice spacings, we rate this work with a green circle for the continuum
extrapolation. Note however that for other values of the quark masses they use up to five
values of the lattice spacing (cf. their charm-quark mass determination).
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All of the above results enter our average. We note that here the ETM 16 result is
consistent with the average and a stretching factor on the error is not used. The average
and error is dominated by the very precise FNAL/MILC/TUM 18 value,

Ny=241+1:  mp(my) = 4.203(11) GeV Refs. [8, 16, 31-34]. (68)

We have included a 100% correlation on the statistical errors of ETM 16 and Gambino 17,
since the same ensembles are used in both. While FNAL/MILC/TUM 18 and HPQCD
21 also use the same MILC HISQ ensembles, the statistical error in the HPQCD 21
analysis is negligible, so we do not include a correlation between them. The average has
x2/dof = 0.02.

The above translates to the RGI average

Np=2+1+1:  MPFT=6.934(18),,(55)a GeV  Refs. [8, 16, 31-34].  (69)

All the results for () discussed above are shown in Fig. 7 together with the FLAG
averages corresponding to Ny =2+ 1 and 241 + 1 quark flavours.

FIAG2021 mp(Mp)

FLAG average for Ny=2+1+1

HPQCD 21
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HPQCD 14B
L] 1 ETM 16
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2+1+1

Ne=
]

FLAG average for N¢=2+1

2+1

Petreczky 19

Maezawa 16
HPQCD 13B
HPQCD 10

N¢

A PDG

41 43 45 47 GeV
Figure 7: The b-quark mass for Ny =2+ 1 and 2+ 1 + 1 flavours. The updated PDG value
from Ref. [169] is reported for comparison.
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4 Leptonic and semileptonic kaon and pion decay and
[Vial and |V,

Authors: T. Kaneko, J. N. Simone, S. Simula, N. Tantalo

This section summarizes state-of-the-art lattice calculations of the leptonic kaon and
pion decay constants and the kaon semileptonic-decay form factor and provides an analysis
in view of the Standard Model. With respect to the previous edition of the FLAG review
[4] the data in this section has been updated. As in Ref. [4], when combining lattice data
with experimental results, we take into account the strong SU(2) isospin correction, either
obtained in lattice calculations or estimated by using chiral perturbation theory (xPT),
both for the kaon leptonic decay constant fx+ and for the ratio fr+/fr+.

4.1 Experimental information concerning |V,|, |Vis|, f+(0) and
fKi/fﬂ'i

The following review relies on the fact that precision experimental data on kaon decays
very accurately determine the product |V,s|f+(0) [233] and the ratio |Vis/Vialfr=/ frat
[169, 233]:

Jr=

=

|[Vus| f+(0) = 0.2165(4) , = 0.2760(4) . (70)

Vud
Here and in the following, fr+ and f,+ are the isospin-broken decay constants, respec-
tively, in QCD. We will refer to the decay constants in the SU(2) isospin-symmetric
limit as fx and fr (the latter at leading order in the mass difference (m, — mgy) coin-
cides with fr+). The parameters |V, 4| and |V, s| are elements of the Cabibbo-Kobayashi-
Maskawa matrix and fy(¢?) represents one of the form factors relevant for the semilep-
tonic decay K° — 7~ fv, which depends on the momentum transfer ¢ between the two

‘ V’U.S

mesons. What matters here is the value at ¢ = 0: f(0) = fK"7 (0) = K7 (0) =
g (= (p)|57,u| K°(p)) /(M7 — M?2) »_,o- The pion and kaon decay constants are defined
by12 ?

(O dvpys ulm ™ (p)) = ipp s (0] 57,75 ul K™ (p)) = ippufrc+ -

In this normalization, fr+ ~ 130 MeV, fr+ ~ 155 MeV.

In Eq. (70), the electromagnetic effects have already been subtracted in the exper-
imental analysis using xPT. Recently, a new method [239] has been proposed by the
RM123-SOTON collaboration for calculating the leptonic decay rates of hadrons includ-
ing both QCD and QED on the lattice, and successfully applied to the case of the ratio
of the leptonic decay rates of kaons and pions [240, 241]. By employing the twisted-mass
discretization, they simulate Ny =2 + 1 + 1 QCD at three lattice spacings a = 0.07,
0.08, 0.09 fm with pion masses down to ~ 220 MeV on multiple lattice volumes to di-
rectly examine finite-volume effects. The correction to the tree-level K,,5/m,2 decay rate,
including both electromagnetic and strong isospin-breaking effects, is found to be equal
to —1.26(14)% '3 to be compared to the estimate —1.12(21)% based on xPT [168, 242].

2The pion decay constant represents a QCD matrix element—in the full Standard Model, the one-pion
state is not a meaningful notion: the correlation function of the charged axial current does not have a pole at
p? = Mng, but a branch cut extending from M§+ to co. The analytic properties of the correlation function and
the problems encountered in the determination of fr are thoroughly discussed in Ref. [234]. The “experimental”
value of fr depends on the convention used when splitting the sum Lqcp + Lqep into two parts. The lattice
determinations of fr do not yet reach the accuracy where this is of significance, but at the precision claimed
by the Particle Data Group [205, 235], the numerical value does depend on the convention used [234, 236-238].

13This has been updated in Ref. [241] after the previous edition of this review. See also the extended
discussion concerning the isospin correction in Sec. 11 on the scale setting.
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Using the experimental values of the K2 and m,s decay rates the result of Ref. [241]
implies
fr

25 = 0.27683 (29)exp (20)in [35] (71)

™

Vu S
Vud

where the last error in brackets is the sum in quadrature of the experimental and the-
oretical uncertainties, and the ratio of the decay constants is the one corresponding to
isosymmetric QCD. A large part of the theoretical uncertainty comes from the statis-
tics and continuum and chiral extrapolation of lattice data, which can be systematically
reduced by a more realistic simulation with high statistics.

An independent study of the electromagnetic effects is carried out by the RBC/UKQCD
collaboration using the domain-wall discretization [243]. They simulate Ny =2+ 1 QCD
at a single lattice spacing a = 0.11 fm, a pion mass close to its physical value, and a
lattice volume with M, L ~ 3.9. Their result -0.86(*}}) % is consistent with the RM123-
SOTON estimate. The larger uncertainty is due to the possibly large finite-volume effects
in a lattice-QED prescription [244], which should be carefully studied by more extensive
simulations.

At present, the superallowed nuclear 8 transitions provide the most precise determi-
nation of |V,4|. Its accuracy has been limited by hadronic uncertainties in the universal
electroweak radiative correction AY%. A recent analysis in terms of a dispersion rela-
tion [245, 246] found A}, larger than the previous estimate [247]. A more straightforward
update of Ref. [247] also reported larger A}, [248]. In the PDG review, the fourteen
precisely measured transitions [249] with the dispersive estimate of A}, yield [169]

|Vaa| = 0.97370(14), (72)

which differs by =~ 3¢ from the previous estimate [249]. However, it is not a trivial matter
to properly take account of the nuclear corrections at this precision [245, 249-257]. For
example, the dispersive approach has been applied in a recent update of the so-called
inner radiative correction due to quenching of the axial-vector and isoscalar spin-magnetic-
moment couplings in nuclei [245], and in a recent estimate of a novel correction due to
the distortion of the emitted electron energy spectrum by nuclear polarizabilities [257]. A
recent reanalysis of twenty-three 5 decays [258] obtained

[Vaua| = 0.97373(31), (73)

where the two nuclear corrections tend to cancel with each other and, hence, leave the
central value basically unchanged. Their uncertainties, however, doubles that of |V,q4|.
In Secs. 4.4 and 4.5, we mainly use the PDG value (72) but also test Eq. (73) as an
alternative input.

The matrix element |V, 5| can be determined from semi-inclusive 7 decays [259-262].
By separating the inclusive decay 7 — hadrons + v into nonstrange and strange final
states, e.g., HFLAV 18 [263] obtains

|Vis| = 0.2195(19), (74)

and both Maltman et al. [261, 264, 265] and Gamiz et al. [266, 267] arrived at very similar
values. Inclusive hadronic 7 decay offers an interesting way to measure |V,s|, but the
above value of |V,| differs from the result one obtains from the kaon decays by about
three standard deviations (see Sec. 4.5). This apparent tension has been recently solved
in Ref. [268] thanks to the use of a different experimental input and to a new treatment of
higher orders in the operator product expansion and of violations of quark-hadron duality.
A larger value of |V,;| is obtained, namely, |V,,s| = 0.2231(27), which is in much better
agreement with the results from the kaon decays. This result is also stable against the
choice of the upper limit and weight function of the experimental spectral integrals. 4

1A recent update can be found in Ref. [269]
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Recently, Ref. [270] proposed a new method to determine |V,4| from inclusive strange
7 decays. Through generalized dispersion relations, this method evaluates the spectral
integral from lattice-QCD data of the hadronic vacuum polarization function at Euclidean
momentum squared in the few-to-several 0.1 GeV? region. This method, therefore, does
not rely on the operator product expansion, and obtained |V,s| consistent with that from
the kaon decays. A later analysis yields [269]

[Vius| = 0.2240(18), (75)

by taking account of updates on experimental strange 7 branching fractions in 2018. We
quote Eqs. (74) and (75) as |V,s| from the inclusive hadronic 7 decays in Sec. 4.5.

The experimental results in Eq. (70) are for the semileptonic decay of a neutral kaon
into a negatively charged pion and the charged pion and kaon leptonic decays, respec-
tively, in QCD. In the case of the semileptonic decays the corrections for strong and
electromagnetic isospin breaking in xPT at NLO have allowed for averaging the different
experimentally measured isospin channels [271]. This is quite a convenient procedure as
long as lattice-QCD simulations do not include strong or QED isospin-breaking effects.
Several lattice results for fi/fr are quoted for QCD with (squared) pion and kaon masses
of Mﬁ = Mﬁo and M2 = % (Mf(i + MIQ(0 - Mii + Mﬁo) for which the leading strong
and electromagnetic isospin violations cancel. For these results, contact with experimen-
tal results is made by correcting leading SU(2) isospin breaking guided either by yPT
or by lattice calculations. We note, however, that the modern trend for the leptonic de-
cays is to include strong and electromagnetic isospin breaking in the lattice simulations
(e.g., Refs. [175, 176, 197, 219, 239, 240, 272-274]). After the previous edition, this trend
has been extended to the semileptonic decays. Reference [275] discusses an extension of
the method in Refs. [240, 241], which led to Eq. (71), for the semileptonic decays. Ref-
erences [276-278] pursue an effective field theory setup supplemented by nonperturbative
lattice-QCD inputs to estimate the radiative corrections.

4.2 Lattice results for f,(0) and fx+/frt

The traditional way of determining |V,,s| relies on using estimates for the value of f;(0),
invoking the Ademollo-Gatto theorem [279]. Since this theorem only holds to leading order
of the expansion in powers of m,,, mq, and mg, theoretical models are used to estimate the
corrections. Lattice methods have now reached the stage where quantities like f (0) or
fx/fr can be determined to good accuracy. As a consequence, the uncertainties inherent
in the theoretical estimates for the higher order effects in the value of f(0) do not
represent a limiting factor any more and we shall therefore not invoke those estimates.
Also, we will use the experimental results based on nuclear 8 decay and inclusive hadronic
7 decay exclusively for comparison—the main aim of the present review is to assess the
information gathered with lattice methods and to use it for testing the consistency of the
SM and its potential to provide constraints for its extensions.

The database underlying the present review of the semileptonic form factor and the
ratio of decay constants is listed in Tabs. 15 and 16. The properties of the lattice data
play a crucial role for the conclusions to be drawn from these results: range of M, size of
LM, , continuum extrapolation, extrapolation in the quark masses, finite-size effects, etc.
The key features of the various data sets are characterized by means of the colour code
specified in Sec. 2.1. More detailed information on individual computations are compiled
in Appendix C.2, which in this edition is limited to new results and to those entering the
FLAG averages. For other calculations the reader should refer to the Appendix B.2 of
Ref. [3].

The quantity f4(0) represents a matrix element of a strangeness-changing null-plane
charge, f+(0) = (K|Q"¥|r) (see Ref. [280]). The vector charges obey the commutation
relations of the Lie algebra of SU(3), in particular [Q%, Q%%] = Q" 5. This relation
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implies the sum rule Y} [(K|Q"|n)|?=>", |[(K|Q¥*|n)|? = 1. Since the contribution from
the one-pion intermediate state to the first sum is given by f(0)2, the relation amounts
to an exact representation for this quantity [281]:

F4(0) = 1= [(KIQ™ ) + > [(K|Q[n)[*. (76)
n#MT n

While the first sum on the right extends over nonstrange intermediate states, the second
runs over exotic states with strangeness +2 and is expected to be small compared to the
first.

The expansion of f1(0) in SU(3) xPT in powers of m,, mg, and ms starts with
f+(0) =14 fo+ fa+ ... [282]. Since all of the low-energy constants occurring in fo
can be expressed in terms of My, My, M, and f. [280], the NLO correction is known.
In the language of the sum rule (76), fo stems from nonstrange intermediate states with
three mesons. Like all other nonexotic intermediate states, it lowers the value of f(0):
fo = —0.023 when using the experimental value of f; as input. The corresponding
expressions have also been derived in quenched or partially quenched (staggered) xPT
[37, 283]. At the same order in the SU(2) expansion [284], f4(0) is parameterized in
terms of M and two a priori unknown parameters. The latter can be determined from the
dependence of the lattice results on the masses of the quarks. Note that any calculation
that relies on the xPT formula for f, is subject to the uncertainties inherent in NLO
results: instead of using the physical value of the pion decay constant f., one may, for
instance, work with the constant f; that occurs in the effective Lagrangian and represents
the value of f in the chiral limit. Although trading f, for fy in the expression for the NLO
term affects the result only at NNLO, it may make a significant numerical difference in
calculations where the latter are not explicitly accounted for. (Lattice results concerning
the value of the ratio fr/fy are reviewed in Sec. 5.3.)

The lattice results shown in Fig. 8 indicate that the higher order contributions Af =
f+(0) =1 — f5 are negative and thus amplify the effect generated by fo. This confirms the
expectation that the exotic contributions are small. The entries in the lower part of the
left panel represent various model estimates for f;. In Ref. [285], the symmetry-breaking
effects are estimated in the framework of the quark model. The more recent calculations
are more sophisticated, as they make use of the known explicit expression for the Kjys
form factors to NNLO in xPT [286, 287]. The corresponding formula for f; accounts for
the chiral logarithms occurring at NNLO and is not subject to the ambiguity mentioned
above.'® The numerical result, however, depends on the model used to estimate the low-
energy constants occurring in fy [287-290]. The figure indicates that the most recent
numbers obtained in this way correspond to a positive or an almost vanishing rather
than a negative value for Af. We note that FNAL/MILC 121 [37], JLQCD 17 [291],
FNAL/MILC 18 [36], and Ref. [292] have made an attempt at determining a combination
of some of the low-energy constants appearing in f4 from lattice data.

4.3 Direct determination of f,(0) and fx=+/f+

Many lattice results for the form factor f1 (0) and for the ratio of decay constants, which
we summarize here in Tabs. 15 and 16, respectively, have been computed in isospin-
symmetric QCD. The reason for this unphysical parameter choice is that there are only a
few simulations of isospin-breaking effects in lattice QCD, which is ultimately the cleanest
way for predicting these effects [174-176, 182, 219, 239, 240, 274, 293, 294]. In the
meantime, one relies either on xPT [201, 282] to estimate the correction to the isospin
limit or one calculates the breaking at leading order in (m, — mg) in the valence quark

5Fortran programs for the numerical evaluation of the form factor representation in Ref. [287] are available
on request from Johan Bijnens.
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FNAL/MILC 18 [36] 2+141 A 0.9696(15)(12)
ETM 16 [35] 241+1 A 0.9709(45)(9)
FNAL/MILC 13E [295) 241+1 A 0.9704(24)(22)
PACS 22 [296] 2+1 A | 0.9615(10)(F47)
PACS 19 [297] 2+1 A [ 0.9603(16)(*39)
JLQCD 17 [291] 2+1 A [ 0.9636(36)(*57)
RBC/UKQCD 15A [38] 2+1 A 0.9685(34)(14)
RBC/UKQCD 13 [298] 2+1 A 0.9670(20)(*1%)
FNAL/MILC 121 [37] 2+1 A 0.9667(23)(33)
JLQCD 12 [299] 241 C | 0.959(6)(5)
JLQCD 11 [300] 241 C | 0.964(6)
RBC/UKQCD 10 [301] 2+1 A | 0.9599(34)(*31)(14)
RBC/UKQCD 07 [302] 241 A | 0.9644(33)(34)(14)
ETM 10D [303) 2 C 0.9544(68) sa1
ETM 09A [39] 2 A 0.9560(57)(62)

Table 15: Colour code for the data on f4(0).

with two red tags have been dropped.

In this and previous editions [4], old results

sector by extrapolating the lattice data for the charged kaons to the physical value of the
up(down)-quark mass (the result for the pion decay constant is always extrapolated to
the value of the average light-quark mass 7). This defines the prediction for fr+/fr+.

Since the majority of results that qualify for inclusion into the FLAG average include
the strong SU(2) isospin-breaking correction, we confirm the choice made in the previous
edition of the FLAG review [4] and we provide in Fig. 9 the overview of the world data
of fx+/fr=. For all the results of Tab. 16 provided only in the isospin-symmetric limit
we apply individually an isospin correction that will be described later on (see Egs. (80)—
(81)).

The plots in Figs. 8 and 9 illustrate our compilation of data for f1(0) and fx«/frx.
The lattice data for the latter quantity is largely consistent even when comparing simula-
tions with different Ny, while in the case of fi(0) a slight tendency to get higher values
when increasing Ny seems to be visible, even if it does not exceed one standard devia-
tion. We now proceed to form the corresponding averages, separately for the data with
Ny =2+1+1, Ny =2+1, and Ny = 2 dynamical flavours, and in the following we will
refer to these averages as the “direct” determinations.

4.3.1 Results for f,(0)

For f1(0) there are currently two computational strategies: FNAL/MILC uses the Ward
identity to relate the K — 7 form factor at zero momentum transfer to the matrix
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Figure 8:

Comparison of lattice results (squares) for fi(0) with various model estimates

based on xPT [285, 287-290] (blue circles). The black squares and grey bands indicate our
averages (77)—(79). The significance of the colours is explained in Sec. 2.

element (7|S|K) of the flavour-changing scalar current S = su. Peculiarities of the stag-
gered fermion discretization used by FNAL/MILC (see Ref. [37]) makes this the favoured
choice. The other collaborations are instead computing the vector current matrix element
(m|5y,u|K). Apart from FNAL/MILC 13E, RBC/UKQCD 15A, and FNAL/MILC 18,
all simulations in Tab. 15 involve unphysically heavy quarks and, therefore, the lattice
data needs to be extrapolated to the physical pion and kaon masses corresponding to the
K° — 7~ channel. We note also that the recent computations of f(0) obtained by the
FNAL/MILC and RBC/UKQCD collaborations make use of the partially-twisted bound-
ary conditions to determine the form-factor results directly at the relevant kinematical
point g% = 0 [304, 305], avoiding in this way any uncertainty due to the momentum de-
pendence of the vector and/or scalar form factors. The ETM collaboration uses partially-
twisted boundary conditions to compare the momentum dependence of the scalar and
vector form factors with the one of the experimental data [35, 303], while keeping at the
same time the advantage of the high-precision determination of the scalar form factor at
the kinematical end-point ¢2,,, = (Mg — M;)? [39, 306] for the interpolation at ¢* = 0.

According to the colour codes reported in Tab. 15 and to the FLAG rules of Sec. 2.2,
only the result ETM 09A with Ny = 2, the results FNAL/MILC 121 and RBC/UKQCD
15A with Ny =241, and the results ETM 16 and FNAL/MILC 18 with Ny =2+ 1+1
dynamical flavours of fermions, respectively, can enter the FLAG averages. We note that
the new entry in this edition is FNAL/MILC 18 for Ny = 2+ 1 + 1, which did not enter
the previous FLAG average due to its publication status [4].

At N = 2+1+1 the result from the FNAL/MILC collaboration, f;(0) = 0.9704(24)(22)
(FNAL/MILC 13E), is based on the use of the Highly Improved Staggered Quark (HISQ)
action (for both valence and sea quarks), which has been tailored to reduce staggered
taste-breaking effects, and includes simulations with three lattice spacings and physi-

69 Updated Feb. 2023



cal light-quark masses. These features allow to keep the uncertainties due to the chiral
extrapolation and to the discretization artifacts well below the statistical error. The
remaining largest systematic uncertainty comes from finite-size effects, which have been
investigated in Ref. [307] using one-loop xPT (with and without taste-violating effects). In
Ref. [36], the FNAL/MILC collaboration presented a more precise determination of f (0),
f+(0) = 0.9696(15)(11) (FNAL/MILC 18). In this update, their analysis is extended to
two smaller lattice spacings a = 0.06 and 0.042 fm. The physical light-quark mass is sim-
ulated at four lattice spacings. They also added a simulation at a small volume to study
the finite-size effects. The improvement of the precision with respect to FNAL/MILC 13E
is obtained mainly by an estimate of finite-size effects, which is claimed to be controlled
at the level of ~ 0.05% by comparing two analyses with and without the one-loop cor-
rection. The total uncertainty is largely reduced to ~ 0.2 %. An independent calculation
of such high precision would be highly welcome to solidify the lattice prediction of f (0),
which currently suggests a tension with CKM unitarity with the updated value of |V,4|
(see Sec. 4.4).

The result from the ETM collaboration, f4(0) = 0.9709(45)(9) (ETM 16), makes use
of the twisted-mass discretization adopting three values of the lattice spacing in the range
0.06 — 0.09 fm and pion masses simulated in the range 210 — 450 MeV. The chiral and
continuum extrapolations are performed in a combined fit together with the momentum
dependence, using both a SU(2)-xPT inspired ansatz (following Ref. [303]) and a modified
z-expansion fit. The uncertainties coming from the chiral extrapolation, the continuum
extrapolation and the finite-volume effects turn out to be well below the dominant statis-
tical error, which includes also the error due to the fitting procedure. A set of synthetic
data points, representing both the vector and the scalar semileptonic form factors at the
physical point for several selected values of ¢2, is provided together with the corresponding
correlation matrix.

The PACS collaboration obtained a new result for Ny =2+1, f1(0) = 0.9603(16) (*32)
(PACS 19), by creating an ensemble with the physical light-quark mass on a large lat-
tice volume of (10.9fm)* at a single spacing a = 0.085 fm [297]. Such a large lattice
enables them to interpolate f, (¢?) to zero momentum transfer and study the momentum-
transfer dependence of the form factors without using partially-twisted boundary condi-
tions. PACS 19 is extended to a smaller lattice spacing a = 0.063 fm in PACS 22, which
yields f1(0) = 0.9615(10) (*§"). However, their result does not enter the FLAG average,
because they simulate only two lattice spacings using unimproved local and conserved
vector currents. That setup is the source of the largest (and very asymmetric) error in
their calculation.

For Ny = 2+ 1, the two results eligible to enter the FLAG average are the one from
RBC/UKQCD 15A, f(0) = 0.9685(34)(14) [38], and the one from FNAL/MILC 12I,
f+(0) = 0.9667(23)(33) [37]. These results, based on different fermion discretizations
(staggered fermions in the case of FNAL/MILC and domain wall fermions in the case of
RBC/UKQCD) are in nice agreement. Moreover, in the case of FNAL/MILC the form
factor has been determined from the scalar current matrix element, while in the case of
RBC/UKQCD it has been determined including also the matrix element of the vector
current. To a certain extent both simulations are expected to be affected by different
systematic effects.

RBC/UKQCD 15A has analyzed results on ensembles with pion masses down to
140 MeV, mapping out the complete range from the SU(3)-symmetric limit to the phys-
ical point. No significant cut-off effects (results for two lattice spacings) were observed
in the simulation results. Ensembles with unphysical light-quark masses are weighted to
work as a guide for small corrections toward the physical point, reducing in this way the
model dependence in the fitting ansatz. The systematic uncertainty turns out to be dom-
inated by finite-volume effects, for which an estimate based on effective theory arguments
is provided.
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The result FNAL/MILC 121 is from simulations reaching down to a lightest RMS
pion mass of about 380 MeV (the lightest valence pion mass for one of their ensem-
bles is about 260 MeV). Their combined chiral and continuum extrapolation (results for
two lattice spacings) is based on NLO staggered yPT supplemented by the continuum
NNLO expression [287] and a phenomenological parameterization of the breaking of the
Ademollo-Gatto theorem at finite lattice spacing inherent in their approach. The p*
low-energy constants entering the NNLO expression have been fixed in terms of external
input [228].

The ETM collaboration uses the twisted-mass discretization and provides at Ny = 2
a comprehensive study of the systematics [39, 303], by presenting results for four lat-
tice spacings and by simulating at light pion masses (down to M, = 260 MeV). This
makes it possible to constrain the chiral extrapolation, using both SU(3) [280] and SU(2)
[284] xPT. Moreover, a rough estimate for the size of the effects due to quenching the
strange quark is given, based on the comparison of the result for Ny = 2 dynamical quark
flavours [49] with the one in the quenched approximation, obtained earlier by the SPQcdR
collaboration [306].

We now compute the Ny = 2+1+1 FLAG average for f(0) using the FNAL/MILC 18
and ETM 16 (uncorrelated) results, the Ny = 2+1 FLAG average based on FNAL/MILC
12T and RBC/UKQCD 15A, which we consider uncorrelated, while for Ny = 2 we consider
directly the ETM 09A result, respectively:

direct, Ny =2+1+1:  f,(0) = 0.9698(17) Refs. [35, 36], (77)
direct, Ny =2+1: f+(0) =0.9677(27) Refs. [37, 38], (78)
direct, Ny = 2 - £4(0) = 0.9560(57)(62) Ref. [39), (79)

where the parentheses in the third line indicate the statistical and systematic errors,
respectively. We stress that the results (77) and (78), corresponding to Ny =2+ 1+1
and Ny = 2+1, respectively, include already simulations with physical light-quark masses.

4.3.2 Results for fr+/f+

In the case of the ratio of decay constants the data sets that meet the criteria formulated
in the introduction are HPQCD 13A [40], ETM 14E [41], FNAL/MILC 17 [18] (which
updates FNAL/MILC 14A [19]), CalLat 20 [42] and ETM 21 [43] with Ny =2+ 1+ 1,
HPQCD/UKQCD 07 [44], MILC 10 [45], BMW 10 [46], RBC/UKQCD 14B [10], BMW
16 [47, 312], and QCDSF/UKQCD 16 [48] with Ny = 2+ 1 and ETM 09 [49] with Ny =2
dynamical flavours. Note that CalLat 20 and ETM 21 for Ny = 2+ 14 1 are the new
entries for the FLAG average in this edition.

CalLat 20 employs a mixed action setup with the Mobius domain-wall valence quarks
on gradient-flowed HISQ ensembles at four lattice spacings a = 0.06—0.15 fm. The valence
pion mass reaches the physical point at three lattice spacings, and the smallest valence-
sea and sea pion masses are below 200 MeV. Finite-volume corrections are studied on
three lattice volumes at ¢ = 0.12 fm and M, ~ 220 MeV. Their extrapolation to the
continuum limit and the physical point is based on NNLO xPT [318]. A comprehensive
study of systematic uncertainties is performed by exploring several options including the
use of the mixed-action effective theory expression, and the inclusion of N3LO counter
terms. They obtain fr+/fr+ = 1.1942(32)stat(12)4(20)a2(1) pv (12) 2 (7) 15, where the
errors are statistical, due to the extrapolation in pion and kaon masses, extrapolation in
a?, finite-size effects, choice of the fitting form and isospin breaking corrections.

ETM 14E uses the twisted-mass discretization and provides a comprehensive study of
the systematics by presenting results for three lattice spacings in the range 0.06 — 0.09
fm and for pion masses in the range 210 — 450 MeV. This makes it possible to con-
strain the chiral extrapolation, using both SU(2) [284] xPT and polynomial fits. The
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ETM 21 [43]  2+1+1 A 1.1995(44)(7) 1.1957(44)(7)
CalLat 20 [42]  2+1+41 A 1.1964(32)(30)  1.1942(32)(3 )
FNAL/MILC 17 (18] 2+1+1 A 1.1980(12)(F55)  1.1950(15)(*S)
ETM 14E [41] 24141 A 1.188(11)(11) 1.184(12)(11 )
FNAL/MILC 14A [19] 2+1+1 A 1.1956(10)(13%)
ETM 13F [308] 2+1+1 C 1.193(13)(10) 1.183(14)(10)
HPQCD 13A [40] 2+1+41 A 1.1948(15)(18)  1.1916(15)(16)
MILC 13A [309] 2+1+1 A 1.1947(26)(37)
MILC 11 [310) 2+1+1 C 1.1872(42)1 .
ETM 10E [311] 24141 C 1.224(13)stat
QCDSF/UKQCD 16 [48]  2+1 A 1.192(10)(13) 1.190(10)(13)
BMW 16 [47,312] 241 A 1.182(10)(26) 1.178(10)(26)
RBC/UKQCD 14B [10] 241 A 1.1945(45)
RBC/UKQCD 12 [192] 241 A 1.199(12)(14)
Laiho 11 53]  2+1 C 1.202(11)(9)(2)(5) "
MILC 10 [45]  2+1 C 1.197(2)(F3)
JLQCD/TWQCD 10 [313] 241 C ] 1.230(19)
RBC/UKQCD 10A [121] 241 A 1.204(7)(25)
BMW 10 [46] 241 A 1.192(7)(6)
MILC 09A 17 241 C 1.198(2)(*9)
MILC 09 [161]  2+1 A 1.197(3)(1%)
Aubin 08 [314] 241 C 1.191(16)(17)
RBC/UKQCD 08 [198]  2+1 A ] 1.205(18)(62)
HPQCD/UKQCD 07 [44]  2+1 A 1.189(2)(7)
MILC 04 [201] 241 A 1.210(4)(13)
ETM 14D [315] 2 C ] 1.203(5)stat
ALPHA 13A [316] 2 C 1.1874(57)(30)
ETM 10D [303] 2 C 1.190(8)stat
ETM 09 [49] 2 A 1.210(6)(15)(9)
QCDSF/UKQCD 07 [317] 2 C 1.21(3)

T Result with statistical error only from polynomial interpolation to the physical point.
' This work is the continuation of Aubin 08.

Table 16: Colour code for the data on the ratio of decay constants: fx/fr is the pure QCD
SU (2)-symmetric ratio, while fg+/fr+ is in pure QCD including the SU(2) isospin-breaking
correction. In this and previous editions [4], old results with two red tags have been dropped.

ETM collaboration includes the spread in the central values obtained from different
The final result of their analysis is fr+/frx =

ansitze into the systematic errors.
1. 184(12)stat+ﬁt (3) Chiral (9)a2

(1)z,(3)Fv(3) 15 where the errors are (statistical + the error

due to the fitting procedure), due to the chiral extrapolation, the continuum extrapola-
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Figure 9:

Comparison of lattice results for fg+/fr+. This ratio is obtained in pure QCD

including the SU(2) isospin-breaking correction (see Sec. 4.3). The black squares and grey
bands indicate our averages in Eqgs. (82)—(84).

tion, the mass-renormalization constant, the finite-volume and (strong) isospin-breaking
effects.

In ETM 21 [43], the ETM collaboration presented an independent estimate of frx /[
in isosymmetric QCD with 2+1+1 dynamical flavours of the twisted-mass quarks. Their
new set of gauge ensembles reaches the physical pion mass. The quark action includes the
Sheikoleslami-Wohlert term for a better control of discretization effects. The finite-volume
effects are examined by simulating three spatial volumes, and are corrected by SU(2)
xPT formulae [150]. Their new estimate fx/fr = 1.1995(44)sat+6t(7)sys 1S consistent
with ETM 14E with the total uncertainty reduced by a factor of ~ 3.5.

FNAL/MILC 17 has determined the ratio of the decay constants from a comprehensive
set of HISQ ensembles with Ny = 2 + 1 + 1 dynamical flavours. They have generated
24 ensembles for six values of the lattice spacing (0.03 — 0.15 fm, scale set with f;+)
and with both physical and unphysical values of the light sea-quark masses, controlling
in this way the systematic uncertainties due to chiral and continuum extrapolations.
With respect to FNAL/MILC 14A they have increased the statistics and added three
ensembles at very fine lattice spacings, a ~ 0.03 and 0.042 fm, including for the latter
case also a simulation at the physical value of the light-quark mass. The final result of their
analysis is fr+/frt = 1.1950(14)gpat (T 17)a2 (2)rv(3)f,,Ppc(3) EM(2) g2, where the errors
are statistical, due to the continuum extrapolation, finite-volume, pion decay constant
from PDG, electromagnetic effects and sampling of the topological charge distribution.'®

HPQCD 13A has analyzed ensembles generated by MILC and therefore its study
of fyg+/fr= is based on the same set of ensembles bar the ones at the finest lattice
spacings (namely, only a = 0.09 — 0.15 fm, scale set with f,+ and relative scale set with

16T5 form the average in Eq. (82), we have symmetrized the asymmetric systematic error and shifted the
central value by half the difference as will be done throughout this section.
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the Wilson flow [118, 319]) supplemented by some simulation points with heavier quark
masses. HPQCD employs a global fit based on continuum NLO SU(3) xPT for the
decay constants supplemented by a model for higher-order terms including discretization
and finite-volume effects (61 parameters for 39 data points supplemented by Bayesian
priors). Their final result is fr+/fre = 1.1916(15)stat(12)a2(1) p/(10), where the errors
are statistical, due to the continuum extrapolation, due to finite-volume effects and the
last error contains the combined uncertainties from the chiral extrapolation, the scale-
setting uncertainty, the experimental input in terms of f,+ and from the uncertainty in
My /Mg.

Because CalLat 20, FNAL/MILC 17 and HPQCD 13A partly share their gauge ensem-
bles, we assume a 100 % correlation among their statistical errors. A 100 % correlation on
the total systematic uncertainty is also assumed between FNAL/MILC 17 and HPQCD
13A with the HISQ valence quarks.

For Ny = 2 + 1 the results BMW 16 and QCDSF/UKQCD 16 are eligible to enter
the FLAG average. BMW 16 has analyzed the decay constants evaluated for 47 gauge
ensembles generated using tree-level clover-improved fermions with two HEX-smearings
and the tree-level Symanzik-improved gauge action. The ensembles correspond to five
values of the lattice spacing (0.05 — 0.12 fm, scale set by {2 mass), to pion masses in the
range 130 — 680 MeV and to values of the lattice size from 1.7 to 5.6 fm, obtaining a
good control over the interpolation to the physical mass point and the extrapolation to
the continuum and infinite volume limits.

QCDSF/UKQCD 16 has used the nonperturbatively O(a)-improved clover action for
the fermions (mildly stout-smeared) and the tree-level Symanzik action for the gluons.
Four values of the lattice spacing (0.06 — 0.08 fm) have been simulated with pion masses
down to ~ 220 MeV and values of the lattice size in the range 2.0 — 2.8 fm. The decay
constants are evaluated using an expansion around the symmetric SU(3) point m, =
mg =mgs = (My +mq +m,)Ph¥s /3.

Note that for Ny = 2+ 1 MILC 10 and HPQCD/UKQCD 07 are based on stag-
gered fermions, BMW 10, BMW 16 and QCDSF/UKQCD 16 have used improved Wilson
fermions and RBC/UKQCD 14B’s result is based on the domain-wall formulation. In
contrast to RBC/UKQCD 14B and BMW 16, the other simulations are for unphysical
values of the light-quark masses (corresponding to smallest pion masses in the range
220 — 260 MeV in the case of MILC 10, HPQCD/UKQCD 07, and QCDSF/UKQCD 16)
and therefore slightly more sophisticated extrapolations needed to be controlled. Various
ansétze for the mass and cutoff dependence comprising SU(2) and SU(3) xPT or simply
polynomials were used and compared in order to estimate the model dependence. While
BMW 10, RBC/UKQCD 14B, and QCDSF/UKQCD 16 are entirely independent compu-
tations, subsets of the MILC gauge ensembles used by MILC 10 and HPQCD/UKQCD
07 are the same. MILC 10 is certainly based on a larger and more advanced set of gauge
configurations than HPQCD/UKQCD 07. This allows them for a more reliable estima-
tion of systematic effects. In this situation we consider both statistical and systematic
uncertainties to be correlated.

For Ny = 2 no new result enters the corresponding FLAG average with respect to
the previous edition of the FLAG review [4], which therefore remains the ETM 09 result,
which has simulated twisted-mass fermions down to (charged) pion masses equal to 260
MeV.

Before determining the average for fx+/fr+, which should be used for applications
to Standard Model phenomenology, we apply the strong-isospin correction individually to
all those results that have been published only in the isospin-symmetric limit, i.e., BMW
10, HPQCD/UKQCD 07 and RBC/UKQCD 14B at Ny =2+ 1 and ETM 09 at Ny = 2.
To this end, as in the previous editions of the FLAG reviews [2-4], we make use of NLO
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SU(3) xPT [242, 282], which predicts

fffz = % V1t 0sue) (80)

where [242]
2
Ssuey ~ V3esuw) |—3 (fx/fx—1)+ W (Mzz( — M2 — MZ1n Aj\%ﬂ . (81

We use as input egy(2) = V3/(4R) with the FLAG result for R of Eq. (55), Fy = fo/V2 =
80 (20) MeV, M, = 135 MeV and Mg = 495 MeV (we decided to choose a conservative
uncertainty on fq in order to reflect the magnitude of potential higher-order corrections).
The results are reported in Tab. 17, where in the last column the last error is due to the
isospin correction (the remaining errors are quoted in the same order as in the original
data).

fr/fx dsuU(2) frx/ fax
HPQCD/UKQCD 07 1.189(2)(7) -0.0040(7) 1.187(2)(7)(2)
BMW 10 1.192(7)(6) -0.0041(7) 1.190(7)(6)(2)
RBC/UKQCD 14B  1.1945(45) -0.0043(9) 1.1919(45)(26)

Table 17: Values of the SU(2) isospin-breaking correction dg(2y applied to the lattice data
for fx/fr, entering the FLAG average at Ny = 2 4+ 1, for obtaining the corrected charged
ratio fg+/fr+. The last error in the last column is due to a 100 % uncertainty assumed for
dsu () from SU(3) xPT.

For Ny = 2 and Ny = 2 + 1+ 1 dedicated studies of the strong-isospin correction
in lattice QCD do exist. The updated Ny = 2 result of the RM123-SOTON collabora-
tion [176] amounts to dgy(2) = —0.0080(4) and we use this result for the isospin correction
of the ETM 09 result. Note that the above RM123-SOTON value for the strong-isospin
correction is incompatible with the results based on SU(3) xPT, dsy(2) = —0.004(1) (see
Tab. 17). Moreover, for Ny =2+ 1+ 1 HPQCD [40], FNAL/MILC [18] and ETM [320]
estimate a value for dgy(2) equal to —0.0054(14), —0.0052(9) and —0.0073(6), respec-
tively. Note that the RM123-SOTON and ETM results are obtained using the insertion
of the isovector scalar current according to the expansion method of Ref. [175], while the
HPQCD and FNAL/MILC results correspond to the difference between the values of the
decay constant ratio extrapolated to the physical u-quark mass m, and to the average
(my, + mgq)/2 light-quark mass.

One would not expect the strange and heavier sea-quark contributions to be responsible
for such a large effect. Whether higher-order effects in xPT or other sources are responsible
still needs to be understood. More lattice-QCD simulations of SU(2) isospin-breaking
effects are therefore required. To remain on the conservative side we add a 100% error to
the correction based on SU(3) xPT. For further analyses we add (in quadrature) such an
uncertainty to the systematic error.

Using the results of Tab. 17 for Ny = 2 4+ 1 we obtain

direct, Ny =2+ 1+1:  frs/fre = 1.1934(19) Refs. [18, 40-43],  (82)
direct, Ny =2+ 1 : fret | fre = 1.1917(37) Refs. [10, 44-48],  (83)
direct, Ny = 2 : Frce ) frot = 1.205(18) Ref. [49], (84)

for QCD with broken isospin.
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Figure 10: The plot compares the information for |V,4|, |Vu.s| obtained on the lattice for
Ny =2+1and Ny = 2+ 1+ 1 with |V,4| extracted from nuclear § transitions Eqs. (72)
and (73). The dotted line indicates the correlation between |V,,4| and |V,s| that follows if the
CKM-matrix is unitary. For the Ny = 2 results see the 2016 edition [3].

The averages obtained for f}(0) and fx+/fr+ at Ny =24+ 1and Nf =2+ 1+1
[see Eqgs. (77-78) and (82-83)] exhibit a precision better than ~ 0.3%. At such a level of
precision QED effects cannot be ignored and a consistent lattice treatment of both QED
and QCD effects in leptonic and semileptonic decays becomes mandatory.

4.3.3 Extraction of |V,4| and |V,

It is instructive to convert the averages for f (0) and fx+/f+ into a corresponding range
for the CKM matrix elements |V, 4| and |V,s|, using the relations (70). Consider first the
results for Ny = 241+ 1. The average for f4(0) in Eq. (77) is mapped into the interval
|[Vus| = 0.2232(6), depicted as a horizontal red band in Fig. 10. The one for fx+/f.+ in
Eq. (82) and |Vis/Vud|(fi+/frt) in Eq. (70) is converted into |Vis|/|Vud| = 0.2313(5),
shown as a tilted red band. The red ellipse is the intersection of these two bands and
represents the 68% likelihood contour,'” obtained by treating the above two results as
independent measurements. Repeating the exercise for Ny = 2 4 1 leads to the green
ellipse. The vertical light and dark blue bands show |V,,4| from nuclear 8 decay, Egs. (72)
and (73), respectively. The PDG value (72) indicates a tension with both the Ny = 24+1+1
and Ny = 2 + 1 results from lattice QCD.

As we mentioned, QED radiative corrections are becoming relevant for the extraction
of the CKM elements at the current precision of lattice QCD inputs. We obtain a slightly
larger value of |Vys|/|Vua| = 0.2320(5) by inputting |Vis/Vua|(fx+/fz%) in Eq. (71) with

1"Note that the ellipses shown in Fig. 5 of both Ref. [1] and Ref. [2] correspond instead to the 39% likelihood
contours. Note also that in Ref. [2] the likelihood was erroneously stated to be 68% rather than 39%.
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Figure 11: Same as Fig. 10 but with |V,s|/|Vua| through Eq. (71).

the QED corrections on the lattice. Figure 11 suggests that the kaon (semi)leptonic decays
favour a slightly smaller value of |V,,4| than the nuclear transitions.

4.4 Tests of the Standard Model

In the Standard Model, the CKM matrix is unitary. In particular, the elements of the
first row obey
|Vu|2 = |Vud|2+|VuS|2+|Vub|2 =1. (85)

The tiny contribution from |V,;| is known much better than needed in the present context:
|Vun| = 3.82(24) - 1073 [169]. In the following, we test the first row unitarity Eq. (85) by
calculating |V,,|? and by analyzing the lattice data within the Standard Model.

In Fig. 10, the correlation between |V,4| and |V,s| imposed by the unitarity of the
CKM matrix is indicated by a dotted line (more precisely, in view of the uncertainty in
|[Vus|, the correlation corresponds to a band of finite width, but the effect is too small
to be seen here). The plot shows that there is a tension with unitarity in the data for
Ny = 2+ 1+ 1: Numerically, the outcome for the sum of the squares of the first row
of the CKM matrix reads |V,|?> = 0.9816(64), which deviates from unity at the level of
~ 2.9 standard deviations. Still, it is fair to say that at this level the Standard Model
passes a nontrivial test that exclusively involves lattice data and well-established kaon
decay branching ratios.

The test sharpens considerably by combining the lattice results for f4(0) with the g
decay value of |Vq|: f+(0) in Eq. (77) and the PDG estimate of |V,4| in Eq. (72) lead to
|Vu|? = 0.99794(37), which highlights a ~ 5.6 ¢ deviation with unitarity. A lower tension
at the three-o level is suggested either from fgx+/fr+ in Eq. (82) (|V.|? = 0.99882(36))
or |Vya| in Eq. (73) with the updated nuclear corrections (|V,,|? = 0.99800(65)). Unitarity
is fulfilled with fr+/fr+ and |Via| (73) (|V.|? = 0.99888(67)). Note that, when the PDG
value of V4| (72) is employed, the uncertainties on |V,,|? coming from the errors of |V,q|
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and |V,s| are of similar magnitude with each other.

The situation is similar for Ny = 2 4+ 1: with the lattice data alone one has |V,|? =
0.9832(89), which deviates from unity at the level of ~ 1.9 standard deviations. The lattice
results for £ (0) in Egs. (78) with the PDG value of |V,4| (72) lead to |V,,|? = 0.99816(43),
implying a ~ 4.3 ¢ deviation from unitarity, whereas the deviation is reduced to 2.3—
2.6 with fr=/fr= in Eq. (83) (|[Va]? = 0.99896(45)) and |Vi4| in Eq. (73) (|Vu]? =
0.99822(69)).

For the analysis corresponding to Ny = 2 the reader should refer to the 2016 edition [3].

4.5 Analysis within the Standard Model

The Standard Model implies that the CKM matrix is unitary. The precise experimental
constraints quoted in Eq. (70) and the unitarity condition Eq. (85) then reduce the four
quantities |Vial, |[Vusl, f+(0), fx+/fr+ to a single unknown: any one of these determines
the other three within narrow uncertainties.

As Fig. 12 shows, the results obtained for |V,s| and |V,4| from the data on fr+/fr+
(squares) are consistent with the determinations via fi(0) (triangles), while there is a
tendency that |Vis| (|Vug|) from f4(0) is systematically smaller (larger) than that from
fr+/frx. In order to calculate the corresponding average values, we restrict ourselves to
those determinations that enter the FLAG average in Sec. 4.3. The corresponding results
for |Vys| are listed in Tab. 18 (the error in the experimental numbers used to convert the
values of f1(0) and fg=«/fr= into values for |V,| is included in the statistical error).

For Ny = 24+ 1+ 1 we consider the data both for fi(0) and fg=+/fr+, treating
ETM 16 and ETM 14E on the one hand and FNAL/MILC 18, CalLat 20, FNAL/MILC
17, and HPQCD 13A on the other hand, as statistically correlated according to the
prescription of Sec. 2.3. We obtain |V,s| = 0.2248(6), where the error is stretched by a
factor y/x2/dof ~1/2.2. This result is indicated on the left hand side of Fig. 12 by the
narrow vertical band. In the case Ny = 2 + 1 we consider MILC 10, FNAL/MILC 12I
and HPQCD/UKQCD 07 on the one hand and RBC/UKQCD 14B and RBC/UKQCD
15A on the other hand, as mutually statistically correlated, since the analysis in the
two cases starts from partly the same set of gauge ensembles. In this way we arrive at
|Vus| = 0.2249(5) with x?/dof ~ 0.8. For Ny = 2 we consider ETM 09A and ETM 09 as
statistically correlated, obtaining |V,,s| = 0.2256(19) with x?/dof ~ 0.7. The figure shows
that the results obtained for the data with Ny =2, Ny =2+1, and Ny =24+ 1+ 1 are
consistent with each other. However, the larger error for Ny = 2+1+1 due to the stretch
factor \/x?2/dof suggests a slight tension between the estimates from the semileptonic and
leptonic decays.

Alternatively, we can solve the relations for |V,4| instead of |V,s|. Again, the result
|V = 0.97440(15), which follows from the lattice data with Ny =2 + 1+ 1, is perfectly
consistent with the values |V,,q| = 0.97438(12) and |V,q| = 0.97423(44) obtained from the
data with Ny = 241 and Ny = 2, respectively. We observe the difference of about 3 o
from Eq. (72) from the superallowed nuclear transitions. It is, however, reduced to 2 o
with Eq. (73) based on the updated nuclear corrections.

As mentioned in Sec. 4.1, the HFLAV value of |V,s| from the inclusive hadronic 7 de-
cays differs from those obtained from the kaon decays by about three standard deviations.
Assuming the first row unitarity (85) leads to a larger value of |V,4| than those from the
kaon and nuclear decays. Such a tension does not appear with |V,s| in Eq. (75) from
strange hadronic 7 decay data and lattice QCD data of the hadronic vacuum polarization
function.
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Figure 12: Results for |Vys| and |V,4| that follow from the lattice data for fi(0) (triangles)
and fr+/fr+ (squares), on the basis of the assumption that the CKM matrix is unitary.
The black squares and the grey bands represent our averages, obtained by combining these
two different ways of measuring |V,s| and |V,4| on a lattice. For comparison, the figure also
indicates the results obtained if the data on nuclear 8 decay and inclusive hadronic 7 decay
is analyzed within the Standard Model.
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4.6 Direct determination of fx+ and f,+

Tt is useful for flavour-physics studies to provide not only the lattice average of fr+/fr+,
but also the average of the decay constant fi+. The case of the decay constant f,+ is
different, since the the PDG value [235] of this quantity, based on the use of the value of
|Va.a| obtained from superallowed nuclear 8 decays [249], is often used for setting the scale
in lattice QCD (see Sec. 11 on the scale setting). However, the physical scale can be set in
different ways, namely, by using as input the mass of the {2 baryon(mg) or the T-meson
spectrum (AMry ), which are less sensitive to the uncertainties of the chiral extrapolation
in the light-quark mass with respect to fr+. In such cases the value of the decay constant
fr+ becomes a direct prediction of the lattice-QCD simulations. It is therefore interesting
to provide also the average of the decay constant f,+, obtained when the physical scale
is set through another hadron observable, in order to check the consistency of different
scale-setting procedures.

Our compilation of the values of f,+ and fx+ with the corresponding colour code
is presented in Tab. 20 and it is unchanged from the corresponding one in the previous
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Collaboration Ref. Ny from [Vas| |Vl

FNAL/MILC 18 36)  24+1+1  f.(0)  02233(5)(3)  0.97474(12)(6)
ETM 16 35]  2+1+1  f4(0)  0.2230(11)(2)  0.97481(25)(5)
ETM 21 [43] 24141 frx/fre  0.2249(8)(1)  0.97437(19)(3)
CalLat 20 [42] 24141 frx/fre  0.2252(7)(6)  0.97431(15)(13)
FNAL/MILC 17 (18] 24 1+1 frs/for 0.2251(4)(2)  0.97432(9)(5)
ETM 14E [41] 24141 fre/fre 0.2270(22)(20) 0.97388(51)(47)
HPQCD 13A [40] 24141 frs/fre  0.2256(4)(3)  0.97420(10)(7)
RBC/UKQCD 15A 38  2+1 fe(0)  0.2235(9)(3)  0.97469(20)(7)
FNAL/MILC 121 371 2+1 fe(0)  0.2240(7)(8)  0.97459(16)(18)
QCDSF/UKQCD 16 48]  2+1 frt/fre  0.2259(18)(23) 0.97413(42)(54)
BMW 16 [47,312] 241 frt/fre  0.2281(19)(48) 0.97363(44)(112)
RBC/UKQCD 14B (10 2+1 fre/fre  0.2256(3)(9)  0.97421(7)(22)
MILC 10 [45) 2+1 fre/fre  0.2250(5)(9)  0.97434(11)(21)
BMW 10 [46)  2+1 frs/fre 0.2259(13)(11)  0.97413(30)(25)
HPQCD/UKQCD 07  [44] 2+1 frs/fre 0.2265(6)(13)  0.97401(14)(29)
ETM 09A [39] 2 f4(0)  0.2265(14)(15)  0.97401(33)(34)
ETM 09 [49] 2 frs/fre  0.2233(11)(30)  0.97475(25)(69)

Table 18: Values of |V,s| and |V,4| obtained from the lattice determinations of either fi(0)
or fr+/fr+ assuming CKM unitarity. The first number in brackets represents the statistical
error including the experimental uncertainty, whereas the second is the systematic one.

FLAG review [4].

In comparison to the case of fx+/f.+ we have added two columns indicating which
quantity is used to set the physical scale and the possible use of a renormalization constant
for the axial current. For several lattice formulations the use of the nonsinglet axial-vector
Ward identity allows to avoid the use of any renormalization constant.

One can see that the determinations of f,+ and fx+ suffer from larger uncertainties
with respect to the ones of the ratio fx+/fr+, which is less sensitive to various systematic
effects (including the uncertainty of a possible renormalization constant) and, moreover,
is not exposed to the uncertainties of the procedure used to set the physical scale.

According to the FLAG rules, for Ny =2+ 1+ 1 four data sets can form the average
of fg+ only: ETM 21 [43], ETM 14E [41], FNAL/MILC 14A [19], and HPQCD 13A
[40]. Following the same procedure already adopted in Sec. 4.3 for the ratio of the decay
constants, we assume 100 % statistical and systematic correlation between FNAL/MILC
14A and HPQCD 13A. For Ny = 2 4 1 three data sets can form the average of f, =
and fx+ : RBC/UKQCD 14B [10] (update of RBC/UKQCD 12), HPQCD/UKQCD 07
[44], and MILC 10 [45], which is the latest update of the MILC program. We consider
HPQCD/UKQCD 07 and MILC 10 as statistically correlated and use the prescription of
Sec. 2.3 to form an average. For Ny = 2 the average cannot be formed for f,+, and only
one data set (ETM 09) satisfies the FLAG rules for fy.
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Ref. | Vaus|

|Vud|

Ny=2+1+1 0.2248(6) 0.97440(15)
Np=2+1 0.2249(5) 0.97438(12)
Nf =2 0.2256(19) 0.97423(44)
nuclear 3 decay [169] 0.2278(6) 0.97370(14)
nuclear 8 decay [258] 0.2277(13) 0.97373(31)
inclusive 7 decay [263] 0.2195(19) 0.97561(43)
inclusive 7 decay [269] 0.2240(18) 0.97458(40)

Table 19: The upper half of the table shows our final results for |Vys|, [Vual, f+(0) and fr+/fr+
that are obtained by analysing the lattice data within the Standard Model (see text). For
comparison, the lower half lists the values that follow if the lattice results are replaced by the
experimental results on nuclear 5 decay and inclusive hadronic 7 decay, respectively.

Thus, our averages read

Nf:2+11
Np=2+1+1;:
Nf:2+1:
Nf:2:

frt =130.2 (0.8) MeV

frt = 155.7 (0.3) MeV
fre = 155.7 (0.7) MeV
fre = 1575 (2.4) MeV

Refs. [10, 44, 45], (86)

Refs. [19, 40, 41, 43],
Refs. [10, 44, 45), (87)
Ref. [49].

The lattice results of Tab. 20 and our averages (86-87) are reported in Fig. 13. Note that
the FLAG averages of fx+ for Ny =2 and Ny = 2+ 1+ 1 are based on calculations in
which fr+ is used to set the lattice scale, while the Ny = 2 + 1 average does not rely on

that.
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Collaboration Ref. Ny o Q\Q ) frex
ETM 21 [43] 24+1+1 A na  fx 155.92(62)(9)"
ETM 14E [41] 24+1+1 A na  fx 154.4(1.5)(1.3)
FNAL/MILC 14A (19] 24141 A na  fr 155.92(13)(733)
HPQCD 13A [40] 24141 A na  fo 155.37(20)(27)
MILC 13A [309] 2+1+1 A na  fx 155.80(34)(54)
ETM 10E [311] 24141 C na  fx 159.6(2.0)
JLQCD 15C [321] 241 C NPR to 125.7(7.4)stat
RBC/UKQCD 14B  [10] 241 A NPR ma 155.18(89)
RBC/UKQCD 12 [192] 241 A NPR mgq 127.1(2.7)(2.7)  152.1(3.0)(1.7)
Laiho 11 [33] 241 C na 130.53(87)(2.10) 156.8(1.0)(1.7)
MILC 10 [45] 241 C na 129.2(4)(1.4) -
MILC 10 [45] 241 C na  fr 156.1(4)(*5)
JLQCD/TWQCD 10 [313] 241 C na  mo 118. 5( B)star 145.7(2.7)stat
RBC/UKQCD 10A [121] 241 A NPR ma 148.8(2.0)(3.0)
MILC 09A [17] 241 C na  AMy 128. 0( 3)(2.9)  153.8(0.3)(3.9)
MILC 09A [17] 241 C na  fr 156.2(0.3)(1.1)
MILC 09 [161] 2+1 A na AMy 154.3(0.4)(*31)
MILC 09 [161] 241 A na  fr 156.5(0.4)(*59)
Aubin 08 [314] 241 C na  AMy 153.9(1.7)(4.4)
RBC/UKQCD 08  [198] 241 A NPR ma 149.4(3.6)(6.3)
HPQCD/UKQCD 07 [44] 241 A na  AMy 156.7(0.7)(1.9)
MILC 04 [201] 241 A na  AMry 156.6(1.0)(3.6)
ETM 14D [315] 2 C na  fx 153.3(7.5)stat
ETM 09 [49] 2 A na  fr 157.5(0.8)(2.0)(1.1) 11T

The label 'na’ indicates the lattice calculations that do not require the use of any renormalization constant
for the axial current, while the label 'NPR’ (’1lp’) signals the use of a renormalization constant calculated
nonperturbatively (at 1-loop order in perturbation theory).

T We evaluated from fr+/f.+ in Table 16 and their input to fix the scale fr =130.4(0.2).

Tt

The ratios of lattice spacings within the ensembles were determined using the quantity r1. The

conversion to physical units was made on the basis of Ref. [124] and we note that such a determination

depends on the PDG value [235] of the pion decay constant
1T Errors are (stat4-chiral)(a # 0)(finite size).

Table 20: Colour code for the lattice data on f,+ and fi+ together with information on the
way the lattice spacing was converted to physical units and on whether or not an isospin-
breaking correction has been applied to the quoted result (see Sec. 4.3). The numerical values
are listed in MeV units. In this and previous editions [4], old results with two red tags have

been dropped.
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5 Low-energy constants

Authors: S. Diirr, H. Fukaya, U. M. Heller

5.1 Chiral perturbation theory and lattice QCD

In the study of the quark-mass dependence of QCD observables calculated on the lattice,
it is beneficial to use chiral perturbation theory (xPT). This framework predicts the non-
analytic quark-mass dependence of hadron masses and matrix elements, and it provides
symmetry relations among such observables. These predictions invoke a set of linearly in-
dependent and universal (i.e., process-independent) low-energy constants (LECs), defined
as coefficients of the polynomial terms (in m, or M2) of different observables.

xPT is an effective field theory approach to the low-energy properties of QCD based on
the spontaneous breaking of chiral symmetry, SU(Ny)r, x SU(Ny)r — SU(Ny)v, and its
soft explicit breaking by quark-mass terms. In its original implementation (i.e., in infinite
volume) it is an expansion in powers of m, and p? with the counting rule M2 ~ m, ~ p2.

If one expands around the SU(2) chiral limit, two LECs appear at order p? in the
chiral effective Lagrangian,

where = — () ’ , (88)

My, ,Mqg—0

F=F, and B =

by
ﬁ )

My ,mq—0

and seven more at order p*, called £; with i = 1,...,7. In the analysis of the SU(3) chiral
limit there are again'® two LECs at order p?,

Fy=F, and By where X = —(tu) ,  (89)

My Mg, ms—0

0

My , Mg ,ms—0 F‘O2 7
but ten more at order p*, indicated by the symbols L;(u) with i = 1,...,10. These
“constants” are independent of the quark masses'”, but they become scale dependent
after renormalization (sometimes a superscript r is used). The SU(2) constants /; are
p-independent, since they are defined at scale y = MPY (as indicated by the bar). The
SU(3) constants L;(u) are usually quoted at the renormalization scale u = 770 MeV. For
the precise definition of these constants and their scale dependence we refer the reader to
Refs. [282, 322].

In the previous four versions of the FLAG review, we summarized the yPT formulae
for the quark-mass dependence of the pion and kaon mass and decay constant, as well
as the scalar and vector pion charge radius. We briefly discussed the different regimes of
xPT, touched on partially quenched and mixed action formulations, collected and colour-
coded the available lattice results for the LECs considered, and formed FLAG estimates
or averages, where possible.

Since the fourth edition in 2019 [4] (referred to as FLAG 19 below) only a handful
of papers appeared with results on the set of LECs covered in our report, but none that
qualifies to be included in an average. We therefore decided to shorten the section on
LECs considerably, referring the reader to the 2019 FLAG review for the yPT formulae,

8Here and in the following, we stick to the notation used in the papers where the yPT formulae were
established, i.e., we work with Fr = f./v2 = 92.2(1) MeV and Fx = fx/v2. The occurrence of different
normalization conventions is not convenient, but avoiding it by reformulating the formulae in terms of fr, fx

is not a good way out. Since we are using different symbols, confusion cannot arise.

9More precisely, they are independent of the 2 or 3 light-quark masses that are explicitly considered in the
respective framework. However, all low-energy constants depend on the masses of the remaining quarks s, c,
b, t or ¢, b, t in the SU(2) and SU(3) framework, respectively, although the dependence on the masses of the

¢, b, t quarks is expected to be small [282; 322].
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description of the results covered there, and the details and explanation of the FLAG
estimates and averages. In this edition, we will concentrate on the description of the new
results and, for the convenience of our readers, list the FLAG estimates and averages,
asking the reader to consult FLAG 19 [4] for the details.

In the 2019 edition, we introduced a section on 77 scattering in the context of SU(2)
XxPT and collected results, from finite-volume lattice calculations, of the isospin I = 0
and I = 2 scattering lengths. In this edition, we will keep this section and describe the
new results that appeared since the 2019 FLAG review. We will, further, add a section
on 7K and KK scattering in the context of SU(3) xPT and collect the available results
for the scattering lengths from finite-volume lattice calculations.

5.1.1 77 scattering

The scattering of pseudoscalar octet mesons off each other (mostly 77 and 7K scattering)
is a useful approach to determine yPT low-energy constants [323-327]. This statement
holds true both in experiment and on the lattice. We would like to point out the main
difference between these two approaches is not so much the discretization of space-time,
but rather the Minkowskian versus Euclidean setup.

In infinite-volume Minkowski space-time, 4-point Green’s functions can be evaluated
(e.g., in experiment) for a continuous range of (on-shell) momenta, as captured, for in-
stance, by the Mandelstam variable s. For a given isospin channel I =0 or I = 2 the 7w
scattering phase shift 47 (s) can be determined for a variety of s values, and by matching
to xPT some low-energy constants can be determined (see below). In infinite-volume
Fuclidean space-time, such 4-point Green’s functions can only be evaluated at kinematic
thresholds; this is the content of the so-called Maiani-Testa theorem [328]. However, in
the Euclidean case, the finite volume comes to our rescue, as first pointed out by Liischer
[329-332]. By comparing the energy of the (interacting) two-pion system in a box with
finite spatial extent L to twice the energy of a pion (with identical bare parameters) in
infinite volume information on the scattering length can be obtained. In particular, in
the (somewhat idealized) situation where one can “scan” through a narrowly spaced set
of box-sizes L such information can be reconstructed in an efficient way.

We begin with a brief summary of the relevant formulae in SU(2) xPT terminology.
In the z-expansion the formulae for af with £ =0 and I = 0,2 are found in Ref. [322]

TM? 5M? - _ 9 21

0 _ _ . 2

agM, = +327TF2{ + Si2e [61 + 205 10€3+ 3 } + O(z )} , (90)
M? M? 7 _ 3

2 _ - e 2

agM, = 6 F? {1 937 [61 + 205 + 8} +O(z )} ) (91)

where x = M? /(47 F)? with M? = (m,, + mg4)3/F? is one possible expansion parameter
of xPT. Throughout this report we deviate from the xPT habit of absorbing a factor
— M. into the scattering length (relative to the convention used in quantum mechanics);
we include just a minus sign but not the factor M. Hence, our aé have the dimension
of a length so that all quark- or pion-mass dependence is explicit (as is most convenient
for the lattice community). But the sign convention is the one of the chiral community
(where aé M, > 0 means attraction and aé M, < 0 indicates repulsion).

An important difference between the two S-wave scattering lengths is evident already
at tree-level. The isospin-0 scattering length (90) is large and positive at this order,
while the isospin-2 counterpart (91) is by a factor ~ 3.5 smaller (in absolute magni-
tude) and negative. Hence, in the channel with I = 0 the interaction is attractive,
while in the channel with I = 2 the interaction is repulsive and significantly weaker.
In this convention, experimental results, evaluated with the unitarity constraint ger-
mane to any local quantum field theory, read a§M, = 0.2198(46)stat (16)syst (64) theo and
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aZ My = —0.0445(11)stat (4)syst (8)theo [326, 333-335]. The ratio between the two (abso-

lute) central values is about 4.9, i.e., a bit larger than 3.5. This, in turn, suggests that

NLO contributions to a) and a3 are sizeable, but the expansion seems well behaved.
Equations (90, 91) may be recast in the -expansion, with & = M2 /(47 F,)?, as

7M? 1 ~ 20 40. 18- 5

0 _ fr 2. _ e 2

agM, = +327TF7%{1+§2£3+§2€4+§[21£1+21122 21€3+2}+O(§ )},(92)
M? 1 - 4. 8. 1

2 _ T - _ - ° - 2

agM, = 16WF3{1+§2£3+§244 5[361 + 3€2+ 2} +0(¢ )} , (93)

where M?/(47F)? = M2 /(4 Fy)?{1 + $&03 + 260, + O(£?)} has been used. Finally, this
expression can be summarized as

M2 OMZ (A2
OM — s 1 T 0 2 4
ot o M e M TOE) ) (54)
M2 3M2 . (A2)2
oMy = ——L-1— ——TIn -0 4 O(&? 95
%o 167 F2 Samzpz Mz TOE) (95)
with the abbreviations
9. (AQ)? 20. 40- 5 5
o = Sl by — Oy + 20+ 96
2 M2, TR TR VC R (96)
3. (A2)? 4. 8. 1. 1
5 ln M‘?’phys 561 + 562 - §€3 — 2£4 + 5 s (97)

where Al with ¢ = 0 and I = 0,2 are scales like the A; in ; = ln(A?/Mz)phys) for
i € {1,2,3,4} (albeit they are not independent from the latter). Here, we made use of
the fact that M2/M? = 1+0(§) and thus EIn(MZ/M2 |, ) = O(£?). In the absence
of any knowledge on the #;, one would assume A} ~ A2, and with this input Eqs. (94,
95) suggest that the NLO contribution to |a| is by a factor ~ 10.5 larger than the NLO
contribution to |ag|. The experimental numbers quoted before clearly support this view.

Given that all of this sounds like a complete success story for the determination of the
scattering lengths a} and a3, one may wonder whether lattice QCD is helpful at all. Tt is,
because the “experimental” evaluation of these scattering lengths builds on a constraint
between these two quantities that, in turn, is based on a (rather nontrivial) dispersive
evaluation of scattering phase shifts [326, 333-335]. Hence, to overcome this possible
loophole, an independent lattice determination of af and/or a2 is highly welcome.

On the lattice a3 is much easier to determine than af, since the former quantity
does not involve quark-line disconnected contributions. The main upshot (to be reviewed
below) is that the lattice determination of a3M, at the physical mass point is in perfect
agreement with the experimental numbers quoted before, thus supporting the view that
the scalar condensate is—at least in the SU(2) case—the dominant order parameter, and
the original estimate f3 = 2.9 4 2.4 is correct (see below). Still, from a lattice perspective
it is natural to see a determination of aJM,, and/or a3 M, as a means to access the specific
linear combinations of ¢; with i € {1,2,3,4} defined in Egs. (96, 97).

In passing, we note that an alternative version of Egs. (94, 95) is used in the literature,
too. For instance, Refs. [98, 99, 336-338] give their results in the form

TM? M?2 - M2
oM = = - [KI_O 5-91 —”] o€ 98
o +327TF72 + 32772}72 am T+ n 2F7% + (6 ) , ( )
M2 ]\42 M2
2]\471- = — s 1-— s [ =2 1-31 J:I 2
o TorFz ||~ 3amepz fer FL73gE O, (99)
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where the quantities (used to quote the results of the lattice calculation)

_ 40 - 8- 5. M
=0 = Ul — 3+ 4L In P2 1
o it opte —pls T 4la+9 n2F7%,phys’ (100)
_ 8§ 16~ M2 o
=2 = Tl ol — Oy — Al + 3In P (101)
3 3 2F2

amount to linear combinations of the £;°"(p"") that, due to the explicit logarithms in
Eqgs. (100, 101), are effectively renormalized at the scale fien = fPMYS = /2FPWS —
130.41(20) MeV [205]. Note that in these equations the dependence on the physical pion
mass in the logarithms cancels the one that comes from the #;, so that the right-hand-sides
bear no knowledge of MP"s. This alternative form is slightly different from Eqgs. (94, 95).
Exact equality would be reached upon substituting F2 — Fﬁ’phys in the logarithms of
Egs. (98, 99). Upon expanding F2/ Ff’phys and subsequently the logarithm, one realizes
that this difference amounts to a term O(§) within the square bracket. It thus makes up
for a difference at the NNLO, which is beyond the scope of these formulae.

We close by mentioning a few works that elaborate on specific issues in 77 scattering
relevant to the lattice. Reference [339] does mixed action xPT for 2 and 2+1 flavours of
staggered sea quarks and Ginsparg-Wilson valence quarks, Refs. [340, 341] work out scat-
tering formulae in Wilson fermion xyPT, and Ref. [342] lists connected and disconnected
contractions in 77 scattering.

5.1.2 7K and KK scattering

The discussion of 77 scattering in the previous subsection carries over, without material
changes, to the case of 7K and K K scattering. The one (tiny) difference is that results, if
contact with yPT is desired, must be matched against the SU(3) version of this framework.
In other words, for w7 scattering there is a choice between SU(2) and SU(3), while for
7K and KK scattering matching to the SU(3) version of yPT is mandatory?".

For completeness we also include, below, the SU(3) xPT result for I = 2 w7 scattering.
Since, as in the FLAG 19 review, we tabulate the S-wave scattering length with combined
isospin I in the dimensionless variable al M, where the physical pion mass is meant, the
result can be converted into specific linear combinations of NLO yPT coeflicients in either
the SU(2) or SU(3) xPT framework. In this conversion, an extra piece to the systematic
error is to be included, to account for higher-order terms in the chiral expansion.

Below, we continue this tradition by summarizing results in the dimensionless variable
abprr for K scattering and al My for KK scattering. Throughout this report, pi,x =
M, Mg /(M; + Mg) is the reduced mass of the kaon-pion system at the physical mass
point. Again, these results can be converted into linear combinations of the L;, with
proper adjustment of the systematic uncertainty, due to the chiral expansion. In doing
so, one should keep in mind that the SU(3) framework does not converge as swiftly as
the SU(2) frameork, since m, g < ms.

We basically follow Ref. [346], but we adopt, for masses and decay constants, the
conventions of the LEC section in the FLAG 19 report. We consider the yPT formulae
at O(p?) in the chiral expansion, as given in Refs. [282, 347-351]. The scattering lengths

2ONote that this could be circumvented if one used a heavy-meson extended version of yPT, in particular
SU(2) xPT with an extra (heavy) strange quark [343-345]. However, we have the original Gasser-Leutwyler
versions of SU(2) and SU(3) xPT in mind.
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of the mm(I =2), KK(I =1), tK(I = 3) and 7K (I = ) systems can be written as

ot = poid 1 S (M2 i) — Y Lol + 2]} (102)
bacMic = gt { =14 g [ME L0 - S Lot 4 xhet)] . (109
e = G2 I [ttt - 2R L) 2
ag/richinK = 8;?:;[{ {2+ i [ Mic L) oMt My ) +xi§?(u)}(}105)

These formulae are written in terms of O(p*) values of the masses and decay constants
(M, Mg, F; and Fk) of the Nambu-Goldstone bosons (which, in turn, depend on the
quark masses). We recall that the “Bernese” normalization for the pion decay constant
at the physical point is adopted (cf. footnote 18). The constants Ls(u) and

Lucar () = 201 (1) + 2L () + Ly() — 2La(p) — 5 Law) + 2Lo(10) + Ls()  (106)

are the SU(3) low-energy constants (LECs) at the renormalization scale p. The objects

XSD% (1) are known functions with chiral logarithmic terms and dependence on the scale
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1. In terms of these objects the functions Xf,Q(u) in Egs. (102)-(105) read?!

1 3M2. M2 M2 M2 4M?
2 —_ ™ 77\'1 o L 1
(1) Gorp L o) — g e + =57 (107)
1 M2M?2 M?2 M?
1 _ K Ty 7K
Xl = e lanm —arm 8E) - Milos(S5)
—20M % + 11M2 M3 M M3
oy log(—3) + K}, (108)
36(M2 — M32) 1 9
R = 1 [22M;°;MK +11M2ME — 5M2 o (MQ)
K (167)2 8(M2 — M2) u2
9M4 — 134M M3 4+ 16 M3 My —55M2M}2(1 (M7}2<)
36(MZ — M2) 0872
36M4 + 48M M3 — 10M3 My + 11M2ME — 9M2 o (M2)
72(M% — M2) 112
43M, M SM M
5 Lo 5 Kot (M, M) | (109)
L2 = 1 [11M§MK — 11M2M% + 5M2 o (MQ)
K (167)2 4(M32 — M2) U2
N —OME — 6TM, M3 +8M3MK+55M2MK1 (ME()
18(M32 — M2) 112

, 30+ MM, — SMME — ULMEME +0MS | M2
36(MZ — M2) 2

43M My n AM, Mg 12M- Mg

t1(My, My) — to (M, M
9 9 1( K) 9 2( K)

—

where t1 (M, Mk), to(M,, M) can be written as

M M )(2Mg — M,
t1(My, M) = \/( K +M )(M K ) arctan <
K — ™

My +2M, \ 2Mx — M,
(

to(Mn, Mg) = \/(MK — Mx)2Mic + M) arctan <

MK+MT(

2(My + M) [ Mg — M,
My —2M, \ 2Mx + M, )~
(

112)

In short, these formulae show that — in the SU(3) framework — the four scattering

1/2

lengths a$ M, a2 My, ag/ ®lric, ap’’ pir g determine three linear combinations of L (1) and

21 There is a typo in the original version of Ref. [346] which made us mistakenly give the last term in the

2
square bracket of Eq. (108) as 101;/[’( in the arXiv:2111.09849_v1 version of this report. The correct expression
. (32) in [350] which, to the best of our knowledge is the earliest reference
for this quantity. Moreover, in the SU(3) limit (16m)*x3, (1) = — M7 lo g( )+ 4 M2, while the Gell Mann-

Oakes-Renner relation and the substitution M7 = M2 + ¢ yield (167)? XKK(/L) — M(M7+5

log( 25 ) — (M2 +
2 2 2 2
€) log( MM 9+ (M) (= 201;16;206“11\4 x) log( M"+246/3)+ Z(MZ +¢). In this expression the terms O(e 1Y cancel,

and with log(M’f:ife/?’) = log(u—;) + 3ﬁ;2 one obtains (167)xjx (1) — —2 M2 1o g( ) + 2M? in the limit
€ — 0. Hence x2,(i) = Xkx () in the SU(3) limit. We are indebted to André Walker—Loud and Kiyoshi

Sasaki for pointing this out to us and for clarifying details, respectively.
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Lscat (1t). Recall that Eq. (106) shows that the latter object is itself a linear combination
of the L;(p). Interestingly, 77 and K K scattering determine the same linear combination
Lcat (1) — 3L5(), while agp,uﬂK and a(l)/QuﬂK determine two more (mg/myq-dependent)
linear combinations. In the last few lines, we established the habit of omitting the particle
subscript in aé’ﬂK and aéﬁKK, since the value of I together with the factor My, prx or
My already tells the particles involved in the scattering process. The remaining zero

subscript is meant to indicate the S-wave component.

5.2 Extraction of SU(2) low-energy constants
5.2.1 New results for individual LO SU(2) LECs

We are aware of four new papers with results on individual SU(2) LECs plus an additional
one which we overlooked in FLAG 19 [4]. They all give results on the LO LECs, B
and/or F, where B is frequently traded for the condensate ¥ = BF? (both B and ¥ are
renormalized at the scale p = 2 GeV). We start by briefly mentioning their details.

The paper ETM 20A [352] presents an Ny = 2 calculation with twisted mass fermions,
using three pion masses down to the physical value at a single lattice spacing a =
0.0914(15) fm. They report a value of F as given in Tab. 22 and a value of /4 discussed in
Sec. 5.2.2 below. The publication status changed from “preprint” to “accepted” after our
closing date (as did the quoted uncertainty). In practical terms this change is insignif-
icant, since the quoted number (due to a red tag) would not contribute to the Ny = 2
average.

The paper xQCD 21 [353] employs N; = 2 +1 QCD with domain wall fermions and
RI/MOM renormalization. They have two ensembles with physical pion mass (139 MeV)
at lattice spacings a = 0.114fm and a = 0.084fm, one ensemble with M, = 234 MeV at
a = 0.071fm, and one with M, = 371 MeV at a = 0.063fm that is only used to test the
lattice spacing dependence of the scalar renormalization factor. They report the value of
©1/3 as listed in Tab. 21.

The paper ETM 21 [43] uses Ny = 2+ 1 + 1 flavours of twisted mass fermions,
ten ensembles, three lattice spacings (a = 0.092,0.080,0.068fm), up to four pion masses
M, € [135MeV, 346 MeV], up to two volumes, and L(My ymin) = 5.55fm. The scale is
set by fPhYs = \/2FPhys = 130.4(2) MeV [205]. They analyze the quark mass dependence
of both Fy and the (chiral and finite-volume) log-free quantity X, = (FM2)'/5 [354],
to determine F and /4 in two different ways. The two fitting procedures yield nearly
identical results for F. The two central values agree exactly, as do the two systematic
uncertainties; only the combined statistical plus fitting uncertainty differs a bit among the
two approaches. Since the paper does not give preference to one of the fitting procedures,
we take the liberty to condense them, assuming 100% correlation, into the single result
F = 87.7(6)(5) MeV as listed in Tab. 22. They also report a value of ¢4 to be mentioned
in Sec. 5.2.2 below.

The paper ETM 21A [6] is again based on Ny = 2 + 1+ 1 flavours of twisted mass
fermions, ten ensembles, three lattice spacings, a = 0.095,0.082,0.069fm, up to four pion
masses M, € [134MeV, 346 MeV], up to two volumes, and L(My min) = 5.52fm. The
scale is set by fPhs = \/2FPhYs = 130.4(2) MeV [205], and cross-checked with the nucleon
mass. From the analysis of the pion sector they determine values of F and /3 as listed
in Tab. 22 and Tab. 21, respectively.

Finally, we should mention Ref. [355] which, regrettably, escaped our attention when
preparing the last FLAG report [4]. The authors extract the quark condensate from an
OPE analysis of the Landau-gauge quark propagator. They use overlap valence quarks
on three ensembles with (2+1)-flavor domain-wall fermions with a=! = 1.75 GeV and sea
pion masses of 331, 419 and 557 MeV from the RBC/UKQCD collaboration. Their eight
valence pion masses range from 220 to 600 MeV. Their result for £/3 is listed in Tab. 21.
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Figure 14: Cubic root of the SU(2) quark condensate ¥ = — limyy, ;n,—0{@u) in the MS-
scheme, at the renormalization scale = 2 GeV. Square symbols indicate determinations from
correlators in the p-regime, up triangles refer to extractions from the topological susceptibility,
diamonds to determinations from the pion form factor, and bullet points refer to the spectral

density method.

With only a single lattice spacing, their result does not contribute to the FLAG average.

Perhaps it is worth comparing the results for f =
errors along, one finds Af[MeV] = 124.0(0.9)(0.7) — 122.82(32)(65) = 1.18(1.35), which is
less than one standard deviation. Given that the two studies were carried out on largely
the same ensemble basis, it is perhaps reasonable to assume the statistical error is ~ 100%
correlated. In this case, the difference would be Af [MeV] = 124.0(0.7) — 122.82(65) =
1.18(0.96), which is 1.240 and thus perfectly acceptable. The chiral analysis in the two
papers is treated somewhat differently, which would lead to differences in the neglected

NNLO terms, and thus reflects a systematic effect.

The new results for £/3 and F, /F, together with the previous ones, are shown in

Fig. 14 and Fig. 15, respectively.
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V2F in Refs. [6, 43]. Carrying all

5.2.2 New results for individual NLO SU(2) LECs

Two of the aforementioned papers contain new results on Z4, i.e., a specific LEC at NLO
of the SU(2) framework. ETM 20A [352] quotes £4 = 4.31(4)(2)(11)(5) for N; = 2, while
ETM 21 [43] finds ¢4 = 3.44(28)(36) for Ny = 2+ 1+ 1. These results are listed in Tab. 23.

If one were to ignore Ny, the two new results would appear inconsistent. While an
implicit dependence on the strange- (and highly suppressed) charm-quark mass in the sea
is a logical possibility, it seems to us these results should be considered in conjunction
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Collaboration Ref. Ny ) N < RS 5 P
ETM 21A 6] 24+1+1 p * o * * 267.6(1.8)(1.1)
ETM 17E [85] 24141 A o * o) * 318(21)(21)
ETM 13 [84] 2+1+1 A o * * * 280(8)(15)
xQCD 21 [353] 2+1 P * * * * 260.3(0.7)(1.7)
JLQCD 17A [90] 2+1 A o * * * 274(13)(29)
Wang 16 [355) 2+1 A o ] m * 305(15)(21)
JLQCD 16B [89] 2+1 A o) * * * 270.0(1.3)(4.8)
RBC/UKQCD 15E [88] 2+1 A * * * * 274.2(2.8)(4.0)
RBC/UKQCD 14B [10] 2+1 A * * * * 275.9(1.9)(1.0)
BMW 13 [87] 2+1 A * * * * 271(4)(1)
Borsanyi 12 [86] 2+1 A o o) * * 272.3(1.2)(1.4)
JLQCD/TWQCD 10A  [356] 2+1 A * = m * 234(4)(17)
MILC 10A [14] 2+1 C o * * o 281.5(3.4) (t2:0)(4.0)
RBC/UKQCD 10A [121] 2+1 A o) o n * 256(5)(2)(2)
JLQCD 09 [357] 2+1 A * = m * 242(4)(112)
MILC 09A, SU(3)-fit [17] 2+1 C o * * o) 279(1)(2)(4)
MILC 09A, SU(2)-fit [17] 2+1 C o * * o 280(2) (T2)(4)
MILC 09 [161] 2+1 A o) * * o) 278(1) (*2)(5)
TWQCD 08 [358] 2+1 A " " = * 259(6)(9)
PACS-CS 08, SU(3)-fit [197] 2+1 A * " m = 312(10)
PACS-CS 08, SU(2)-fit [197] 2+1 A * = = = 309(7)
RBC/UKQCD 08 [198] 2+1 A o = o * 255(8)(8)(13)
Engel 14 [93] 2 A * * * * 263(3)(4)
Brandt 13 [92] 2 A o * o * 261(13)(1)
ETM 13 [84] 2 A o * o) * 283(7)(17)
ETM 12 [359] 2 A o * o * 299(26)(29)
Bernardoni 11 [360] 2 C ) ] ] * 306(11)
TWQCD 11 [361] 2 A o m = * 230(4)(6)
TWQCD 11A [362] 2 A o ] m * 259(6)(7)
JLQCD/TWQCD 10A  [356] 2 A * " m * 242(5)(20)
Bernardoni 10 [363] 2 A o) u L] * 262 (tgi) (t:)
ETM 09C [91] 2 A o) * o) * 270(5)(*2)
ETM 08 [96] 2 A o o) o) * 264(3)(5)
CERN 08 [364] 2 A o = o * 276(3)(4)(5)
Hasenfratz 08 [365] 2 A o) [ o) * 248(6)
JLQCD/TWQCD 08A  [366] 2 A o) ] ] * 235.7(5.0)(2.0) (722)
JLQCD/TWQCD 07  [367] 2 A o m m * 239.8(4.0)
JLQCD/TWQCD 07A  [368] 2 A * = m * 252(5)(10)

Table 21: Cubic root of the SU(2) quark condensate ¥ = — limy;,,, ,—0(@u) in MeV units, in
the MS-scheme, at the renormalization scale p = 2 GeV. All ETM values that were available
only in ry units were converted on the basis of ry = 0.48(2) fm [120, 369, 370], with this error
being added in quadrature to any existing systematic error.
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§ § & F
Collaboration Ref. Ny § ¥ & & F Fr/F
ETM 21A 6] 2+1+1 P 86.85(23)(46) 1.062(3)(6)
ETM 21 [43] 24141 P 87.7(6)(5) 1.051(7)(6)
ETM 11 94] 2+1+1 C 85.60(4)(13) 1.077(2)(2)
ETM 10 [220] 2+141 A " 85.66(6)(13) 1.076(2)(2)
RBC/UKQCD 15E 88]  2+1 A 85.8(1.1)(1.5) 1.0641(21)(49)
RBC/UKQCD 14B [10]  2+1 A 86.63(12)(13) 1.0645(15)(0)
BMW 13 87]  2+1 A 88.0(1.3)(0.3) 1.055(7)(2)
Borsanyi 12 [86]  2+1 A 86.78(05)(25) 1.0627(06)(27)
NPLQCD 11 [95]  2+1 A 86.8(2.1)(*57) 1.062(26) (732
MILC 10 [45]  2+1 C 87.0(4)(5) 1.060(5)(6)
MILC 10A [14]  2+1 C 87.5(1.0)(T5°7) 1.054(12)(*3))
MILC 09A, SU(3)-fit  [17] 241 C 86. 8( )(4) 1.062(1)(3)
MILC 09A, SU(2)-fit  [17] 241 C 87.4(0.6) (*99) 1. 054(7)(“2)
MILC 09 [161] 241 A 87. 66(17)( 2) 1.052(2)(*9)
PACS-CS 08, SU(3)-fit [197]  2+1 A E = 90.3(3.6) 1.062(8)
PACS-CS 08, SU(2)-fit [197]  2+1 A B o= 89.4(3.3) 1.060(7)
RBC/UKQCD 08 [198]  2+1 A " 81.2(2.9)(5.7) 1.080(8)
ETM 20A [352] 2 A " 86.46(0.06)(2.40) 1.067(1)(30)
ETM 15A [370] 2 A " 86.3(2.8) 1.069(35)
Engel 14 93] 2 A 85.8(0.7)(2.0) 1.075(09)(25)
Brandt 13 [92] 2 A 84(8)(2) 1.080(16)(6)
QCDSF 13 [371] 2 A 86(1) 1.07(1)
TWQCD 11 [361] 2 A = 83.39(35)(38) 1.106(5)(5)
ETM 09C [91] 2 A 85.91(07)(*7%) 1.0755(6) (705)
ETM 08 [96] 2 A 86 6(7)(7) 1.067(9)(9)
Hasenfratz 08 [365] 2 A [ 90(4) 1.02(5)
JLQCD/TWQCD 08A [366] 2 A o= 79.025)(0.7)(T8%)  1.167(37)(10)(1%)
JLQCD/TWQCD 07 [367] 2 A B = 87.3(5.6) 1.06(7)
Colangelo 03 [372] 86.2(5) 1.0719(52)

Table 22: Results for the SU(2) low-energy constant F' (in MeV) and for the ratio F;/F. All
ETM values that were available only in ry units were converted on the basis of ryg = 0.48(2) fm
[120, 369, 370], with this error being added in quadrature to any existing systematic error.
Numbers in slanted fonts have been calculated by us, based on V2R — 130.41(20) MeV
[205], with this error being added in quadrature to any existing systematic error (otherwise
to the statistical error). The systematic error in ETM 11 has been carried over from ETM 10.
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ETM 21 [43]  2+1+1 P 3.44(28)(36)
ETM 11 [94] 2+1+1 C 3.53(5)(26) 4.73(2)(10)
ETM 10 [220] 2+1+1 A u 3.70(7)(26) 4.67(3)(10)
RBC/UKQCD 15E 88]  2+1 A 2.81(19)(45) 4.02(8)(24)
RBC/UKQCD 14B [10] 241 A 2.73(13)(0) 4.113(59)(0)
BMW 13 87] 241 A 2.5(5)(4) 3.8(4)(2)
RBC/UKQCD 12 [192]  2+1 A 2.91(23)(07) 3.99(16)(09)
Borsanyi 12 [86] 241 A 3.16(10)(29) 4.03(03)(16)
NPLQCD 11 [95]  2+1 A 4.04(40) (*72) 4.30(51) (*52)
MILC 10 [45] 241 ¢ 3.18(50)(89) 4.29(21)(82)
MILC 10A (14  2+1 ¢ 2.85(81)(*37) 3.98(32)(*3)
RBC/UKQCD 10A [121]  2+1 A m 257(18) 3.83(9)
MILC 09A, SU(3)-fit  [17]  2+1 C 3.32(64)(45) 4.03(16)(17)
MILC 09A, SU(2)-fi 171 2+1 C 3.0(6) () 3.9(2)(3)
PACS-CS 08, SU(3) t [197] 241 A o= 347(11) 4.21(11)
PACS-CS 08, SU(2)-fit [197]  2+1 A o= 3.14(23) 4.04(19)
RBC /UKQCD 08 [198]  2+1 A n 3.13(33)(24) 4.43(14)(77)
ETM 20A [352] 2 A n 4.31(4)(2)(11)(5)
ETM 15A [370] 2 A u 3.3(4)
Gilpers 15 971 2 A 4.54(30)(0)
Giilpers 13 [373] 2 A = 4.76(13)
Brandt 13 [92] 2 A 3.0(7)(5) 4.7(4)(1)
QCDSF 13 [371] 2 A 4.2(1)
Bernardoni 11 [360] 2 ¢ B m 4.46(30)(14) 4.56(10)(4)
TWQCD 11 [361] 2 A B o= 4.149(35)(14) 4.582(17)(20)
ETM 09C 91 2 A 3.50(9)(T59) 4.66(4)(T93)
JLQCD/TWQCD 09  [374] 2 A = = 4 09(50)(52)
ETM 08 [96] 2 A 3.2(8)(2) 4.4(2)(1)
JLQCD/TWQCD 08A [366] 2 A o= 33840)(24)(T) 4. 12(35)(30)(*31)
CERN-TOV 06 [375] 2 A B o= 3.006)()
Colangelo 01 [326] 4.4(2)
Gasser 84 [322] 2.9(2.4) 4.3(9)

Table 23: Results for the SU(2) NLO low-energy constants f3 and £4. For comparison, the
last two lines show results from phenomenological analyses. The systematic error in ETM 11
has been carried over from ETM 10.
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Figure 15: Comparison of the results for the ratio of the physical pion decay constant Fi
and the leading-order SU(2) low-energy constant F. Square symbols indicate determinations
from correlators in the p-regime, and diamonds from the pion form factor.

with the FLAG 19 averages for the quantity ¢,. The FLAG 19 average for N; = 2, based
on four papers, was 4.40(28), the average for Ny = 2 4 1, based on five papers, was
4.02(45), and the estimate for Ny =2+ 1+ 1, based on a single paper, was 4.73(10). In
terms of standard deviations the difference “old average minus new result” is 4.40(28) —
4.31(13) = 0.09(31) or 0.3¢ for Ny = 2, while it is 4.73(10) — 3.44(46) = 1.29(47) or 2.70
for Ny = 24+1+1. Hence, the new Ny = 2 result of ETM 20A [352] is in perfect agreement
with the corresponding FLAG 19 average. On the other hand, the new Ny =2+ 141
result of ETM 21 [43] is largely inconsistent with the corresponding FLAG 19 estimate,
which was taken from Ref. [94]. Perhaps one should take a step back at this point, and
consider the option that the implicit Ny-dependence (through a dynamical strange and
charm quark) is smaller than some unaccounted-for systematic effects in at least one of
the works considered. On the practial side neither one of the new results qualifies for
a FLAG average (ETM 20A [352] has a red tag, ETM 21 [43] is still unpublished). In
summary, the time is not ripe to give an update on the ¢ average given in FLAG 19.

The two new results on /4 in Tab. 23 are displayed in Fig. 16, along with all previous
determinations with systematic error bars. Since there is no new entry in the first column
of the table, there is no analogous figure for /3.

There is also new information on fs. It appears in three new papers on the slope of
the vector form factor at ¢> = 0 (“charge radius”) of the pion. We follow our tradition of
quoting and comparing results in terms of (T2>’{, rather than fg. As mentioned before, we
start with a brief discussion of the particulars of these papers.

The paper Feng 19 [379] is based on Ny = 241 flavours of domain-wall valence quarks
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Figure 16: Effective coupling constant £4. Squares indicate determinations from correlators
in the p-regime, diamonds refer to determinations from the pion form factor.

on domain-wall sea. This collaboration uses four ensembles essentially at the physical mass
point?? and another one at M, = 341 MeV. At the physical mass point they have three
lattice spacings in the range a~! = 1.015—1.73 GeV, i.e., none of them satisfies a < 0.1fm.
The respective box sizes are L = [6.22,4.58, 5.48]fm, hence L(My min) = 6.22fm.

The paper xQCD 20 [378] employs overlap valence quarks on Ny = 2 + 1 ensembles
with domain-wall sea quarks. They use a total of seven ensembles, with three of them
being at the physical point. They cover five lattice spacings a = 0.083 —0.195fm, of which
only one is below 0.1fm. The relevant box size is 6.24fm at the physical point, where they
have ML = 4.45. Renormalization is done nonperturbatively.

The paper Gao 21 [377] is based on Ny = 2+ 1 HISQ (staggered) ensembles on which
they invert clover valence quarks. They have My soo = My va1 = 140MeV at a = 0.076fm
in a 643 x 64 volume. In addition, they have M sca = 160 MeV, M, a1 = 300 MeV at
a = 0.06fm (in a 48 x 64 box), and essentially the same sea-valence mass combination at
a = 0.04fm (in a 643 x 64 box). The vector form factor is renormalized nonperturbatively.
Unfortunately, no continuum extrapolation is performed; they quote the result from the
a ~ 0.076fm physical pion mass ensemble as listed in Tab. 24. The error quoted is a total
error, comprising systematic uncertainties unrelated to cut-off effects.

The available information on (r?)7. is summarized in Fig. 17. It is obvious that the
lattice computations for this quantity do not achieve the precision of the experimental

22This earns them a green box on “chiral extrapolation”, but the criterion was crafted with the idea of a
global fit which takes all available information into account. In the setup of Feng 19 [379] it is barely possible
to disentangle a small M, dependence in the vicinity of ME™S from cut-off effects.
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HPQCD 15B [376] 24141 A 0.403(18)(6)
Gao 21 [377] 241 P - 0.42(2) ot
xQCD 20 (378]  2+1 A 0.430(5)(13) 17.1(1.4)
Feng 19 [379]  2+1 A . 0.434(20)(13)
JLQCD 15A, SU(2)-fit [380] 241 A . 0.395(26)(32)  13.49(89)(82)
JLQCD 14 (381]  2+1 A . m 0.49(4)(4) 7.5(1.3)(1.5)
PACS-CS 11A [382] 241 A . 0.441(46)
RBC/UKQCD 08A  [383]  2+1 A = . 0.418(31) 12.2(9)
LHP 04 [384] 241 A [ ] [ ] [ ] 0.310(46)
ETM 17F (385] 2 A . 0.443(21)(20)  16.21(76)(70)
Brandt 13 92 2 A 0.481(33)(13)  15.5(L.7)(1.3)
JLQCD/TWQCD 09 [374] 2 A . m 0.409(23)(37)  11.9(0.7)(1.0)
ETM 08 06] 2 A 0.456(30)(24)  14.9(1.2)(0.7)
QCDSF/UKQCD 06A  [386] 2 A m 0.441(19)(63)
Bijnens 98 [387] 0.437(16) 16.0(0.5)(0.7)
NAT 86 [38¢] 0.439(8)
Gasser 84 [322] 16.5(1.1)

Table 24: Vector form factor of the pion: Lattice results for the charge radius (r?)7, and the
chiral coupling constant fg are compared with the experimental value, as obtained by NA7,
and some phenomenological estimates. The publication status of xQCD 20 [378] changed
from “preprint” to “accepted” after our closing date.

result (NA7) yet.

5.2.3 New results for an SU(2) linear combination linked to 77 scat-
tering

We are aware of four new papers on 77 scattering (in the isospin I = 2 and/or I = 0
state). As before, we begin with a brief description of their specifics.

Reference [389] by B. Hérz and A. Hanlon uses one CLS ensemble of Ny = 2 +1
nonperturbatively improved Wilson (clover) fermions. Since it is away from the physical
mass point and no extrapolation to the latter is attempted, we refrain from applying
the FLAG criteria, and there will be no listing in tables and/or plots. We add that
this procedure is in strict analogy to our treatment of Ref. [390] in FLAG 19. A sequel
publication, based on the same data, is Ref. [391]. They find that the 77 (I = 2) spectrum
is fit well by an S-wave phase shift that incorporates the expected Adler zero. Obviously,
the same comment regarding the applicability of the FLAG criteria applies.

The paper Culver 19 [392] uses Ny = 2 flavours of nHYP clover fermions at a =
0.12fm, M, = 315MeV on 48 x 242 x {24,30,48} and M, = 226 MeV on 64 x 24 x
{24,28,32}. With a conventional analysis technique they find aZM, = —0.0455(16), after
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Figure 17: Summary of the pion form factor (r?)T,. The publication status of YQCD 20 [378]
changed from “preprint” to “accepted” after our closing date.

extrapolation to physical pion mass. From an inverse amplitude method, they obtain
aiM, = —0.0436 (fgiggig), again at the physical pion mass. Since the paper does not give
preference to one of the analysis methods, we take the liberty to condense the two numbers
into the result a2 M, = —0.0445(14)(19), as shown in Tab. 25. Here, the systematic error
reflects the full difference between the two central values given in the paper.

The paper Mai 19 [393] employs Ny = 2 nHYP clover fermions at a single lattice
spacing (a = 0.12fm), with M, = 315MeV on 48 x 242 x {24, 30,48} lattices and M, =
224 MeV on 64 x 242 x {24,28,32} lattices. They quote, extrapolated to the physical
pion mass, ajM, = 0.2132(F000) and a3 M, = —0.0433 £+ 0.0002 for I = 0 and I = 2,
respectively. With statistical error only, these results go into Tab. 25, but not into a plot.

The paper ETM 20B [394] is based on Ny = 2 QCD with twisted mass fermions at
a = 0.0914(15)fm, and with cgw = 1.57551. They have three pion masses (M, = 340 MeV
on 322 x 64 and M, = 242MeV and M, = 134MeV on 483 x 96). They find, for I = 2,
at the pion masses considered, a3 M, = —0.2061(49), —0.156(15), —0.0481(86), with the
last being at physical pion mass, but finite a. Accordingly, we take aZM, = —0.0481(86)
with unknown systematic error. With statistical error only, this result goes into Tab. 25,
but not into a plot.

These four works, when combined with the information listed in FLAG 19, represent
the information from the lattice on the w7 scattering lengths a) and a? in the isopin
channels T = 0 and I = 2, respectively. As can be seen from Eqgs. (94, 96), the I = 0
scattering length carries information about 22/, + 220, — 3. /3+2¢4. And from Egs. (95, 97)
it follows that the I = 2 counterpart carries information about the linear combination
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Fu 17 [395] 2+1 A [ 0.217(9)(5) 45.6(7.6)(3.8)
Fu 13 [337] 241 A ] ] 0.214(4)(7) 43.2(3.5)(5.6)
Fu 11 396] 2+1 A . . 0.186(2) 18.7(1.2)
Mai 19 [393] 2 P [ | [ ] 0.2132(9)
ETM 16C 338] 2 A . 0.198(9)(6) 30(8)(6)
Caprini 11 [335] 0.2198(46)(16)(64)
Colangelo 01 [326] 0.220(5)¢ot
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Collaboration  Ref. Ny ) O < RS agMr e
ETM 15E (98]  2+1+1 A —0.0442(2)(3) 3.79(0.61)(T037)
PACS-CS 13 [346]  2+1 A . B —0.04243(22)(43)
Fu 13 337]  2+1 A m . —0.04430(25)(40) 3.27(0.77)(1.12)
Fu 11 [396]  2+1 A = " —0.0416(2) 11.6(9)
NPLQCD 11A [397] 2+1 A [ ] —0.0417(07)(02)(16)
NPLQCD 07  [336] 2+1 A | ] ] —0.04330(42)¢0t
NPLQCD 05  [398]  2+1 A = m = —0.0426(06)(03)(18)
ETM 20B [394] 2 A [ —0.0481(86)
Mai 19 (393] 2 P = . —0.0433(2)
Culver 19 [392] 2 P = . —0.0445(14)(19)
Yagi 11 [399] 2 P [ [ ] —0.04410(69)(18)
ETM 09G [99] 2 A —0.04385(28)(38) 4.65(0.85)(1.07)
CP-PACS 04  [400] 2 A m . —0.0413(29)
Caprini 11 335) —0.0445(11)(4)(8)
Colangelo 01 [326] —0.0444(10) 0t

Table 25: Summary of w7 scattering data in the I = 0 (top) and I = 2 (bottom) channels.
Some of the results have been adapted to our sign convention. The results of Refs. [326, 335]
allow for a cross-check with phenomenology.
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%Zl + %EQ — %53 — 20,. Still, we prefer quoting the dimensionless products aéM,r (at the
physical mass point) over the aforementioned linear combinations to ease comparison with
phenomenology.

The updated Tab. 25 summarizes the present lattice information on al=°M, and
al=2M,, at the physical mass point, and the results are displayed in Fig. 18. We remind
the reader that a lattice computation of a{="M, involves quark-loop disconnected con-
tributions, which tend to be very noisy and thus require large statistics. Compared to
the situation in FLAG 19 the number of computations has increased from three to five,
but still none of them is free of red tags. The situation is somewhat better for al=2M,
which is computed from quark-line connected contributions only. In this case there is one
computation at Ny = 2 and one at Ny = 241+ 1 that qualifies for a FLAG average. We
quote these numbers in subsection 5.2.4 below.

The available information on a}=°M, and a{=2M, is summarized in Fig. 18. It is
obvious that the former quantity (due to quark-loop disconnected contributions) is much
harder to calculate on the lattice than the latter one. Nonetheless, the good news is that
in both cases the lattice determinations are in reasonable agreement with EFT results.

5.2.4 LO and NLO SU(2) estimates and averages

As promised in an earlier section, here we list our FLAG 19 estimates and averages [4] that
all remain unchanged. We refer the reader to that review for details and explanations.

For the SU(2) LEC X, in the MS scheme, at the renormalization scale u = 2 GeV, we
obtained the averages and/or estimate

Np=2+1+1: /3 = 286(23) MeV Refs. [84, 85],
Ny=2+1: /3 = 272(5) MeV Refs. [14, 86-90], (113)
Ny=2: %13 = 266(10) MeV Refs. [84, 91-93],

where the errors include both statistical and systematic uncertainties.

For the ratio of the pion decay constant at the physical point, F, to its value in the
SU(2) chiral limit (zero up- and down-quark mass but physical strange-quark mass), F,
we obtained the averages and/or estimate

Ny=2+1+1: F./F =1.077(3) Refs. [94],
Ny=2+1: F./F = 1.062(7) Refs. [45, 86-88, 95], (114)
Ny=2: F,/F = 1.073(15) Refs. [91-93, 96].

For SU(2) NLO LECs we obtained the averages and/or estimates

Ny=2+1+1: {3 = 3.53(26) Refs. [94],

Ny=2+1: 5 = 3.07(64) Refs. [45, 86-88, 95], (115)
Ny =2: l3 = 3.41(82) Refs. [91, 92, 96],
Ny=2+1+1: 0y = 4.73(10) Refs. [94],

Ny=2+1: 0y = 4.02(45) Refs. [45, 86-88, 95], (116)
Ny=2: £y = 4.40(28) Refs. [91, 92, 96, 97],

as well as the estimate
Ny=2: lg = 15.1(1.2) Refs. [92, 96]. (117)
For the scattering length extracted from 77 scattering in the I = 2 channel we quote

Nyp=2+1+1: agM, = —0.0441(4) Refs. [98],
Ny=2: aiM, = —0.04385(47) Refs. [99], (118)
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where the errors include both statistical and systematic uncertainties. We remark that our
preprocessing procedure?® symmetrizes the asymmetric errors with a slight adjustment of
the central value.

In all cases the references shown are the papers with the contributing results, and we
ask the readers to cite those papers when quoting these averages.

5.3 Extraction of SU(3) low-energy constants
5.3.1 New results for individual LO SU(3) LECs

We are unaware of any new paper that determines a large number of LECs in the SU(3)
framework (as was done, in the past, by the MILC collaboration). However, there is
one paper, xQCD 21 [353], with a new result on two SU(3) LECs at LO. They find
Fy = 67.8(1.2)(3.2) and Xy = 232.6(0.9)(2.7) in the 3-flavour chiral limit?*. They also
quote ¥ /¥y = 1.40(2)(2) which we consider iteresting for reasons detailed in Sec. 5.3.4.

These values are listed, together with those of FLAG 19, in Tab. 26. The paper has
been discussed and color coded in Sec. 5.2. As they are not published yet, there is no
update to the FLAG averages/estimates here.

5.3.2 New results for individual NLO SU(3) LECs

There are a number of new results on Ly, for instance in Refs. [351, 401, 402] to be dis-
cussed below in the context of mK scattering. This is not so surprising, since Eqns. (102,
103, 104, 105) indicate that the observables a2 M, a} M, ag/QuﬂK, a(l)/QuﬂK jointly de-
termine the combination Lg.t and Ls (both of which are conventionally quoted at the
scale 4 = 770 MeV). Determining any of these two LECs is afflicted with an extra uncer-
tainty, compared to the four scattering lengths, due to the convergence of the SU(3) chiral
series?®. Therefore we give preference to reviewing the scattering lengths and converting,
once they exist, the pertinent FLAG averages into numerical values of Lgcat and Ly, over
collecting values of Lgc,t and L5 as converted by the individual collaborations.

On the other hand, there is no new result on those LECs at the NLO in the SU(3)
expansion which were covered in previous editions of FLAG (L4, Lg, Lg, L10).

5.3.3 Results for SU(3) linear combinations linked to 7K, KK scat-
tering

Since 7K, KK scattering were not covered in previous editions of the FLAG report, we
list here all works which include such results. Following the example of the section on 77
scattering, where all results were given in the dimensionless variable al M., we give the
results on K scattering in the form alp.r, where pi,x is the pertinent reduced mass,
and the results on KK scattering are given in the form alMy. We start with a brief
mentioning of all papers we are aware of.

The paper NPLQCD 06B [351] uses asqtad (staggered) sea quarks with Ny =241 at
a single lattice spacing (a = 0.125fm with L ~ 2.5fm) with M, = [290, 350, 490, 600] MeV.

2 There are two naive procedures to symmetrize an asymmetric systematic error: (7) keep the central value
untouched and enlarge the smaller error, (i¢) shift the central value by half of the difference between the two
original errors and enlarge/shrink both errors by the same amount. Our procedure (iii) is to average the
results of (i) and (i7). In other words a result c(s)(*%) with £ > u is changed into ¢+ (u — £) /4 with statistical
error s and a symmetric systematic error (u + 3¢)/4. The case £ < u is handled accordingly.

24We use ¥ = limo, mg—0 S(Mu, Md, Ms, Me, ...), Xo = UMy myms—0 2(Mu, Ma, Ms, Me, ...), and likewise
for B, By, F and Fy. The quantities 3, X9, B, By are renormalized at the scale u = 2 GeV.

%0ne of the issues is whether the convergence in the LECs pertinent to ap M, i.e., with two strange quarks
involved, is visibly slower than for ag/ 2uﬁ x and a(l)/ 2 Urk, where only one strange quark appears.
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Collaboration Ref. Ny R ¢ o % Fy [MeV] F/Fy B/By
JLQCD/TWQCD 10A[356] 3 A m m m  71(3)(8)

xQCD 21 [353] 241 P 67.8(1.2)(3.2)
MILC 10 [45] 2+1 C 80.3(2.5)(5.4)
MILC 09A 17 2+1 C 78.3(1.4)(2.9) 1.104(3)(41) 1.21(4)(*})
MILC 09 [161] 2+1 A 1L15(5)(*03)  1.15(16)(F5)
PACS-CS 08 (197 241 A = 83.8(6.4) 1.078(44) 1.089(15)
RBC/UKQCD 08 [198] 2+1 A " 66.1(5.2) 1.229(59) 1.03(05)
s & §
s §F F S
S sos §
s £ L s &
S o3 S ~N ~N
b & & s >
N > . o &S
g & §F % 3
. NS 3 S & 1/3

Collaboration Ref. Ny ) O S & & 2y [MeV] 3 /%o
JLQCD/TWQCD 10A [356] 3 A = = m 214(6)(24) 1.31(13)(52)
xQCD 21 [353] 241 P 232.6(0.9)(2.7)  1.40(2)(2)
MILC 09A 17 241 C 245(5)(4)(4) 1.48(9)(8)(10)
MILC 09 [161]  2+1 A 242(9)(*92)(4)  1.52(17)(*%)
PACS-CS 08 [197) 241 A = m m 290(15) 1.245(10)
RBC/UKQCD 08 [198] 241 A = 1.55(21)

Table 26: Lattice results for the low-energy constants Fy, By and Z‘OEF[)?BO, which specify
the effective SU(3) Lagrangian at leading order. The ratios F'/Fy, B/By, ¥/%¢, which com-
pare these with their SU(2) counterparts, indicate the strength of the Zweig-rule violations
in these quantities (in the large-N, limit, they tend to unity). Numbers in slanted fonts are
calculated by us, from the information given in the references.

103



The domain-wall valence fermions come with quark masses such that the resulting pion
masses match the aforementioned Nambu-Goldstone boson masses. After chiral extrap-

olation they find ay* e = 0.1346(13)( F15) and a3 - = —0.0448(12)(*12), with
L5 pinned down at a value extracted from the analysis of the quark mass dependence of
fr/fr. The color coding in Tab. 27 is based on My min(RMS) = 488 MeV.

The paper NPLQCD 07B [403] uses asqtad (staggered) sea quarks with Ny =241
in conjunction with domain-wall valence quarks. They have two lattice spacings (a =
0.125fm, 0.09 fm) with somehat unequal span in quark masses. At a = 0.125 fm they cover
M, ~ 290,350,490, 590 MeV with L ~ 2.5fm. At a = 0.09 fm they do not quote M, [MeV],
but from aM, = 0.1453 in Tab.IT and a ~ 0.09 fm one would conclude M, ~ 320 MeV.
After chiral extrapolation, they find aéMK = —0.352(16)10¢. The color coding in Tab. 27
is based on My min(RMS) = 413 MeV.

The paper Fu 11A [401] employs one ensemble of Ny = 2+1 asqtad (staggered) quarks
at a ~ 0.15 fm, m;/ms = 0.2, m, ~ mghys with L = 2.5fm. It uses six valence pion masses
M, = 334 — 466 MeV to study S-wave scattering. It quotes, after chiral extrapolation,
ay? pirrc = 0.1425(29) and a2/ 1. = —0.0394(15). The color coding in Tab. 27 is based
on My pmin(RMS) = 590 MeV.

We are also aware of Ref. [404] which is based on a single ensemble of Ny = 2 clover
quarks. Since it is away from the physical mass point and no extrapolation to the latter
is attempted, we feel it would be unfair (or misleading) to quote its results in Tab. 27.

Reference PACS-CS 13 [346] uses five ensembles of Ny = 2 4 1 nonpertubative clover
fermions with ¢ = 0.09fm, L = 2.9fm, and M, = 166,297,414,575,707 MeV. They
quote, after extrapolation with yPT: a3M, = —0.04243(22)(43) (see Tab. 25), a} My =
—0.312(17)(31), ai*pxkx = —0.0477(27)(20) and ay/*pr = 0.150(16)(37) (listed in
Tab. 27). These figures reflect the final numbers quoted in the Erratum of Ref. [346].
The reason for the change is the mishap reported in footnote 21; fortunately it turns
out that it affected the final analysis only very mildly. We thank the collaboration for
keeping us up-to-date with all aspects of the revision. Since there are no FLAG averages
for scattering lengths for Ny = 2 4 1, these small changes have no impact on the quoted
FLAG averages.

The paper HS 14A [405] is based on Ny = 2 + 1 anisotropic clover fermions at as ~
0.12fm, a; ~ 0.035fm, with M, = 391 MeV in {163,203, 243} x 128 boxes, i.e. with L =
1.9,2.4,2.9 fm. These parameters yield Mg = 549 MeV thus pu,x = 228 MeV. They quote

various resonance parameters and, in the S-wave I = 3/2 channel, a:S/QM7T = —0.278(15)

which we convert to ag/ *rx = —0.161(9) at the given M,. Since this work does not
extrapolate to MPY we stay away from color coding.

The paper ETM 17G [101] uses Ny = 2+ 1+ 1 twisted mass fermions at three lattice
spacings, a = 0.089, 0.082, 0.062 fm, with up to five M, = 230—450MeV, and L(My min) ~

2.8fm. In the I = 1 channel they find ajMy = —0.385(16)(j102) (fg) (4). We take

the liberty to combine the various non-statistical errors in quadrature, using ajMy =
—0.385(16) (_+144) as quoted in Tab. 27.

Reference [406] by R. Brett et al. uses one ensemble of Ny = 2 + 1 anisotropic clover
fermions with a5 = 0.115fm, M, = 233MeV, in a 323 x 256 box, hence L = 3.7fm. These
parameters yield Mg = 494MeV and thus p,x = 158 MeV. Their result for I = 1/2
S-wave scattering reads a(l)/2M,r = —0.353(25), or a(l)/2u7TK = —0.240(17) in our notation.
Since this work does not extrapolate to MPYs we stay away from color coding.

The paper ETM 18B [100] uses Ny = 2+ 1+ 1 twisted mass fermions at three lattice
spacings, a = 0.089,0.082,0.062 fm, with up to five pion masses M, = 230 — 450 MeV
and up to two volumes. From the tables, one finds M, min = 276,302,311 MeV at the
three lattice spacings. They find, after chiral extrapolation, a(l]/ 2#771( = 0.127(2)40t and

ag/zuﬂc = —0.0463(17)t0t as quoted in Tab. 27.
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Figure 19: Summary of the 7K scattering lengths a(l)/ 2,U7rK (top), ag/ 2,u7rK (middle) and of
the KK scattering length ajM (bottom). Results in Tab. 27 with statistical error only are
not shown.
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PSS
Collaboration Ref. Ny QQ g & (OQ aé/Q,uTrK ag/QuﬂK a(l)MK
ETM 18B  [100] 2+1+1 A 0.127(2) 1ot —0.0463(17) 0t
ETM 17G ~ [101] 2+1+1 A —0.385(16) ( 1/,
PACS-CS 13 [346] 2+1 A m = 0.150(16)(37) —0.0477(27)(20)  —0.312(17)(31)
Fu 11A [401]  2+1 A = = 0.1425(29) —0.0394(15)
NPLQCD 07B[403] 2+1 A m —0.352(16) 01
NPLQCD 06B[351]  2+1 A m = 0.1346(13)(*'5)  —0.0448(12)("}7)
Table 27: Summary of 7K scattering data in the I = %,% channels, and of KK scattering

with I = 1. Some of the results have been adapted to our sign convention.

An overview of all scattering lengths with at least one kaon involved is shown in Fig. 19.
As usual we refrain from displaying data with statistical error only.

In passing, we note that there is an additional paper by Z. Fu, Ref. [402], which deals
with KK scattering. It employs one ensemble of Ny = 2 + 1 asqtad (staggered) quarks
at a ~ 0.15fm, m;/ms = 0.2, m, ~ mP" with L = 2.5 fm together with six valence pion
masses M, = 334 — 466 MeV. Extrapolating to the physical point, the result for KK
scattering in the I = 1 state is aj My = 0.211(33). Hence the interaction for KK in the
S-wave I =1 state is found to be attractive, in agreement with LO xPT.

In summary, for the quantities aé/QuﬂK, ag/2p7rK and aj Mg Refs. [100, 101] are the
only sources without red tags. Since they appeared in refereed journals and no other
works qualify, we take the results quoted in the top two lines of Tab. 27 as the current
FLAG averages. For the reader’s convenience we list them at the end of Sec. 5.3.5.

Last but not least we like to remind the reader that K K scattering might be outside
the validity of SU(3) xPT, since it involves a scale around 2Myx ~ 1GeV. However,
our review focuses on the scattering length a} My, where this issue does not feature
prominently. But it is a key topic in the subsequent conversion of such a scattering length
to the low-energy constants L;. We hope that forthcoming high-quality data will allow a
future edition of FLAG to address this topic.

5.3.4 Implication on Zweig rule violations

Let us spend a minute to explain why we consider the result on ¥/3, of xQCD 21 [353]
particularly interesting. The reason is linked to the question of how close real-world QCD
with N, = 3 is to the large- N, limit of 't Hooft (see also Ref. [407]). In the large-N, limit
the Zweig rule becomes exact, and the NLO LECs Ly and Lg tend to zero. As discussed in
FLAG 19, the available lattice data are consistent with the view that these two couplings
approximately satisfy the Zweig rule. Also the ratios F//Fy, B/By and X/% (note that
they are linearly dependent, since ¥ = BF? and 3y = BoF{) test the validity of this rule.

The available data seem to confirm the paramagnetic inequalities of Ref. [408], which
require /3¢ > 1 and F'/Fy > 1. There is much less information concerning B/By, and
this is the point where the new result of yQCD 21 [353] comes in handy. Let us assume, for
the sake of an argument, F'/Fy = 1.15(5)(5). Together with ¥/%, = 1.40(2)(2) [353], this
would imply B/By = 1.06(9)(9). This numerical example illustrates how much precision
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is lost in forming the ratio (3/30)/(F/Fp)?; with these numbers it would not be clear
whether B/By > 1. Therefore we plead with all collaborations to calculate the numbers
F/Fy, B/By and ¥/% in their analysis framework to take advantage of correlations.

5.3.5 LO and NLO SU(3) estimates

For each of the SU(3) LO and NLO LECs discussed in the 2019 FLAG review [4] exactly
one paper contributed and hence constituted the FLAG average. The present status is
that this situation is unchanged. For the convenience of the reader, we list the results
here but refer to the 2019 FLAG review for the details and explanations.

The LO LECs in the SU(3) chiral limit (m,,, m4, ms — 0) are denoted by a subscript
0 to distinguish them from their SU(2) chiral limit counterparts. The parameters X, Bo
are in the MS scheme at the renormalization scale u = 2 GeV. We quote

Ny=2+1: 2% = 245(8) MeV Ref. [17], (119)
Np=2+1: /S0 = 1.48(16) Ref. [17], (120)
Nfp=2+1: Fy = 80.3(6.0) MeV Ref. [45], (121)
Np=2+1: F/Fy = 1.104(41) Ref. [17], (122)
Np=2+1: B/By = 1.21(7) Ref. [17], (123)

where the errors include both statistical and systematic uncertainties. The references
shown are the papers from which the results are taken.
For SU(3) NLO LECs we display the results for individual low-energy constants

Ny=2+1+1: Ly = +0.09(34) x 1073 Ref. [40],
Ny=2+1: L4 = —0.02(56) x 1073 Ref. [45], (124)
Ny=2+1+1: = +1.19(25) x 1073 Ref. [40],
Ny=2+1: = +0.95(41) x 1073 Ref. [45], (125)
Ny=2+1+1: L6 = +0.16(20) x 103 Ref. [40],
Ny=2+1: Le = +0.01(34) x 1073 Ref. [45], (126)
Ny=2+1+1: Lg = 4+0.55(15) x 1073 Ref. [40],
Nyp=2+1: Lg = +0.43(28) x 1073 Ref. [45], (127)

at the chiral scale p = 770 MeV, where again all errors quoted are total errors. For details
of the symmetrization of asymmetric error bars see footnote 23.
For the scattering lengths involving at least one kaon

Ny=241+1: aypirx = 0.127(2) Ref. [100], (128)
Ny=241+1: ab? i = —0.0463(17) Ref. [100], (129)
Ny=2+1+1: ag My = —0.388(20) Ref. [101], (130)

represent the FLAG estimates with all errors added in quadrature. For details of the
symmetrization of asymmetric error bars see footnote 23. Throughout we ask the reader
to cite the original references when using these values.
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6 Kaon mixing

Authors: P. Dimopoulos, X. Feng, G. Herdoiza

The mixing of neutral pseudoscalar mesons plays an important role in the understand-
ing of the physics of quark-flavour mixing and CP violation. In this section we discuss
K° — KO oscillations, which probe the physics of indirect CP violation. Extensive reviews
on this subject can be found in Refs. [409-414]. With respect to the FLAG 19 report, in
the new Sec. 6.2 of the present edition the reader will find an updated discussion regard-
ing the lattice determination of the K — mmw decay amplitudes and related quantities.
Discussions concerning the kaon mixing within the Standard Model (SM) and Beyond the
Standard Model (BSM) are presented in Secs. 6.3 and 6.4, respectively. We note that
FLAG averages for SM and BSM bag parameters have not changed with respect to the
FLAG 19 report.

6.1 Indirect CP violation and ¢x in the SM

Indirect CP violation arises in Kj — w7 transitions through the decay of the CP = +1
component of Ky, into two pions (which are also in a CP = +1 state). Its measure is
defined as

x = .A[KL — (7T7T)[:0] 7 (131)

A[KS — (7‘(7‘1’)]:0]

with the final state having total isospin zero. The parameter e may also be expressed in
terms of K9 — K? oscillations. In the Standard Model, e receives contributions from: (i)
short-distance (SD) physics given by AS = 2 “box diagrams” involving W bosons and
u, ¢ and t quarks; (ii) the long-distance (LD) physics from light hadrons contributing to
the imaginary part of the dispersive amplitude M;5 used in the two component description
of K — K° mixing; (iii) the imaginary part of the absorptive amplitude I';5 from K°— K°
mixing; and (iv) Im(Ag)/Re(Ao), where Ag is the K — (n7)—¢ decay amplitude. The
various factors in this decomposition can vary with phase conventions. In terms of the
AS = 2 effective Hamiltonian, Hfﬁs =2 it is common to represent contribution (i) by

(M) = o Tm[(RO 3= K)] (152)
QmK

and contribution (ii) by Im (M%). Contribution (iii) can be related to Im(Ag)/Re(Ap)

since (wm)r—¢ states provide the dominant contribution to absorptive part of the integral

in T'12. Collecting the various pieces yields the following expression for the ey factor [413,

415-418]

Im(MSP) | Im(MEP) | Im(Ay)

= ipe) si 3 ) 1
€K exp(id.) sin(¢.) N Al + Re(Ao) (133)
where the phase of ex is given by
My
¢ = arctan ATR/2 (134)

The quantities AMy and Al'x are the mass and decay width differences between long-
and short-lived neutral kaons. The experimentally known values of the above quantities
read [169]:

lex| = 2.228(11) x 1072, (135)
b = 43.52(5)°, (136)
AMg = Mg, — Mg, = 3.484(6) x 107> MeV (137)
AT = Tg,—-Tg, = 7.3382(33) x 1072 MeV , (138)
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where the latter three measurements have been obtained by imposing CPT symmetry.

We will start by discussing the short-distance effects (i) since they provide the dom-
inant contribution to e€x. To lowest order in the electroweak theory, the contribution to
K% — KV oscillations arises from the so-called box diagrams, in which two W bosons and
two “up-type” quarks (i.e., up, charm, top) are exchanged between the constituent down
and strange quarks of the K mesons. The loop integration of the box diagrams can be
performed exactly. In the limit of vanishing external momenta and external quark masses,
the result can be identified with an effective four-fermion interaction, expressed in terms
of the effective Hamiltonian

HAS=2 GEM,

= 167T2WIOQAS:2 + he. . (139)

In this expression, G is the Fermi coupling, Mw the W-boson mass, and

Q% = [57,(1 = 75)d] [57,(1 = 75)d] = Ovvyaa — Ovatav , (140)
is a dimension-six, four-fermion operator. The subscripts V and A denote vector (5v,d)
and axial-vector (57,7vsd) bilinears, respectively. The function FY is given by

FO = A2So(we) + A2So(ws) + 22 AiSo(we, 74) (141)

where A\, = V" V,4, and a = ¢,t denotes a flavour index. The quantities So(x.), So(x¢)
and So(zc, ) with z, = 3/MW, zy = mi/M% are the Inami-Lim functions [419],
which express the basic electroweak loop contributions without QCD corrections. The
contribution of the up quark, which is taken to be massless in this approach, has been
taken into account by imposing the unitarity constraint A, + A + As = 0.

When strong interactions are included, AS = 2 transitions can no longer be discussed
at the quark level. Instead, the effective Hamiltonian must be considered between mesonic
initial and final states. Since the strong coupling is large at typical hadronic scales, the
resulting weak matrix element cannot be calculated in perturbation theory. The operator
product expansion (OPE) does, however, factorize long- and short- distance effects. For
energy scales below the charm threshold, the K° — K transition amplitude of the effective
Hamiltonian can be expressed as

2
(KOIHGP =2 KO) = G16Mz [/\250( )M+ AZSo(xe)ma + 2XeAeSo (e, )13
_ —v0/(2B0) (1)
. (%53) exp{ / ™ 4 (gg; n %g)}mw“ (W) K) + he. ,(142)

where g(u) and QAS 2(p) are the renormalized gauge coupling and four-fermion operator
in some renormalization scheme. The factors 71,72 and 73 depend on the renormalized
coupling g, evaluated at the various flavour thresholds m;, my, m. and My, as required
by the OPE and Renormalization-Group (RG) running procedure that separate high- and
low-energy contributions. Explicit expressions can be found in Refs. [412] and references
therein, except that 77 and 13 have been calculated to NNLO in Refs. [420] and [421],
respectively. We follow the same conventions for the RG equations as in Ref. [412]. Thus

the Callan-Symanzik function and the anomalous dimension v(g) of Q*%=2 are defined
by

dg ~ dQAS 2 ~ _
g = 2@, i =@ QR°72, (143)
with perturbative expansions
3 5
_ 9 _ g
2 4
_ g g
7(9) 7mri e
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We stress that Sy, 31 and vy are universal, i.e., scheme independent. As for K° — K°
mixing, this is usually considered in the naive dimensional regularization (NDR) scheme
of MS, and below we specify the perturbative coefficient +; in that scheme:

fu, 2 By (B L

To= 6(NN S N2N1 {_21+?V7_1??N+§ f} '

Note that for QCD the above expressions must be evaluated for N = 3 colours, while
Ny denotes the number of active quark flavours. As already stated, Eq. (142) is valid at
scales below the charm threshold, after all heavier flavours have been integrated out, i.e.,
Ny =3.

In Eq. (142), the terms proportional to 71, 72 and 53, multiplied by the contributions
containing g(u)?, correspond to the Wilson coefficient of the OPE, computed in pertur-
bation theory. Its dependence on the renormalization scheme and scale p is canceled by
that of the weak matrix element (K°|Q&°=2(u)|K). The latter corresponds to the long-
distance effects of the effective Hamiltonian and must be computed nonperturbatively.
For historical, as well as technical reasons, it is convenient to express it in terms of the
B-parameter By, defined as

KO QAS:2( ) KO
Bre() = gﬁf%m%:\ ) (146)

The four-quark operator QAS=2(M) is renormalized at scale p in some regularization
scheme, for instance, NDR-MS. Assuming that By (u) and the anomalous dimension
~(g) are both known in that scheme, the renormalization group independent (RGI) B-
parameter By is related to By (i) by the exact formula

By = (‘7(4‘;22) _70/(250)exp{/0g(m dg @Eg + %)}BK(M) . (147)

At NLO in perturbation theory the above reduces to

- —70/(2B0) (N2
; g(w*\ " g(w)? [ B0 — Bon
Bk = 1 B . 148
K ( An ) T () 22 (1) (148)
To this order, this is the scale-independent product of all u-dependent quantities in

Eq. (142).

Lattice-QCD calculations provide results for By (11). However, these results are usually
obtained in intermediate schemes other than the continuum MS scheme used to calcu-
late the Wilson coefficients appearing in Eq. (142). Examples of intermediate schemes
are the RI/MOM scheme [422] (also dubbed the “Rome-Southampton method”) and
the Schrodinger functional (SF) scheme [423]. These schemes are used as they allow a
nonperturbative renormalization of the four-fermion operator, using an auxiliary lattice
simulation. This allows By (1) to be calculated with percent-level accuracy, as described
below.

In order to make contact with phenomenology, however, and in particular to use
the results presented above, one must convert from the intermediate scheme to the MS
scheme or to the RGI quantity Byg. This conversion relies on 1- or 2-loop perturbative
matching calculations, the truncation errors in which are, for many recent calculations, the
dominant source of error in By (see, for instance, Refs. [10, 53, 54, 192, 424]). While this
scheme-conversion error is not, strictly speaking, an error of the lattice calculation itself,
it must be included in results for the quantities of phenomenological interest, namely,
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Br(MS,2GeV) and Bgk. Incidentally, we remark that this truncation error is estimated
in different ways and that its relative contribution to the total error can considerably
differ among the various lattice calculations. We note that this error can be minimized by
matching between the intermediate scheme and MS at as large a scale 1 as possible (so that
the coupling which determines the rate of convergence is minimized). Recent calculations
have pushed the matching p up to the range 3—3.5 GeV. This is possible because of the use
of nonperturbative RG running determined on the lattice [10, 52, 192]. The Schrédinger
functional offers the possibility to run nonperturbatively to scales p ~ My where the
truncation error can be safely neglected. However, so far this has been applied only for
two flavours for By in Ref. [425] and for the case of the BSM bag parameters in Ref. [426],
see more details in Sec. 6.4.

Perturbative truncation errors in Eq. (142) also affect the Wilson coefficients 7, 12
and n3. It turns out that the largest uncertainty arises from the charm quark contribution
m = 1.87(76) [420]. Although it is now calculated at NNLO, the series shows poor
convergence. The net effect from the uncertainty on 7; on the amplitude in Eq. (142)
is larger than that of present lattice calculations of By . Exploiting an idea presented in
Ref. [427], it has been recently shown in Ref. [428] that, by using the u — t instead of
the usual ¢ — ¢ unitarity in the ex computation, the perturbative uncertainties associated
with residual short-distance quark contributions can be reduced.

We will now proceed to discuss the remaining contributions to ex in Eq. (133). An
analytical estimate of the leading contribution from Im(M) based on xPT, shows that
it is approximately proportional to ¢ = Im(Ay)/ Re(Ap) so that Eq. (133) can be written
as follows [417, 418]

Im(M75)
AMg
where the deviation of p from one parameterizes the long-distance effects in Im(Mis).
In order to facilitate the subsequent discussions about the status of the lattice studies
of K — 7m and of the current estimates of £, we proceed by providing a brief account of
the parameter ¢’ that describes direct CP-violation in the kaon sector. The definition of
€' is given by:
¢ = LA[KS — (7T7T)[:2] (A[KL — (7T7T)[:2] _ A[KL — (7T7T)]—0]>
V2 A[Ks — (7m)1=0] \A[Ks — (77)1=2] A[Ks — (77)1=0] /)
By selecting appropriate phase conventions for the mixing parameters between K O and
K CP-eigenstates (see e.g. Ref. [410] for further details), the expression of € can be
expressed in terms of the real and imaginary parts of the isospin amplitudes, as follows

ex = explige) sin(é.) + ¢ ], (149)

(150)

g iw et(02—0d0) [Im(AQ) B ]7

V2 Re(Ay)
where w = Re(Az)/Re(4p), Az denotes the AT = 3/2 K — 7w decay amplitude, and
0r denotes the strong scattering phase shifts in the corresponding, I = 0,2, K — (77)
decays. Given that the phase, ¢, = dy — dg + 7/2 = 42.3(1.5)° [169] is nearly equal to P,
in Eq. (136), the ratio of parameters characterizing the direct and indirect CP-violation
in the kaon sector can be approximated in the following way,

/ ~ e(d'/e) = Im(AZ)
€ /e ~ Re(€/e) V2 |ex| {Re(z‘b)

where on the left hand side we have set € = ex. The experimentally measured value
reads [169],

(151)

w

¢, (152)

Re(€' /) = 16.6(2.3) x 107%. (153)
We remark that isospin breaking and electromagnetic effects (see Refs. [429, 430], and the
discussion in Ref. [411]) introduce additional correction terms into Eq. (152).
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6.2 Lattice-QCD studies of the K — (7n7); decay amplitudes, &
and €' /e

As a preamble to this section, it should be noted that the study of K — 7w decay
amplitudes requires the development of computational strategies that are at the forefront
of lattice QCD techniques. These studies represent a significant advance in the study of
kaon physics. However, at present, they have not yet reached the same level of maturity
of most of the quantities analyzed in the FLAG report, where, for instance, independent
results by various lattice collaborations are being compared and averaged. In the present
version of this section we will therefore review the current status of K — 7w lattice
computations, but we will provide a FLAG average only for the case of the decay amplitude
As.

We start by reviewing the determination of the parameter & = Im(Ag)/Re(Ao).
An estimate of £ has been obtained from a direct evaluation of the ratio of ampli-
tudes Im(Ap)/ Re(Ag) where Im(Ap) is determined from a lattice-QCD computation by
RBC/UKQCD 20 [431] employing Ny = 2 + 1 Mobius domain wall fermions at a single
value of the lattice spacing while Re(Ag) ~ |Ag| and the value |Ag| = 3.320(2) x 10~7
GeV are used based on the relevant experimental input [169] from the decay to two pions.
This leads to a result for £ with a rather large relative error,

€=-21(5)-107% (154)

Following a similar procedure, an estimate of £ was obtained through the use of a previous
lattice QCD determination of Im(Ag) by RBC/UKQCD 15G [432]. We refer to Tab. 28
for further details about these computations of Im(Ag). The comparison of the estimates
of £ based on lattice QCD input are collected in Tab. 30.

Another estimate for £ can be obtained through a lattice-QCD computation of the
ratio of amplitudes Im(A3)/ Re(Az) by RBC/UKQCD 15F [50] where the continuum-limit
result is based on computations at two values of the lattice spacing employing Ny =241
Mobius domain wall fermions. Further details about the lattice computations of Ay are
collected in Tab. 29. To obtain the value of £, the expression in Eq. (152) together with
the experimental values of Re(€'/e), |ex| and w are used. In this case we obtain { =
—1.6(2) - 10~%. The use of the updated value of Im(A4z) = —8.34(1.03) x 1072 GeV from
Ref. [431],26 in combination with the experimental value of Re(Ay) = 1.479(4) x 10~ GeV,
introduces a small change with respect to the above result. The value for £ reads?”

€=-1.7(2)-107% (155)

A phenomenological estimate can also be obtained from the relationship of & to
Re(€’/€), using the experimental value of the latter and further assumptions concerning
the estimate of hadronic contributions. The corresponding value of £ reads [417, 418]

€= —-6.0(1.5) - 107 2V2|ex| = —1.9(5) - 107, (156)

We note that the use of the experimental value for Re(€'/e) is based on the assumption
that it is free from New Physics contributions. The value of £ can then be combined

26The update in Im(As) is due to a change in the value of the imaginary part of the ratio of CKM matrix
elements, 7 = —V5Via/ViisVud, as given in Ref. [433]. The lattice QCD input is therefore the one reported in

Ref. [50].

*"The current estimates for the corrections owing to isospin breaking and electromagnetic effects [430] imply
a relative change on the theoretical value for € /e by about -20% with respect to the determination based on
Eq. (152). The size of these isospin breaking and electromagnetic corrections is related to the enhancement
of the decay amplitudes between the I = 0 and the I = 2 channels. As a consequence, one obtains a similar

reduction on &, leading to a value that is close to the result of Eq. (154).
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Collaboration Ref. Ny J & ¥ v ¢ 7 Re(Ao) Im(Ao)
[10=7 GeV] (1071 GeV]
RBC/UKQCD 20  [431] 241 A W a 2.99(0.32)(0.59)  —6.98(0.62)(1.44)
RBC/UKQCD 15G  [432] 241 A MW b 4.66(1.00)(1.26)  —1.90(1.23)(1.08)

a Nonperturbative renormalization with the RI/SMOM scheme at a scale of 1.53 GeV and running to
4.01 GeV employing a nonperturbatively determined step-scaling function. Conversion to MS at 1-loop
order.

b Nonperturbative renormalization with the RT/SMOM scheme at a scale of 1.53 GeV. Conversion to MS
at 1-loop order.

Table 28: Results for the real and imaginary parts of the K — nw decay amplitude A
from lattice-QCD computations with Ny = 2 + 1 dynamical flavours. Information about the
renormalization, running and matching to the MS scheme is indicated in the column “run-
ning/matching”, with details given at the bottom of the table. We refer to the text for further
details about the main differences between the lattice computations in Refs. [431] and [432].

with a xPT-based estimate for the long-range contribution, p = 0.6(3) [418]. Overall,
the combination p¢ appearing in Eq. (149) leads to a suppression of the SM prediction of
lex| by about 3(2)% relative to the experimental measurement of |ex| given in Eq. (135),
regardless of whether the phenomenological estimate of & [see Eq. (156)] or the most
precise lattice result [see Eq. (154)] are used. The uncertainty in the suppression factor
is dominated by the error on p. Although this is a small correction, we note that its
contribution to the error of € is larger than that arising from the value of By reported
below.

Efforts are under way to compute the long-distance contributions to e [434] and to
the K, — Kg mass difference in lattice QCD [427, 435-437]. However, the results are not
yet precise enough to improve the accuracy in the determination of the parameter p.

The lattice-QCD study of K — 7m decays provides crucial input to the SM prediction
of ex. We now proceed to describe the current status of these computations. In recent
years, the RBC/UKQCD collaboration has undertaken a series of lattice-QCD calculations
of K — mm decay amplitudes [50, 431, 432]. In 2015, the first calculation of the K —
(77) 1=0 decay amplitude Ay was performed using physical kinematics on a 322 x 64 lattice
with an inverse lattice spacing of a=1 = 1.3784(68) GeV [432, 438]. The main features of
the RBC/UKQCD 15G calculation included, fixing the I = 0 w7 energy very close to the
kaon mass by imposing G-parity boundary conditions, a continuum-like operator mixing
pattern through the use of a domain wall fermion action with accurate chiral symmetry,
and the construction of the complete set of correlation functions by computing seventy-five
distinct diagrams. Results for the real and the imaginary parts of the decay amplitude Ay
from the RBC/UKQCD 15G computation are collected in Tab. 28, where the first error
is statistical and the second one is systematic.

The latest 2020 calculation RBC/UKQCD 20 [431] using the same lattice setup has
improved the 2015 calculation RBC/UKQCD 15G [432] in three important aspects: (i)
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Collaboration Ref. N¢ S o ¥ & & 3 Re(A2) Im(As)
[1078 GeV] [10~13 GeV]
RBC/UKQCD 15F  [50] 241 A a 1.50(0.04)(0.14)  —8.34(1.03)°

a Nonperturbative renormalization with the RI/SMOM scheme at a scale of 3 GeV. Conversion to MS
at 1-loop order.
¢ This value of Im(Az) is an update reported in Ref. [431] which is based on the lattice QCD computation
in Ref. [50] but where a change in the value of the imaginary part of the ratio of CKM matrix elements
7 = —V;iVia/ Vi Vua reported in Ref. [433] has been applied.
Table 29: Results for the real and the imaginary parts of the K — 7w decay amplitude As from
lattice-QCD computations with Ny = 2+ 1 dynamical flavours. Information about the renor-
malization and matching to the MS scheme is indicated in the column “running/matching”,
with details given at the bottom of the table.

Collaboration Ref. Ny £

RBC/UKQCD 207 [431] 2+1 —2.1(5)-107*
RBC/UKQCD 15G° [432] 2+1 —0.6(5) - 107*
RBC/UKQCD 15F* [50] 241 —1.7(2) - 1074

T Estimate for ¢ obtained from a direct evaluation of the ratio of amplitudes Im(Ag)/Re(Ap) where
Im(Ap) is determined from the lattice-QCD computation of Ref. [431] while for Re(Ao) ~ |Ao| is taken
from the experimental value for |Ao|.

Estimate for ¢ obtained from a direct evaluation of the ratio of amplitudes Im(Ap)/Re(Ag) where
Im(Ap) is determined from the lattice-QCD computation of Ref. [432] while for Re(Ao) ~ |Ao| is taken
from the experimental value for |Ag].

* Estimate for £ based on the use of Eq. (152). The new value of Im(A2) reported in Ref. [431]—based
on the lattice-QCD computation of Ref. [50] following an update of a nonlattice input—is used in
combination with the experimental values for Re(A2), Re(€'/e), |ex| and w.

Table 30: Results for the parameter £ = Im(Ag)/ Re(Ap) obtained through the combination
of lattice-QCD determinations of K — wm decay amplitudes with Ny = 2 + 1 dynamical
flavours and experimental inputs.

an increase by a factor of 3.4 in statistics; (ii) the inclusion of a scalar two-quark operator
and the addition of another pion-pion operator to isolate the ground state, and (iii) the
use of step scaling techniques to raise the renormalization scale from 1.53 GeV to 4.01
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GeV. The updated determinations of the real and the imaginary parts of Ay in Ref. [431]
are shown in Tab. 28.

As previously discussed, the determination of Im(Ag) from Ref. [431] has been used to
obtain the value of the parameter £ in Eq. (154). A first-principles computation of Re(Ag)
is essential to address the so-called AI = 1/2 puzzle associated to the enhancement of
AT = 1/2 over AI = 3/2 transitions owing, crucially, to long distance effects. Indeed,
short-distance enhancements in the Wilson coefficients are not large enough to explain the
Al = 1/2 rule [439, 440]. Lattice-QCD calculations do provide a method to study such
a long-distance enhancement. The combination of the result for Ay in Tab. 28 with the
earlier lattice calculation of Ay in Ref. [50] leads to the ratio, Re(Ap)/ Re(A2) = 19.9(5.0),
which agrees with the experimentally measured value, Re(Ap)/ Re(A42) = 22.45(6). In
Ref. [431], the lattice determination of relative size of direct CP violation was updated as
follows,

Re(¢'/e) = 21.7(2.6)(6.2)(5.0) x 1074, (157)

where the first two errors are statistical and systematic, respectively. The third error
arises from the omitted strong and electromagnetic isospin breaking effects. The value of
Re(€'/e) in Eq. (157) uses the experimental values of Re(Ag) and Re(As). The lattice
determination of Re(€'/¢) is in good agreement with the experimental result in Eq. (153).
However, while the result in Eq. (157) represents a significant step forward, it is important
to keep in mind that the calculation of A is currently based on a single value of the lattice
spacing. It is expected that future work with additional values of the lattice spacing will
contribute to improve the precision. For a description of the computation of the n7
scattering phase shifts entering in the determination of Re(e'/e) in Eq. (157), we refer to
Ref. [441].

The real and imaginary values of the amplitude A5 have been determined by RBC/UKQCD
15F [50] employing Ny = 2 4+ 1 M&bius domain wall fermions at two values of the lattice
spacing, namely a = 0.114fm and 0.083 fm, and performing simulations at the physical
pion mass with M;L ~ 3.8.

A compilation of lattice results for the real and imaginary parts of the K — ww de-
cay amplitudes, Ag and Ag, with Ny = 2 4 1 flavours of dynamical quarks is shown in
Tabs. 28 and 29. In Appendix C.4.1 we collect the corresponding information about the
lattice QCD simulations, including the values of some of the most relevant parameters.
The results for the parameter £, determined through the combined use of K — 7w am-
plitudes computed on the lattice and experimental inputs, are presented in Tab. 30. As
previously discussed, we remark that the total uncertainty on the reported values of &
depends on the specific way in which the lattice and experimental inputs are selected.

The determination of the real and imaginary parts of Ay by RBC/UKQCD 15F shown
in Tab. 29 is free of red tags. We therefore quote the following FLAG averages:

Re(Az) = 1.50(0.04)(0.14) x 10~ GeV,

Ny=2+1:
! Im(As) = —8.34(1.03) x 1073 GeV,

Ref. [50]. (158)

Besides the RBC/UKQCD collaboration programme [50, 431, 432] using domain-wall
fermions, an approach based on improved Wilson fermions [442, 443] has presented a
determination of the K — 77 decay amplitudes, Ay and As, at unphysical quark masses.
For an analysis of the scaling with the number of colours of K — 77 decay amplitudes
using lattice-QCD computations, we refer to Refs. [444, 445].

Recent proposals aiming at the inclusion of electromagnetism in lattice-QCD calcula-
tions of K — w7 decays are being explored [446, 447] in order to reduce the uncertainties
associated with isospin breaking effects.

Finally, we notice that ex receives a contribution from |Vg| through the \; parameter
in Eq. (141). The present uncertainty on |Vg| has a significant impact on the error of ex
(see, e.g., Refs. [448, 449] and the recent update in Ref. [450]).
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6.3 Lattice computation of By

Lattice calculations of By are affected by the same type of systematic effects discussed
in previous sections of this review. However, the issue of renormalization merits special
attention. The reason is that the multiplicative renormalizability of the relevant operator
Q*°=2 is lost once the regularized QCD action ceases to be invariant under chiral trans-
formations. As a result, the renormalization pattern of Bx depends on the specific choice
of the fermionic discretization.

In the case of Wilson fermions, mixes with four additional dimension-six opera-
tors, which belong to different representations of the chiral group, with mixing coefficients
that are finite functions of the gauge coupling. This complicated renormalization pattern
was identified as the main source of systematic error in earlier, mostly quenched calcula-
tions of By with Wilson quarks. It can be bypassed via the implementation of specifically
designed methods, which are either based on Ward identities [451] or on a modification
of the Wilson quark action, known as twisted-mass QCD [452—-454].

An advantage of staggered fermions is the presence of a remnant U(1) chiral symme-
try. However, at nonvanishing lattice spacing, the symmetry among the extra unphysical
degrees of freedom (tastes) is broken. As a result, mixing with other dimension-six opera-
tors cannot be avoided in the staggered formulation, which complicates the determination
of the B-parameter. In general, taste conserving mixings are implemented directly in the
lattice computation of the matrix element. The effects of the broken taste symmetry are
usually treated through an effective field theory, staggered Chiral Perturbation Theory
(SxPT) [455, 456], parameterizing the quark-mass and lattice-spacing dependences.

Fermionic lattice actions based on the Ginsparg-Wilson relation [457] are invariant
under the chiral group, and hence four-quark operators such as Q=2 renormalize multi-
plicatively. However, depending on the particular formulation of Ginsparg-Wilson fermions,
residual chiral symmetry breaking effects may be present in actual calculations. For in-
stance, in the case of domain-wall fermions, the finiteness of the extra 5th dimension
implies that the decoupling of modes with different chirality is not exact, which produces
a residual nonzero quark mass in the chiral limit. The mixing with dimension-six oper-
ators of different chirality is expected to be an O(m2.) suppressed effect [458, 459] that
should be investigated on a case-by-case basis.

Before proceeding to the description and compilation of the results of By, we would
like to reiterate a discussion presented in the previous FLAG report about an issue related
to the computation of the kaon bag parameters through lattice-QCD simulations with
Ny = 241+ 1 dynamical quarks. In practice, this only concerns the calculations of
the kaon B-parameters including dynamical charm-quark effects in Ref. [51], that were
examined in the FLAG 16 report. As described in Sec. 6.1, the effective Hamiltonian
in Eq. (139) depends solely on the operator Q*5=2 in Eq. (140) —which appears in the
definition of By in Eq. (146)— at energy scales below the charm threshold where charm-
quark contributions are absent. As a result, a computation of Bx based on Ny = 2+4+1+1
dynamical simulations will include an extra sea-quark contribution from charm-quark loop
effects for which there is at present no direct evaluation in the literature.

When the matrix element of Q=2 is evaluated in a theory that contains a dynamical
charm quark, the resulting estimate for Bx must then be matched to the three-flavour
theory that underlies the effective four-quark interaction.® In general, the matching of
2+ 1-flavour QCD with the theory containing 2+ 1+ 1 flavours of sea quarks is performed
around the charm threshold. It is usually accomplished by requiring that the coupling
and quark masses are equal in the two theories at a renormalization scale p around m..
In addition, Bk should be renormalized and run, in the four-flavour theory, to the value
of p at which the two theories are matched, as described in Sec. 6.1. The corrections

QAS:2

Z8We thank Martin Liischer for an interesting discussion on this issue.
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associated with this matching are of order (E/m.)?, where E is a typical energy in the
process under study, since the subleading operators have dimension eight [460].

When the kaon-mixing amplitude is considered, the matching also involves the relation
between the relevant box diagrams and the effective four-quark operator. In this case,
corrections of order (E/m.)? arise not only from the charm quarks in the sea, but also
from the valence sector, since the charm quark propagates in the box diagrams. We note
that the original derivation of the effective four-quark interaction is valid up to corrections
of order (E/m.)?. The kaon-mixing amplitudes evaluated in the Ny =2+1 and 2+1+1
theories are thus subject to corrections of the same order in F/m, as the derivation of
the conventional four-quark interaction.

Regarding perturbative QCD corrections at the scale of the charm-quark mass on the
amplitude in Eq. (142), the uncertainty on n; and 73 factors is of O(a(m.)?) [420, 421],
while that on 7y is of O(as(m.)?) [461].2° On the other hand, the corrections of order
(E/m.)? due to dynamical charm-quark effects in the matching of the amplitudes are
further suppressed by powers of as(m.) and by a factor of 1/N,, given that they arise
from quark-loop diagrams. In order to make progress in resolving this so far uncontrolled
systematic uncertainty, it is essential that any future calculation of Bx with Ny = 2 +
1 + 1 flavours properly addresses the size of these residual dynamical charm effects in a
quantitative way.

Another issue in this context is how the lattice scale and the physical values of the
quark masses are determined in the 241 and 2+1+1 flavour theories. Here it is important
to consider in which way the quantities used to fix the bare parameters are affected by a
dynamical charm quark.

A recent study [171] using three degenerate light quarks, together with a charm quark,
indicates that the deviations between the Ny = 341 and the Ny = 3 theories are consid-
erably below the 1% level in dimensionless quantities constructed from ratios of gradient
flow observables, such as tg and wy, used for scale setting. This study extends the nonper-
turbative investigations with two heavy mass-degenerate quarks [162, 164] which indicate
that dynamical charm-quark effects in low-energy hadronic observables are considerably
smaller than the expectation from a naive power counting in terms of ags(m.). For an
additional discussion on this point, we refer to Ref. [51]. Given the hierarchy of scales
between the charm-quark mass and that of By, we expect these errors to be modest,
but a more quantitative understanding is needed as statistical errors on Bk are reduced.
Within this review we will not discuss this issue further. However, we wish to point out
that the present discussion also applies to Ny = 2+ 141 computations of the kaon BSM
B-parameters discussed in Sec. 6.4.

A compilation of results for Bx with Ny = 2,2+ 1 and 24141 flavours of dynamical
quarks is shown in Tabs. 31 and 32, as well as Fig. 20. An overview of the quality of
systematic error studies is represented by the colour coded entries in Tabs. 31 and 32.
The values of the most relevant lattice parameters, and comparative tables on the various
estimates of systematic errors have been collected in the corresponding Appendices of the
previous FLAG editions [2—4].

Since the last edition of the FLAG report no new results for Bx have appeared in the
bibliography. We mention here an ongoing work related to the Bx computation where the
relevant operators are defined in the gradient flow framework. In a first publication [462]
the small flow time expansion method is applied in order to compute, to 1-loop approx-
imation, the finite matching coefficients between the gradient flow and the MS schemes
for the operators entering the Bx computation.

29The recent results [428] based on the use of u — ¢ unitarity for the two corresponding perturbative factors,
also have an uncertainty of O(as(me)?) and O(as(me)®). The estimates for the missing higher-order contri-
butions are, however, expected to be reduced with respect to the more traditional case where ¢ — t unitarity
is used.
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For a detailed description of previous Bk calculations—and in particular those con-
sidered in the computation of the average values—we refer the reader to the FLAG 19 [4],
FLAG 16 [3] and FLAG 13 [2] reports.

We now give the global averages for Bx for Ny = 2414 1,24 1 and 2 dynamical
flavours. The details about the calculation of these averages can be found in FLAG 19 [4].
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Figure 20: Recent unquenched lattice results for the RGI B-parameter Bg. The grey bands
indicate our global averages described in the text. For Ny =2+ 1+ 1 and Ny = 2 the global
averages coincide with the results by ETM 15 and ETM 12D, respectively.

We begin with the Ny = 2 + 1 global average since it is estimated by employing four
different By results, namely BMW 11 [52], Laiho 11 [53], RBC/UKQCD 14B [10] and
SWME 15A [54]. Note also that the expression of ex in terms of By is obtained in
the three-flavour theory (see Sec. 6.1). After constructing the global covariance matrix
according to Schmelling [167], we arrive at:

Ny=2+1: By =0.7625(97)  Refs. [10, 52-54], (159)

with x2?/dof = 0.675. After applying the NLO conversion factor EK/B?(Z GeV) =
1.369,3° this translates into

Np=2+41: BMS(2GeV) = 0.5570(71)  Refs. [10, 52-54)]. (160)

Note that the statistical errors of each calculation entering the global average are small
enough to make their results statistically incompatible. It is only because of the relatively

30We refer to the FLAG 19 report [4] for a discussion about the estimates of these conversion factors.
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large systematic errors that the weighted average produces a value of O(1) for the reduced
2
X
There is only a single result for Ny = 2+1+1, computed by the ETM collaboration [51].
Since it is free of red tags, it qualifies as the currently best global average, i.e.,

Ny =241+1: By =0717(18)(16), BM3(2GeV) = 0.524(13)(12) Ref. [51]. (161)

For Ny = 2 flavours the best global average is given by a single result, that of ETM
12D [55]:

Ny =2: By =0727(22)(12), BM5(2GeV)=0.531(16)(19) Ref. [55].  (162)

The result in the MS scheme has been obtained by applying the same conversion factor
of 1.369 as in the three-flavour theory.
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Collaboration Ref. Ny g & T F 8 & Bk (MS,2GeV) By
ETM 15 [51] 2+1+1 A a  0.524(13)(12) 0.717(18)(16)"
RBC/UKQCD 16  [56] 2+1 A b 0.543(9)(13)2 0.744(13)(18)?
SWME 15A 54 241 A — 0.537(4)(26) 0.735(5)(36)*
RBC/UKQCD 14B  [10] 241 A b 0.5478(18)(110)2  0.7499(24)(150)
SWME 14 [424] 241 A —0.5388(34)(266)  0.7379(47)(365)
SWME 13A 463 2+1 A —0.537(7)(24) 0.735(10)(33)
SWME 13 464 241  C —0.539(3)(25) 0.738(5)(34)
RBC/UKQCD 12A [192] 2+1 A b 0.554(8)(14)> 0.758(11)(19)
Laiho 11 53] 2+1 C —  0.5572(28)(150)  0.7628(38)(205)*
SWME 11A [465] 241 A — 0.531(3)(27) 0.727(4)(38)
BMW 11 2] 241 A ¢ 0.5644(59)(58) 0.7727(81)(84)
RBC/UKQCD 10B [466] 2+1 A d  0.549(5)(26) 0.749(7)(26)
SWME 10 [467] 241 A —0.529(9)(32) 0.724(12)(43)
Aubin 09 [468] 2+1 A —0.527(6)(21) 0.724(8)(29)

The renormalization is performed using perturbation theory at 1-loop, with a conservative estimate of
the uncertainty.

By is renormalized nonperturbatively at scales 1/a ~ 2.2 — 3.3GeV in the Ny = 4 RI/MOM scheme
using two different lattice momentum scale intervals, the first around 1/a while the second around
3.5 GeV. The impact of the two ways to the final result is taken into account in the error budget.
Conversion to MS is at 1-loop at 3 GeV.

By is renormalized nonperturbatively at a scale of 1.4 GeV in two RI/SMOM schemes for Ny = 3, and
then run to 3 GeV using a nonperturbatively determined step-scaling function. Conversion to MS is at
1-loop order at 3 GeV.

By is renormalized and run nonperturbatively to a scale of 3.5 GeV in the RI/MOM scheme. At the
same scale conversion at 1-loop to MS is applied. Nonperturbative and NLO perturbative running
agrees down to scales of 1.8 GeV within statistical uncertainties of about 2%.

By is renormalized nonperturbatively at a scale of 2GeV in two RI/SMOM schemes for Ny = 3, and
then run to 3 GeV using a nonperturbatively determined step-scaling function. Conversion to MS is at
1-loop order at 3 GeV.

Br(MS,2GeV) and Bi are related using the conversion factor 1.369, i.e., the one obtained with
Ny=2+1.

Bk (MS,2GeV) is obtained from the estimate for By using the conversion factor 1.369.

By is obtained from Bk (MS, 3 GeV) using the conversion factor employed in Ref. [10].

B K 1s obtained from the estimate for Bx (m, 2 GeV) using the conversion factor 1.369.

Table 31: Results for the kaon B-parameter in QCD with Ny = 2+ 1+ 1 and Ny = 2 +

1 dynamical flavours, together with a summary of systematic errors. Information about
nonperturbative running is indicated in the column “running”, with details given at the

bottom of the table.
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Collaboration Ref. Ny g & RS g Bk (MS, 2 GeV) Bk
ETM 12D [55] 2 A e 0.531(16)(9) 0.727(22)(12)"
ETM 10A  [469] 2 A F o 0.533(18)(12)" 0.729(25)(17)

e B is renormalized nonperturbatively at scales 1/a ~ 2 — 3.7GeV in the Ny = 2 RI/MOM scheme. In
this scheme, nonperturbative and NLO perturbative running are shown to agree from 4 GeV down to
2 GeV to better than 3% [469, 470].

f Bk is renormalized nonperturbatively at scales 1/a ~ 2 — 3GeV in the Ny = 2 RI/MOM scheme. In
this scheme, nonperturbative and NLO perturbative running are shown to agree from 4 GeV down to
2 GeV to better than 3% [469, 470].

! Bx(MS,2GeV) and By are related using the conversion factor 1.369, i.e., the one obtained with Ny =
24+ 1.

Table 32: Results for the kaon B-parameter in QCD with Ny = 2 dynamical flavours, together
with a summary of systematic errors. Information about nonperturbative running is indicated
in the column “running”, with details given at the bottom of the table.

6.4 Kaon BSM B-parameters

We now report on lattice results concerning the matrix elements of operators that encode
the effects of physics beyond the Standard Model (BSM) to the mixing of neutral kaons.
In this theoretical framework both the SM and BSM contributions add up to reproduce
the experimentally observed value of €x. Since BSM contributions involve heavy but
unobserved particles they are short-distance dominated. The effective Hamiltonian for
generic AS = 2 processes including BSM contributions reads

5
Hirsam = Y Ci(w)Qi(p), (163)
i=1

where )1 is the four-quark operator of Eq. (140) that gives rise to the SM contribution
to ex. In the so-called SUSY basis introduced by Gabbiani et al. [471] the operators

Qa,...,Qs read?!

Q2 = (5*(1 = 75)d®) (5°(1 — 5)d"),

Qs = (5°(1 = 5)d") (3(1 — 75)d*),

Qs = (5*(1 = 75)d") (5°(1 +75)d"),

Qs = (3°(1 — 5)d”") (3°(1 + 75)d?), (164)
where a and b denote colour indices. In analogy to the case of Bx one then defines the
B-parameters of ), ..., Q5 according to

Bi(n) = (K21Qi(n)| K°) i=2,...,5 (165)

= N, (K9[595d] 0) (0|575d| K)

31Thanks to QCD parity invariance lattice computations for three more dimension-six operators, whose
parity conserving parts coincide with the corresponding parity conserving contributions of the operators @1, Q2
and @3, can be ignored.
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The factors {Na, ..., N5} are given by {—5/3,1/3,2,2/3}, and it is understood that B;(u)
is specified in some renormalization scheme, such as MS or a variant of the regularization-
independent momentum subtraction (RI-MOM) scheme.

The SUSY basis has been adopted in Refs. [51, 55, 56, 472]. Alternatively, one can
employ the chiral basis of Buras, Misiak and Urban [473]. The SWME collaboration
prefers the latter since the anomalous dimension that enters the RG running has been
calculated to 2-loops in perturbation theory [473]. Results obtained in the chiral basis can
be easily converted to the SUSY basis via

B??USY — % (5B§hiral _ 3B§hiral) ) (166)

The remaining B-parameters are the same in both bases. In the following we adopt the
SUSY basis and drop the superscript.

Older quenched results for the BSM B-parameters can be found in Refs. [474-476].
For a nonlattice approach to get estimates for the BSM B-parameters see Ref. [477].

Estimates for By, ..., Bs have been reported for QCD with Ny =2 (ETM 12D [55]),
Ny = 2+1 (RBC/UKQCD 12E [472], SWME 13A [463], SWME 14C [478], SWME 15A [54],
RBC/UKQCD 16 [56, 479]) and Ny = 24141 (ETM 15 [51]) flavours of dynamical quarks.
Since the publication of the FLAG 19 report [4] no new results for the BSM B-parameters
have appeared in the bibliography. The available results are listed and compared in Tab. 33
and Fig. 21. In general one finds that the BSM B-parameters computed by different col-
laborations do not show the same level of consistency as the SM kaon-mixing parameter
By discussed previously. Control over the systematic uncertainties from chiral and con-
tinuum extrapolations as well as finite-volume effects in Ba, ..., By is expected to be at
a commensurate level as for By, as far as the results by ETM 12D, ETM 15, SWME
15A and RBC/UKQCD 16 are concerned, since the set of gauge ensembles employed in
both kinds of computations is the same. The calculation by RBC/UKQCD 12E has been
performed at a single value of the lattice spacing and a minimum pion mass of 290 MeV.

Let us notice that as reported in RBC/UKQCD 16 [56] the comparison of results
obtained in the conventional RI-MOM and two RI-SMOM schemes shows significant dis-
crepancies for By and Bj in the MS scheme at the scale of 3 GeV, which amount up to
2.80 in the case of Bs. By contrast, the agreement for By and Bs determined for different
intermediate scheme is much better. The RBC/UKQCD collaboration has presented an
ongoing study [480] in which simulations with two values of the lattice spacing at the
physical point and with a third finer lattice spacing at M, = 234 MeV are employed
in order to obtain the BSM matrix elements in the continuum limit. Results are still
preliminary.

The findings by RBC/UKQCD 16 [56, 479] provide evidence that the nonperturbative
determination of the matching factors depends strongly on the details of the implemen-
tation of the Rome-Southampton method. The use of nonexceptional momentum config-
urations in the calculation of the vertex functions produces a significant modification of
the renormalization factors, which affects the matching between MS and the intermediate
momentum subtraction scheme. This effect is most pronounced in B4 and Bs. Further-
more, it can be noticed that the estimates for By and Bjs from RBC/UKQCD 16 are much
closer to those of SWME 15A. At the same time, the results for Bo and Bs obtained by
ETM 15, SWME 15A and RBC/UKQCD 16 are in good agreement within errors.
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FEF §
T J o9
s &S
QQ/Q & Aa’ 5 )
S
55 35 $
Collaboration Ref. Ny FETE &@Q $ By Bs By Bs
ETM 15 [51] 241+1 A a 0.46(1)(3) 0.79(2)(5)  0.78(2)(4)  0.49(3)(3)
RBC/UKQCD 16 [56] 241 A b 0.488(7)(17) 0.743(14)(65) 0.920(12)(16) 0.707(8)(44)
SWME 15A 54] 241 A ' 0.525(1)(23) 0.773(6)(35) 0.981(3)(62) 0.751(7)(68)
SWME 14C [478] 241 C ' 0.525(1)(23) 0.774(6)(64) 0.981(3)(61) 0.748(9)(79)
SWME 13A%  [463] 241 A f_ 0.549(3)(28) 0.790(30)  1.033(6)(46) 0.855(6)(43)
RBC/ (472 241 A ® b 0.43(1)(5) 0.75(2)(9)  0.69(1)(7)  0.47(1)(6)
UKQCD 12E
ETM 12D [55] 2 A c 047(2)(1) 0.78(4)(2)  0.76(2)(2)  0.58(2)(2)

f The renormalization is performed using perturbation theory at 1-loop, with a conservative estimate of
the uncertainty.

a B; are renormalized nonperturbatively at scales 1/a ~ 2.2 — 3.3 GeV in the Ny = 4 RI/MOM scheme
using two different lattice momentum scale intervals, with values around 1/a for the first and around
3.5 GeV for the second one. The impact of these two ways to the final result is taken into account in
the error budget. Conversion to MS is at 1-loop at 3 GeV.

b The B-parameters are renormalized nonperturbatively at a scale of 3 GeV.

¢ B; are renormalized nonperturbatively at scales 1/a ~ 2 — 3.7GeV in the Ny = 2 RI/MOM scheme
using two different lattice momentum scale intervals, with values around 1/a for the first and around
3 GeV for the second one.

¥ The computation of B4 and Bs has been revised in Refs. [54] and [478].

Table 33: Results for the BSM B-parameters Bs, . .., Bs in the MS scheme at a reference scale
of 3 GeV. Information about nonperturbative running is indicated in the column “running”,
with details given at the bottom of the table.
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A nonperturbative computation of the running of the four-fermion operators contribut-
ing to the Bs, ..., Bs parameters has been carried out with two dynamical flavours using
the Schrodinger functional renormalization scheme [426]. Renormalization matrices of
the operator basis are used to build step-scaling functions governing the continuum-limit
running between hadronic and electroweak scales. A comparison to perturbative results
using NLO (2-loops) for the four-fermion operator anomalous dimensions indicates that,
at scales of about 3 GeV, nonperturbative effects can induce a sizeable contribution to the
running.

A detailed look at the calculations reported in the works of ETM 15 [51], SWME
15A [54] and RBC/UKQCD 16 [56] reveals that cutoff effects appear to be larger for the
BSM B-parameters compared to Bg. Depending on the details of the renormalization
procedure and/or the fit ansatz for the combined chiral and continuum extrapolation, the
results obtained at the coarsest lattice spacing differ by 15-30%. At the same time the
available range of lattice spacings is typically much reduced compared to the corresponding
calculations of By, as can be seen by comparing the quality criteria in Tabs. 31 and 33.
Hence, the impact of the renormalization procedure and the continuum limit on the BSM
B-parameters certainly requires further investigation.

Finally we present our estimates for the BSM B-parameters, quoted in the MS-scheme
at scale 3GeV. For Ny = 2 4 1 our estimate is given by the average between the results
from SWME 15A and RBC/UKQCD 16, i.e.,

Ny=2+1: (167)
B, =0.502(14), Bs =0.766(32), By =0.926(19), Bs=0.720(38), Refs. [54, 56].

For Ny =2+ 141 and Ny = 2, our estimates coincide with the ones by ETM 15 and
ETM 12D, respectively, since there is only one computation for each case. Thus we quote

Ny=2+1+1: (168)
By =0.46(1)(3), Bs=0.79(2)(5), By=0.78(2)(4), Bs=0.49(3)(3), Ref. [51],

Ny =2: (169)
By =0.47(2)(1), Bs=0.78(4)(2), By =0.76(2)(2), Bs=0.58(2)(2), Ref. [55].

Based on the above discussion on the effects of employing different intermediate momen-
tum subtraction schemes in the nonperturbative renormalization of the operators, the
discrepancy for B4 and Bs results between Ny = 2,2+1+1 and Ny = 2+1 computations
should not be considered an effect associated with the number of dynamical flavours. To
clarify the present situation, it would be important to perform a direct comparison of
results by the ETM collaboration obtained both with RI-MOM and RI-SMOM methods.
Furthermore, extending the computation of the BSM-B parameters to include physical
point simulations with improved continuum-limit extrapolations would also provide valu-
able information. As a closing remark, we encourage authors to provide the correlation
matrix of the B; parameters since this information is required in phenomenological studies
of New Physics scenarios.
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Figure 21: Lattice results for the BSM B-parameters defined in the MS scheme at a reference
scale of 3 GeV, see Tab. 33.
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7 Charm hadron decay constants and form factors

Authors: Y. Aoki, M. Della Morte, E. Lunghi, S. Meinel, C. Monahan, C. Pena

Leptonic and semileptonic decays of charmed D and D, mesons or A, and other charm
baryons occur via charged W-boson exchange, and are sensitive probes of ¢ — d and ¢ — s
quark flavour-changing transitions. Given experimental measurements of the branching
fractions combined with sufficiently precise theoretical calculations of the hadronic matrix
elements, they enable the determination of the CKM matrix elements |V 4| and |Ves|
(within the Standard Model) and a precise test of the unitarity of the second row of the
CKM matrix. Here, we summarize the status of lattice-QCD calculations of the charmed
leptonic decay constants. Significant progress has been made in charm physics on the
lattice in recent years, largely due to the availability of gauge configurations produced
using highly-improved lattice-fermion actions that enable treating the ¢ quark with the
same action as for the u, d, and s quarks.

This section updates the corresponding one in the last FLAG review [4] for results that
appeared before April 30, 2021. As already done in Ref. [4], we limit our review to results
based on modern simulations with reasonably light pion masses (below approximately
500 MeV).

Following our review of lattice-QCD calculations of D )-meson leptonic decay con-
stants and charm-hadron semileptonic form factors, we then interpret our results within
the context of the Standard Model. We combine our best-determined values of the
hadronic matrix elements with the most recent experimentally-measured branching frac-
tions to obtain |Vq()| and test the unitarity of the second row of the CKM matrix.

7.1 Leptonic decay constants fp and fp,

In the Standard Model, and up to electromagnetic corrections, the decay constant fp,,,
of a pseudoscalar D or D, meson is related to the branching ratio for leptonic decays
mediated by a W boson through the formula

2
GH|Vegl*1p, m?
B(D(s) — tvy) = % Ihmimpe, (1= —3 | . (170)
Dy

where ¢ is d or s and V4 (Vgs) is the appropriate CKM matrix element for a D (D)
meson. The branching fractions have been experimentally measured by CLEO, Belle,
Babar and BES with a precision around 4-5% for both the D and the D,-meson decay
modes [168]. When combined with lattice results for the decay constants, they allow for
determinations of |V 5| and V4.

In lattice-QCD calculations, the decay constants fp  are extracted from Euclidean
matrix elements of the axial current

(01A%|Dq(p)) = ifp, Pp, - (171)

with ¢ = d, s and Al = ¢y,75q. Results for Ny = 2, 2+1 and 241+ 1 dynamical flavours
are summarized in Tab. 34 and Fig. 22. Since the publication of the last FLAG review,
a handful of results for fp and fp, have appeared, as described below. We consider
isospin-averaged quantities, although, in a few cases, results for fp+ are quoted (see, for
example, the FNAL/MILC 11,14A and 17 computations, where the difference between
fp and fp+ has been estimated to be around 0.5 MeV).

Only one new computation appeared for Ny = 2. Reference [62], Balasubramanian 19,
updates the result for fp, in Blossier 18 [481] (discussed in the previous review) by
including in the analysis two additional ensembles at a coarser lattice spacing (a = 0.075
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Figure 22: Decay constants of the D and Dy mesons [values in Tab. 34 and Egs. (172-180)].
As usual, full green squares are used in the averaging procedure, pale green squares have been
superseded by later determinations, while pale red squares do not satisfy the criteria. The
black squares and grey bands indicate our averages.

fm, compared to 0.065 fm and 0.048 fm used in Ref. [481]). Pion masses at this coarser
resolution reach 282 MeV and M, L is always kept larger than 4.

The Ny = 2 averages for fp and fp,/fp coincide with those in the previous FLAG
review and are given by the values in ETM 13B [60], while the estimate for fp is the result
of the weighted average of the numbers in ETM 13B [60] and Balasubramanian 19 [62].

They read
Ny =2: fp = 208(7) MeV Ref. [60], (172)
Ny=2: fp. = 246(4) MeV Refs. [60, 62], (173)
Ny =2: J;L =1.20(0.02) Ref. [60]. (174)
D

Turning to Ny = 24 1 results, the xQCD collaboration presented in yQCD 20A [484]
a calculation of the Dg*), D™ and ¢ meson decay constants. The couplings of the vector
mesons to the tensor current are also computed. The computation is performed at a single
lattice spacing with a=! =~ 1.7 GeV on a 2 + 1 domain wall fermion ensemble generated
by the RBC/UKQCD Collaboration. The sea pion mass is at its physical value and the
spatial extension is 5.5 fm. Overlap valence fermions are used with different values of the
light, strange and (quenched) charm quark masses. For the light quarks the corresponding
pion masses range between 114 and 208 MeV. The setup follows very closely the one in
xQCD 14 [26] (presented in the 2016 FLAG review). The decay constants fp and fp,
are obtained from an exactly conserved PCAC Ward identity so they do not depend on
renormalization factors. The results, however, do not enter the FLAG average as the
simulations do not meet the quality criteria concerning the number of lattice spacings
used in the continuum extrapolation.

A new result (RBC/UKQCD 18A) for the SU(3)-breaking ratio fp_/fp has been
reported in Ref. [74]. The setup includes 2+ 1 dynamical flavors of Domain Wall fermions.
This new result essentially supersedes RBC/UKQCD 17 [59] (discussed in the previous
FLAG review) by implementing a number of improvements. One level of stout smearing
for the gauge fields has been introduced before performing the charm-quark inversions,
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which has allowed them to simulate directly at the physical charm mass. At the same
time, the valence the strange-quark mass has been tuned to its physical value in order to
eliminate a small correction needed previously. Finally, the number of source positions has
been doubled on a few ensembles. As of April 30, 2021 the article has not been published
in a journal. Therefore, the result does not contribute to the FLAG estimates.

The Nt =24 1 FLAG estimates remain unchanged and read

Ny=2+1: fp =209.0(2.4) MeV Refs. [57-59], (175)
Nr=2+1: fp. =248.0(1.6) MeV Refs. [26, 58, 59, 61], (176)
Ny=2+1: j;DS = 1.174(0.007) Refs. [57-59], (177)

D
where the error on the Ny = 2 4 1 average of fp_  has been rescaled by the factor

v/ x?/dof = 1.1. Those come from the results in HPQCD 12A [57], FNAL/MILC 11 [58]
as well as RBC/UKQCD 17 [59] concerning fp while for fp, also the yQCD 14 [26] result
contributes, and instead of the value in HPQCD 12A [57] the one in HPQCD 10A [61] is
used. In addition, the statistical errors between the results of FNAL/MILC and HPQCD
have been everywhere treated as 100% correlated since the two collaborations use over-
lapping sets of configurations. The same procedure had been used in the past reviews.

No new result appeared for Ny = 24141 since the last FLAG review. Our estimates,
therefore, coincide with those in Ref. [4], namely

Ny=2+1+41: fp = 212.0(0.7) MeV Refs. [18, 41], (178)

Ny=2+1+1: fp. = 249.9(0.5) MeV Refs. [18, 41], (179)

Ny =2+1+1: J;DS = 1.1783(0.0016) Refs. [18, 41], (180)
D

where the error on the average of fp has been rescaled by the factor 1/x2/dof = 1.22.

On a general note, an important recent theoretical development is represented by the
nonperturbative calculation of the form factors F4 and Fy contributing to the radiative
leptonic decays of a charged pseudoscalar meson P. As discussed in Ref. [239], those
appear in the decomposition of the hadronic matrix element

Hyy (k,p) = €, (k) /d4y e™ T(0]j5 (0)54, (v) | P(P)) (181)

with €], (k) the polarisation vector of the outgoing photon (with momentum k) and j§j, and
jt. the weak and electromagnetic currents, respectively. With general kinematics four
form factors together with the pseudoscalar decay constant fp are needed; however, for
k? = 0, by choosing in addition a physical basis for the polarisation such that e, (k)-k = 0,
the deacy rate can be calculated once Fu, Fy, and fp are known. A preliminary study
has been presented in Ref. [489] in the theory with 2+ 1 dynamical flavors. While a more
complete calculation at three different lattice spacings (in the range 0.09-0.06 fm) and for
Ny =241+1 appeared in Ref. [490]. The form factors, once used in combination with
the nonperturbative calculation of the corrections to P — ¢7, due to the exchange of a
virtual photon, allow for a complete determination of the QED corrections to semileptonic
decays of mesons. In Ref. [490] the form factors are defined after removing the point-like,
infrared divergent contribution, in order to highlight the interesting structure dependent
part. Restricting attention to on-shell photons, the behaviour of discretisation effects is
studied in Ref. [490] as the photon momentum is changed and heavy quarks are considered.
A prescription is also given to nonperturbatively subtract infrared divergent cutoff effects.
Still, for charmed mesons discretization effects turned out to be rather large, relative to
the size of the form factors, suggesting that very fine lattice spacings will be needed in
the case of B mesons.
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Collaboration Ref. N; R8FTFT &S g o, fo./fo
FNAL/MILC 17 VY [18] 2+1+1 A 212.1(0.6) 249.9(0.5) 1.1782(16)
FNAL/MILC 14A™*  [19] 24+1+1 A 212.6(0.4) (*}9) 249.0(0.3)(*}'}) 1.1745(10)(*3))
ETM 14Ef [41] 24141 A 207.4(3.8) 247.2(4.1) 1.192(22)
ETM 13F [308] 2+1+1 C 202(8) 242(8) 1.199(25)
FNAL/MILC 13Y [482] 2+1+1 C 212.3(0.3)(1.0)  248.7(0.2)(1.0) 1.1714(10)(25)
FNAL/MILC 12B [483] 2+1+1 C 209.2(3.0)(3.6)  246.4(0.5)(3.6) 1.175(16)(11)
xQCD 20A'T [484] 241 A W 213(5) 249(7) 1.16(3)
O
RBC/UKQCD 18A"Y [74] 2+1 P 1.1740(51) (*35)
RBC/UKQCD 17 [59] 241 A 208.7(2.8)(T7}) 246.4(1.3)(*13) 1.1667(77)(753)
xQCD 148 [26] 2+1 A 254(2)(4)
HPQCD 12A [57) 241 A 208.3(1.0)(3.3)  246.0(0.7)(3.5) 1.187(4)(12)
FNAL/MILC 11 [58] 241 A 218.9(11.3) 260.1(10.8) 1.188(25)
PACS-CS 11 [485] 241 A ® ] 226(6)(1)(5) 257(2)(1)(5)  1.14(3)
HPQCD 10A [61] 241 A 213(4)* 248.0(2.5)
HPQCD/UKQCD 07  [44] 241 A 207(4) 241 (3) 1.164(11)
FNAL/MILC 05 [486] 241 A ] 201(3)(17) 249(3)(16) 1.24(1)(7)
Balasubramanian 19 [62] 2 A 244(4)(2)
Blossier 18 [481] 2 A 238(5)(2)
TWQCD 147~ [487] 2 AN ] 202.3(2.2)(2.6)  258.7(1.1)(2.9) 1.2788(264)
ALPHA 13B [488] 2 ¢ 216(7)(5) 247(5)(5) 1.14(2)(3)
ETM 13BY [60] 2 A 208(7) 250(7) 1.20(2)
ETM 11A [232] 2 A 212(8) 248(6) 1.17(5)
ETM 09 [49] 2 A 197(9) 244(8) 1.24(3)

! Update of ETM 13F.

V Update of FNAL/MILC 12B.

* This result is obtained by using the central value for fp_/fp from HPQCD/UKQCD 07 and increasing the
error to account for the effects from the change in the physical value of 7.

U Update of ETM 11A and ETM 09.

U0 One lattice spacing ~ 0.1 fm only. mx minL = 1.93.

** At 8 = 5.8, mxminL = 3.2 but this lattice spacing is not used in the final cont./chiral extrapolations.

VV Update of FNAL/MILC 14A. The ratio quoted is fp_/fp+ = 1.1749(16). In order to compare with
results from other collaborations, we rescale the number by the ratio of central values for fpi and fp. We
use the same rescaling in FNAL/MILC 14A. At the finest lattice spacing the finite-volume criterium would
produce an empty green circle, however, as checked by the authors, results would not significantly change by
excluding this ensemble, which instead sharpens the continuum limit extrapolation.

0OV Update of RBC/UKQCD 17.

ID Two values of sea pion masses.

1 Four valence pion masses between 208 MeV and 114 MeV have been used at one value of the sea pion
mass of 139 MeV.

Table 34: Decay constants of the D and Ds mesons (in MeV) and their ratio.
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7.2 Form factors for D — nf/v and D — K/v semileptonic decays

The SM prediction for the differential decay rate of the semileptonic processes D — mwfv
and D — K/{v can be written as

dU(D = Plv)  G2|Veo|? (¢* — m2)*/Ef —m}

dq? 2473 q*m3,

m% 2 (2 2 2y2
y [(1 N 2q) mb(E3 —m3)|f4(¢?)|

3m?
2L oy — AP
(182)

where x = d, s is the daughter light quark, P = m, K is the daughter light-pseudoscalar
meson, Fp is the light-pseudoscalar meson energy in the rest frame of the decaying D,
and ¢ = (pp — pp) is the momentum of the outgoing lepton pair; in this section, the
charged lepton ¢ will either be an electron (resp. positron) or (anti)muon. The vector
and scalar form factors f, (¢?) and fo(q?) parameterize the hadronic matrix element of
the heavy-to-light quark flavour-changing vector current V,, = Zv,c,

2 2 2 2
mp —mp mp, —mp

(PIV.ID) = £1+(2%) (pDu +pp, — "D qu) (@), s

and satisfy the kinematic constraint f (0) = fo(0). Because the contribution to the decay
width from the scalar form factor is proportional to m%, within current precision standards
it can be neglected for ¢ = e, u, and Eq. (182) simplifies to

dr(D — Plv)
dg?

G2 .
= P Va1 ()P (184)

In models of new physics, decay rates may also receive contributions from matrix elements
of other parity-even currents. In the case of the scalar density, partial vector current
conservation allows one to write matrix elements of the latter in terms of f; and fo, while
for tensor currents 1), = To,,c a new form factor has to be introduced, viz.,

2

PT,,|D) = ———
(PIT,0|D) = ~——

[pPupDy — PPuPDL) f1(47) - (185)
Recall that, unlike the Noether current V,,, the operator T}, requires a scale-dependent
renormalization.

Lattice-QCD computations of fy ¢ allow for comparisons to experiment to ascer-
tain whether the SM provides the correct prediction for the ¢?-dependence of dI'(D —
P(v)/dq?; and, subsequently, to determine the CKM matrix elements |V.q| and |Ves| from
Eq. (182). The inclusion of fr allows for analyses to constrain new physics. Currently,
state-of-the-art experimental results by CLEO-c [491] and BESIII [492, 493] provide data
for the differential rates in the whole ¢ range available, with a precision of order 2-3%
for the total branching fractions in both the electron and muon final channels.

Calculations of the D — 7fy and D — K{v form factors typically use the same
light-quark and charm-quark actions as those of the leptonic decay constants fp and fp,.
Therefore, many of the same issues arise; in particular, considerations about cutoff effects
coming from the large charm-quark mass, or the normalization of weak currents, apply.
Additional complications arise, however, due to the necessity of covering a sizeable range
of values in ¢?:

e Lattice kinematics imposes restrictions on the values of the hadron momenta. Be-
cause lattice calculations are performed in a finite spatial volume, the pion or kaon
three-momentum can only take discrete values in units of 27 /L when periodic bound-
ary conditions are used. For typical box sizes in recent lattice D- and B-meson form-
factor calculations, L ~ 2.5-3 fm; thus, the smallest nonzero momentum in most of
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these analyses lies in the range |pp| ~ 400-500 MeV. The largest momentum in lat-
tice heavy-light form-factor calculations is typically restricted to |pp| < 47 /L. For
D — mlv and D — K{v, ¢*> = 0 corresponds to |py| ~ 940 MeV and |px| ~ 1 GeV,
respectively, and the full recoil-momentum region is within the range of accessible
lattice momenta. This has implications for both the accuracy of the study of the ¢?-
dependence, and the precision of the computation, since statistical errors and cutoff
effects tend to increase at larger meson momenta. As a consequence, many recent
studies have incorporated the use of nonperiodic (“twisted”) boundary conditions
(tbc) [494, 495] in the valence fields used for the computation of observables, as a
means to alleviate some of these difficulties. In particular, while they will not nec-
essarily lead to a decrease of numerical noise or cutoff effects, the use of thc allows
not only for a better momentum resolution, but also to better control the ¢ = 0
endpoint [63, 496-500].

e Final-state pions and kaons can have energies 2 1 GeV, given the available kine-
matical range 0 < ¢% < ¢2.. = (mp — mp)?. This makes the use of (heavy-meson)

chiral perturbation theory to extrapolate to physical light-quark masses potentially
problematic.

e Accurate comparisons to experiment, including the determination of CKM parame-
ters, requires good control of systematic uncertainties in the parameterization of the
g*>-dependence of form factors. While this issue is far more important for semilep-
tonic B decays, where existing lattice computations cover just a fraction of the kine-
matic range, the increase in experimental precision requires accurate work in the
charm sector as well. The parameterization of semileptonic form factors is discussed
in detail in Appendix B.1.

The most advanced Ny = 2 lattice-QCD calculation of the D — mlv and D — K{lv
form factors is by the ETM collaboration [496]. This work, which did not proceed beyond
the preliminary stage, uses the twisted-mass Wilson action for both the light and charm
quarks, with three lattice spacings down to a = 0.068 fm and (charged) pion masses
down to m, = 270 MeV. The calculation employs the method of Ref. [501] to avoid the
need to renormalize the vector current, by introducing double-ratios of lattice three-point
correlation functions in which the vector current renormalization cancels. Discretization
errors in the double ratio are of O((am.)?), due to the automatic O(a) improvement
at maximal twist. The vector and scalar form factors f; (¢?) and fo(q?) are obtained by
taking suitable linear combinations of these double ratios. Extrapolation to physical light-
quark masses is performed using SU(2) heavy-light meson xPT. The ETM collaboration
simulates with twisted boundary conditions for the valence quarks to access arbitrary
momentum values over the full physical ¢ range, and interpolate to ¢> = 0 using the
Betirevi¢-Kaidalov ansatz [502]. The statistical errors in f£7(0) and fP%(0) are 9% and
7%, respectively, and lead to rather large systematic uncertainties in the fits to the light-
quark mass and energy dependence (7% and 5%, respectively). Another significant source
of uncertainty is from discretization errors (5% and 3%, respectively). On the finest lattice
spacing used in this analysis am. ~ 0.17, so O((am.)?) cutoff errors are expected to be
about 5%. This can be reduced by including the existing Ny = 2 twisted-mass ensembles
with a ~ 0.051 fm discussed in Ref. [91].

The first published Ny = 2+ 1 lattice-QCD calculation of the D — mfv and D — K/{v
form factors came from the Fermilab Lattice, MILC, and HPQCD collaborations [503].%2
This work uses asqtad-improved staggered sea quarks and light (u,d, s) valence quarks
and the Fermilab action for the charm quarks, with a single lattice spacing of a ~ 0.12 fm,
and a minimum RMS-pion mass of =~ 510 MeV, dictated by the presence of fairly large

32Because only two of the authors of this work are members of HPQCD, and to distinguish it from other
more recent works on the same topic by HPQCD, we hereafter refer to this work as “FNAL/MILC.”
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staggered taste splittings. The vector current is normalized using a mostly nonpertur-
bative approach, such that the perturbative truncation error is expected to be negligible
compared to other systematics. Results for the form factors are provided over the full
kinematic range, rather than focusing just at ¢?> = 0 as was customary in previous work,
and fitted to a Becirevié-Kaidalov ansatz. In fact, the publication of this result predated
the precise measurements of the D — K /v decay width by the FOCUS [504] and Belle
experiments [505], and showed good agreement with the experimental determination of
the shape of ffK (¢%). Progress on extending this work was reported in [506]; efforts
are aimed at reducing both the statistical and systematic errors in fP7(¢?) and fP¥ (¢?)
by increasing the number of configurations analyzed, simulating with lighter pions, and
adding lattice spacings as fine as a ~ 0.045 fm.

The most precise published calculations of the D — 7lv [64] and D — K{lv [66]
form factors in Ny = 2 4+ 1 QCD are by the HPQCD collaboration. They are also
based on Ny = 2+ 1 asqtad-improved staggered MILC configurations, but use two lattice
spacings a ~ 0.09 and 0.12 fm, and a HISQ action for the valence u,d, s, and ¢ quarks.
In these mixed-action calculations, the HISQ valence light-quark masses are tuned so
that the ratio m;/ms is approximately the same as for the sea quarks; the minimum
RMS sea-pion mass ~ 390 MeV. Form factors are determined only at ¢ = 0, by using
a Ward identity to relate matrix elements of vector currents to matrix elements of the
absolutely normalized quantity (m.—mg)(P|Zc|D) (where z = u,d, s), and exploiting the
kinematic identity fi(0) = f5(0) to yield fy(¢*> = 0) = (m. — my)(P|Zc|D)/(m% — m3).
A modified z-expansion (cf. Appendix B.1) is employed to simultaneously extrapolate to
the physical light-quark masses and the continuum and to interpolate to g% = 0, and allow
the coefficients of the series expansion to vary with the light- and charm-quark masses.
The form of the light-quark dependence is inspired by xPT, and includes logarithms
of the form m2log(m2) as well as polynomials in the valence-, sea-, and charm-quark
masses. Polynomials in E (k) are also included to parameterize momentum-dependent
discretization errors. The number of terms is increased until the result for f. (0) stabilizes,
such that the quoted fit error for f;(0) not only contains statistical uncertainties, but
also reflects relevant systematics. The largest quoted uncertainties in these calculations
are from statistics and charm-quark discretization errors. Progress towards extending
the computation to the full ¢?> range have been reported in Ref. [497, 498]; however,
the information contained in these conference proceedings is not enough to establish an
updated value of f, (0) with respect to the previous journal publications.

The most recent Ny = 241 computation of D semileptonic form factors has been car-
ried out by the JLQCD collaboration, and so far only published in conference proceedings;
most recently in Ref. [507]. They use their own Mébius domain-wall configurations at three
values of the lattice spacing a = 0.080,0.055,0.044 fm, with several pion masses ranging
from 226 to 501 MeV (though there is so far only one ensemble, with m, = 284 MeV, at
the finest lattice spacing). The vector and scalar form factors are computed at four values
of the momentum transfer for each ensemble. The computed form factors are observed
to depend mildly on both the lattice spacing and the pion mass. The momentum depen-
dence of the form factors is fitted to a BCL z-parameterization (see Appendix B.1) with a
Blaschke factor that contains the measured value of the D7,, mass in the vector channel,
and a trivial Blaschke factor in the scalar channel. The systematics of this latter fit is
assessed by a BCL fit with the experimental value of the scalar resonance mass in the
Blaschke factor. Continuum and chiral extrapolations are carried out through a linear fit
in the squared lattice spacing and the squared pion and 7. masses. A global fit that uses
hard-pion HMxPT to model the mass dependence is furthermore used for a comparison of
the form factor shapes with experimental data.?® Since the computation is only published

331t is important to stress the finding in Ref. [508] that the factorization of chiral logs in hard-pion xPT
breaks down, implying that it does not fulfill the expected requisites for a proper effective field theory. Its use
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in proceedings so far, it will not enter our Ny = 2 + 1 average.>!

The first full computation of both the vector and scalar form factors in Ny =2+141
QCD was achieved by the ETM collaboration [63]. Furthermore, they have provided a
separate determination of the tensor form factor, relevant for new physics analyses [500].
Both works use the available Ny =2+ 1 + 1 twisted-mass Wilson lattices [220], totaling
three lattice spacings down to a ~ 0.06 fm, and a minimal pion mass of 220 MeV. Matrix
elements are extracted from suitable double ratios of correlation functions that avoid the
need of nontrivial current normalizations. The use of twisted boundary conditions allows
both for imposing several kinematical conditions, and considering arbitrary frames that in-
clude moving initial mesons. After interpolation to the physical strange- and charm-quark
masses, the results for form factors are fitted to a modified z-expansion that takes into
account both the light-quark mass dependence through hard-pion SU(2) xPT [509], and
the lattice-spacing dependence. In the latter case, a detailed study of Lorentz-breaking
effects due to the breaking of rotational invariance down to the hypercubic subgroup is
performed, leading to a nontrivial momentum-dependent parameterization of cutoff ef-
fects. The z-parameterization (see Appendix B.1) itself includes a single-pole Blaschke
factor (save for the scalar channel in D — K, where the Blaschke factor is trivial), with
pole masses treated as free parameters. The final quoted uncertainty on the form factors
is about 5-6% for D — 7, and 4% for D — K. The dominant source of uncertainty is
quoted as statistical+fitting procedure+input parameters — the latter referring to the
values of quark masses, the lattice spacing (i.e., scale setting), and the LO SU(2) LECs.

Another Ny = 2 + 1 + 1 computation of f; and fy in the full kinematical range for
the D — Klv mode, performed by HPQCD, has recently been published — HPQCD 21A
(Ref. [65]). This work uses MILC’s HISQ ensembles at five values of the lattice spacing,
and pion masses reaching to the physical point for the three coarsest values of a. Vector
currents are normalized nonpertubatively by imposing that form factors satisfy Ward
identities exactly at zero recoil. Results for the form factors are fitted to a modified z-
expansion ansatz, with all sub-threshold poles removed by using the experimental value of
the mass shifted by a factor that matches the corresponding result at finite lattice spacing.
The accuracy of the description of the ¢ dependence is crosschecked by comparing to a
fit based on cubic splines. Finite-volume effects are expected to be small, and chiral-
perturbation-theory-based estimates for them are included in the chiral fit. However, the
impact of frozen topology at the finest lattice spacing is neglected. The final uncertainty
from the form factors in the determination of |V.,| quoted in HPQCD 21A is at the 0.5%
level, and comparable to the rest of the uncertainty (due to the experimental error, as well
as weak and electromagnetic corrections); in particular, the precision of the form factors is
around seven times higher than that of the other existing Ny = 2+1+1 determination by
ETMC. The work also provides an accurate prediction for the lepton flavour universality
ratio between the muon and electron modes, where the uncertainty is overwhelmingly
dominated by the electromagnetic corrections.

The FNAL/MILC collaboration has also reported ongoing work on extending their
computation to Ny = 241+ 1, using MILC HISQ ensembles at four values of the lattice
spacing down to a = 0.042 fm and pion masses down to the physical point. The latest
updates on this computation, focusing on the form factors at ¢> = 0, but without explicit
values of the latter yet, can be found in Refs. [510, 511].

Table 35 contains our summary of the existing calculations of the D — #/fr and
D — K/{v semileptonic form factors. Additional tables in Appendix C.5.1 provide further

to model the mass dependence of form factors can thus be questioned.

34The ensemble parameters quoted in Ref. [507] appear to show that the volumes employed at the lightest
pion masses are insufficient to meet our criteria for finite-volume effects. There is, however, a typo in the
table which results in a wrong assignment of lattice sizes, whereupon the criteria are indeed met. We thank
T. Kaneko for correspondence on this issue.
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HPQCD 21A [65] 24141 P f n/a 0.7380(44)
HPQCD 20 [512]  2+41+1 A n/a n/a
ETM 17D, 18  [63,500] 2+14+1 A 0.612(35) 0.765(31)
JLQCD 17B [507]  2+1 C 0.615(31)(F10)(F28)*  0.698(29)(18)(F32)*
HPQCD 11 [64] 2+1 A 0.666(29)
HPQCD 10B [66] 2+1 A 0.747(19)
FNAL/MILC 04  [503] 2+1 A EnR 0.64(3)(6) 0.73(3)(7)
ETM 11B [496] 2 C 0.65(6)(6) 0.76(5)(5)

* The first error is statistical, the second from the ¢> — 0 extrapolation, the third from the chiral-
continuum extrapolation.
T The volumes used in the computation satisfy the nominal criterion for finite-volume effects. However,

the impact of the topologically frozen ensemble at a ~ 0.044 fm is neglected. We therefore assign a
rating here, as a mark of caution.

Table 35: Summary of computations of charmed-meson semileptonic form factors. Note that
HPQCD 20 (discussed in Sec. 7.4) addresses the B. — By and B, — B, transitions—hence
the absence of quoted values for fP7(0) and fP% (0)—while ETM 18 provides a computation
of tensor form factors.

details on the simulation parameters and comparisons of the error estimates. Recall that
only calculations without red tags that are published in a refereed journal are included
in the FLAG average. We will quote no FLAG estimate for Ny = 2, since the results by
ETM have only appeared in conference proceedings. For Ny = 241, only HPQCD 10B,11
qualify, which provides our estimate for f1(¢*> =0) = fo(¢*> =0). For Ny =2+ 1+1, we
quote as the FLAG estimate for f f 7(0) the only published result by ETM 17D, while for

f K(0) we quote the weighted average of the values published by ETM 17D and HPQCD

21A:
Ne—241: P7(0) = 0.666(29) Ref. [64], (186)
d ' DK (0) = 0.747(19) Ref. [66],
Ne e 24141 £P7(0) = 0.612(35) Ref. [63], (187)
! DK () = 0.7385(44) Refs. [63, 65].
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D— Ktv(Ny=2+1+1)

values correlation matrix

aa“ 0.7877(87) 1.000000 —0.498440 0.073805 0.687417 0.363513
af —0.97(18) | —0.498440 1.000000 —0.609159 —0.063023 0.309377
a; —0.3(2.0) 0.073805 —0.609159 1.000000 0.020575 0.007175
ad | 0.6959(47) 0.687417 —0.063023 0.020575 1.000000 0.273019
a) 0.775(69) 0.363513 0.309377 0.007175 0.273019  1.000000

Table 36: Coefficients for the Nt = 3, N = 3 z-expansion of the Ny =2+ 1+1FLAG
average for the D — K form factors fi and fj, and their correlation matrix.

It is worth noting that, at the current level of precision, no significant effect of the
dynamical charm quark is observed. However, given the paucity of results, it is premature
to infer strong conclusions on this point.

In Fig. 23, we display the existing Ny =2, Ny =2+ 1, and Ny = 2+ 14 1 results for

D™(0) and fPX(0); the grey bands show our estimates of these quantities. Section 7.5
discusses the implications of these results for determinations of the CKM matrix elements
|V.a| and |V.s| and tests of unitarity of the second row of the CKM matrix.

In the case of Ny = 2+ 1+ 1, we can also provide a complete result for the q>
dependence of f, and fy. In the case of the D — 7wflv channel, the latter is provided
by the fit given in ETM 17D (Ref. [63]), to which we refer the reader. For D — K{v,
we can average the results in ETM 17D (Ref. [63]), and HPQCD 21A (Ref. [65]). To
that purpose, we use the parameterizations provided in the papers to produce synthetic
data for both f,(¢?) and fy(¢?) at a number of values of ¢2. The large correlations
involved make covariance matrices ill-behaved as the number of values of ¢ considered
increases; we have settled for two ¢? values for ETM 17D and three ¢ values for HPQCD
21A, in both cases including the kinematical endpoints ¢> = 0 and ¢*> = (mp — mx)?
of the semileptonic interval. This choice allows us to obtain well-behaved covariance
matrices. We fit the resulting dataset to a BCL ansatz (cf. Egs. (533,534)) for a number
of combinations of the highest orders N, and Nj considered for either form factor; the
constraint f1(0) = fo(0) is used to rewrite the highest-order coefficient a%, _; in fo in
terms of the other Ny 4+ Ny — 1 coefficients. In both form factors, we include non-trivial
Blaschke factors, with pole masses set to the experimental values of the D¥ (for the
vector channel) and D (scalar channel) masses found in the PDG [169]. We take flavour
averages of charged and neutral states for the D and K masses. Our external input is thus
mp = 1.87265 GeV, my = 495.644 MeV, mp: = 2.1122 GeV, and mp,_, = 2.317 GeV.
With this setup, we observe stable fits beyond the linear approximation in z for the form
factors, although precision is rapidly lost for coefficients of terms of O(2®) and higher.
We quote as our preferred fit, and, therefore, FLAG average, the N; = Ny = 3 result,
quoted in full in Tab. 36, and illustrated in Fig. 24. As clearly shown in the figure, there
is some tension between the two datasets, that grows with ¢? to reach the ~ 2¢ level.
This results in a relatively poor x?/dof = 9.17/3, which has resulted in our rescaling the
errors of our average fit accordingly.
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Figure 23: D — mfv and D — K/v semileptonic form factors at ¢> = 0. The Ny=2+1
HPQCD result for ff’r(()) is from HPQCD 11, the one for ffK(O) represents HPQCD 10B
(see Tab. 35).
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Figure 24: The form factors f (¢?) and fy(¢?) for D — K{¢v plotted versus z (left panel) and
¢? (right panel). In the left plot, we removed the Blaschke factors. See text for a discussion
of the data set. The grey and salmon bands display our preferred N* = N° = 3 BCL fit (five
parameters).
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7.3 Form factors for A. and =. semileptonic decays

The motivation for studying charm-baryon semileptonic decays is two-fold. First, these
decays allow for independent determinations of |V.s|. Second, given that possible new-
physics contributions to the ¢ — sfv weak effective Hamiltonian are already constrained
to be much smaller compared to b — wfv and b — séf, charm-baryon semileptonic decays
allow testing the lattice techniques for baryons that are also employed for bottom-baryon
semileptonic decays (see Sec. 8.6) in a better-controlled environment.

The amplitudes of the decays A, — Afv receive contributions from both the vector
and the axial components of the current in the matrix element (A|5v*(1 — 5)c|A.), and
can be parameterized in terms of six different form factors fi, fo, f1, 9+, 90, g1 — see,
e.g., Ref. [513] for a complete description.

The computation in Meinel 16 [514] uses RBC/UKQCD N; = 2 + 1 DWF ensembles,
and treats the ¢ quarks within the Columbia RHQ approach. Two values of the lattice
spacing (a =~ 0.11, 0.085 fm) are considered, with the absolute scale set from the Y(25)-
T(1S5) splitting. In one ensemble, the pion mass m, ~ 139 MeV is at the physical point,
while for other ensembles it ranges from 295 to 352 MeV. Results for the form factors
are obtained from suitable three-point functions, and fitted to a modified z-expansion
ansatz that combines the g?-dependence with the chiral and continuum extrapolations.
The paper predicts for the total rates in the e and p channels

(A — AeTre)
[Ves|?

I'(Ae = Aptyy)
|Ves|?

= 0.2007(71)(74) ps~*,
(188)
=0.1945(69)(72) ps~*,

where the uncertainties are statistical and systematic, respectively. In combination with
the recent experimental determination of the total branching fractions by BESIII [515,
516], it is possible to extract |Vs| as discussed in Sec. 7.5 below.

Lattice results are also available for the A, — N form factors, where N is a neutron or
proton [517]. This calculation uses the same lattice actions but a different set of ensembles
with parameters matching those used in the 2015 calculation of the A, — p form factors
in Ref. [518] (cf. Sec. 8.6). Predictions are given for the rates of the ¢ — d semileptonic
decays A. — nlTv,; these modes have not yet been observed. Reference [517] also studies
the phenomenology of the flavour-changing neutral-current decay A, — putu~. As is
typical for rare charm decays to charged leptons, this mode is dominated by long-distance
effects that have not yet been calculated on the lattice and whose description is model-
dependent.

Recently, the authors of Zhang 21 [519] also performed a first lattice calculation of
the E. — E form factors and extracted |V.s|, with still large uncertainties, from the
recent Belle measurement of the =, — Z¢T v, branching fractions [520]. This calculation
uses only two ensembles with 2 + 1 flavours of clover fermions, with lattice spacings of
0.108 and 0.080 fm and nearly identical pion masses of 290 and 300 MeV. The results are
extrapolated to the continuum limit but are not extrapolated to the physical pion mass.
No systematic uncertainty is estimated for the effect of the missing chiral extrapolation.

A summary of the lattice calculations of charm-baryon semileptonic decay form factors
is given in Tab. 37.

7.4 Form factors for charm semileptonic decays with heavy spec-
tator quarks

Two other decays mediated by the ¢ — sfv and ¢ — dlv transitions are B, — Bgfr and
B, — B%uv, respectively. At present, there are no experimental results for these processes,
but it may be possible to produce them at LHCb in the future. The HPQCD Collaboration
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Table 37: Summary of computations of charmed-baryon semileptonic form factors.

has recently computed the form factors for both of these B. decay modes with Ny =
2+ 1+ 1 [512]. The calculation uses six different MILC ensembles with HISQ light,
strange, and charm quarks, and employs the PCAC Ward identity to nonperturbatively
renormalize the ¢ — s and ¢ — d currents. Data were generated for two different choices
of lattice action for the spectator b quark: lattice NRQCD on five of the six ensembles,
and HISQ on three of the six ensembles (cf. Sec. 8 for a discussion of different lattice
approaches used for the b quark). For the NRQCD calculation, two of the ensembles have
a physical light-quark mass, and the lattice spacings are 0.15 fm, 0.12 fm, and 0.09 fm.
The heavy-HISQ calculation is performed only at m;/ms = 0.2, and at lattice spacings of
0.12 fm, 0.09 fm, and 0.06 fm. The largest value of the heavy-HISQ mass used is 0.8 in
lattice units on all three ensembles, which does not reach the physical b-quark mass even
at the finest lattice spacing.

Form-factor fits are performed using z-expansions (see Appendix B.1) modified to
include dependence on the lattice spacing and quark masses, including an expansion in
the inverse heavy quark mass in the case of the heavy-HISQ approach. The parameters
t, are set to (mp, + mB(s))2 even though the branch cuts start at (mp + mx)? or
(mp + my)?, as also noted by the authors. The variable z is rescaled by a constant.
The lowest charmed-meson poles are removed before the z-expansion, but this still leaves
the branch cuts and higher poles below ¢,. As a consequence of this structure, the good
convergence properties of the z-expansion are not necessarily expected to apply. Fits are
performed (i) using the NRQCD data only, (ii) using the HISQ data only, and (iii) using
the NRQCD data, but with priors on the continuum-limit form-factor parameters equal
to the results of the HISQ fit. The results from fits (i) and (ii) are mostly consistent, with
the NRQCD fit having smaller uncertainties than the HISQ fit. Case (iii) then results in
the smallest uncertainties and gives the predictions (for massless leptons)

T'(B. = By(*vy)
|Ves|?

I'(B. — B v,)
[Veal?

= 1.738(55) x 107! MeV,
(189)
=2.29(12) x 107 MeV .

We note that there is a discrepancy between the NRQCD and HISQ results in the case of
fo(Be — B?), and the uncertainty quoted for method (iii) does not cover this discrepancy.
However, this form factor does not enter in the decay rate for massless leptons.
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7.5 Determinations of |V, and |V and test of second-row CKM
unitarity

We now interpret the lattice-QCD results for the D) meson decays as determinations of
the CKM matrix elements |Vq| and |V.s| in the Standard Model.

For the leptonic decays, we use the latest experimental averages from the Particle Data
Group [169] (see Sec. 71.3.1)

fp|Vea| = 46.2(1.2) MeV fp.

V.o| = 245.7(4.6) MeV, (190)

where the errors include those from nonlattice theory, e.g., estimates of radiative correc-
tions to lifetimes [521]. By combining these with the average values of fp and fp, from
the individual Ny = 2, Ny = 2+ 1 and Ny = 2+ 1 + 1 lattice-QCD calculations that
satisfy the FLAG criteria, we obtain the results for the CKM matrix elements |V,4| and
[Ves| in Tab. 38. For our preferred values we use the averaged Ny =2, 241, and 2+1+1
results for fp and fp, in Eqgs. (172-180). We obtain

leptonic decays, Ny =2+ 1+ 1 {V,q| = 0.2179(7)(57), |Ves| = 0.983(2)(18), (191)
Refs. [18, 41] ,

leptonic decays, Ny =2+ 1:  |Vq| = 0.2211(25)(57), |Ves| =0.991(7)(19), (192)
Refs. [26, 5759, 61] ,

leptonic decays, Ny = 2: [Vea| = 0.2221(74)(57), |Ves| = 0.998(16)(19), (193)
Refs. [60, 62] ,

where the errors shown are from the lattice calculation and experiment (plus nonlattice
theory), respectively. For the Ny = 24 1 and the Ny = 2 + 1 4 1 determinations, the
uncertainties from the lattice-QCD calculations of the decay constants are significantly
smaller than the experimental uncertainties in the branching fractions.

The leptonic determinations of these CKM matrix elements have uncertainties that are
reaching the few-percent level. However, higher-order electroweak and hadronic-structure
dependent corrections to the rate have not been computed for the case of D ) mesons,
whereas they have been estimated to be around 1-2% for pion and kaon decays [522].
Therefore, it is important that such theoretical calculations are tackled soon, perhaps
directly on the lattice, as proposed in Ref. [239].

For D meson semileptonic decays, there are still no Ny = 2 results, and for Ny = 2+1
the only works entering the FLAG averages are still HPQCD 10B/11 [64, 66]. For Ny =
24141, on the other hand, there is a new work that enters FLAG averages, HPQCD 21A
(Ref. [65]). There is also a new experimental result by BESIII [524], in which the muon
mode D° — K~ pu*v, has been measured for the first time. This has two consequences.
First, HFLAV has updated their averages for the combinations f(0)|Ve.| [263]. They
now find

FP7(0)|Vea| = 0.1426(18) DE(0)|Ves| = 0.7180(33) (194)

The previous HFLAV average fP%(0)|V.,| = 0.7226(34) differed from the new one by 1.4
standard deviations. Second, we now determine |V,,| using the full ¢*> dependence of the
form factors provided by both HPQCD 21A and ETM 17D (Ref. [63]). Using both the
new lattice and new experimental input, we perform a joint lattice+experimental fit to
determine the CKM matrix elements. This reduces the error on the CKM matrix elements
significantly compared with just using the form factor at ¢ = 0, especially for |V.4| (cf.
Fig. 26). This was, indeed, the strategy to extract |V.q| and |V,,| pursued in a companion
paper to ETM 17D, Ref. [523], as as well as in HPQCD 21A (for |V,,| only).3?

35Notice that the estimate for |V.s| in Ref. [523] does not include the later experimental result in Ref. [524].
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The result for [Ve4| in Ref. [523] is still state-of-the-art, and we will quote it as the
FLAG estimate. In the case of |V.|, we have performed joint lattice+experiment fits
using the same ansatz as described for the lattice average of form factors in Sec. 7.2,
including |V.s|? as an additional coefficient that provides the normalization of the exper-
imental data. The experimental datasets we include are three different measurements
of the D’ — K~ eTv, mode by BaBar (BaBar 07, Ref. [525]), CLEO-c¢ (CLEO 09/0,
Ref. [491]), and BESIII (BESIII 15, Ref. [526]); CLEO-c (CLEO 09/+, Ref. [491]) and
BESIII measurements of the D* — K%*v, mode (BESIII 17, Ref. [527]); and the recent
first measurement of the D° — K~ pu*v, mode by BESIII, Ref. [524]. There is also a
Belle dataset available in Ref. [528], but it provides results for parameterized form factors
rather than partial widths, which implies that reverse modeling of the ¢ dependence of
the form factor would be needed to add them to the fit, which involves an extra source of
systematic uncertainty; it is, furthermore, the measurement with the largest error. Thus,
we will drop it. The CLEO collaboration provides correlation matrices for the systematic
uncertainties across the channels in their two measurements; the latter are, however, not
available for BESIII, and, therefore, we will conservatively treat their systematics with a
100% correlation, following the same prescription as in the HFLAV review [263]. Since
all lattice results have been obtained in the isospin limit, we will average over the D° and
D7 electronic modes.

We observe that the error of the final result for |V| is independent of the specific
ansatz, while the central values differ by at most one standard deviation. From the lattice
point of view, HPQCD 21A dominates the result completely, because of its much smaller
uncertainties than in ETM 17D. The precision of the data does not allow us to consistently
resolve the higher-order coefficients of the z-expansion beyond N, = Ny = 3, at which
point the result for |V.s| becomes insensitive to increasing the order. Thus, we quote the
result from the latter fit, provided in full detail in Table 39 and illustrated in Fig. 25, as
the Ny =2+ 1+ 1 FLAG average. The x?/dof of our preferred fit is 1.46, and we have
rescaled the full covariance matrix with that value to obtain conservative error estimates.

Notice that, notwithstanding the fact that HPQCD 21A dominates the fit, our final
value |Vos| = 0.9714(69) is slightly higher than their quoted value |V.s| = 0.9663(66)
(where for the error we have combined in quadrature their lattice and experiment error, in
order to allow for a direct comparison, and dropped the estimated systematic uncertainties
due to electroweak and electromagnetic corrections also provided in HPQCD 21A). This
is due to the fact that HPQCD 21A has applied the structure-independent electroweak
correction factor ngyw = 1.009(2) in their analysis, which we are not doing for consistency
with other determinations in this review; if we had applied the same procedure, our final
result would be |V,s| = 0.9628(68).

Meinel 16 has also determined the form factors for A, — Afv decays for Ny =2 + 1,
which results in a determination of |V.4| in combination with the experimental measure-
ment of the branching fractions for the et and u* channels in Refs. [515, 516]. In Ref. [514]
the value |V,s| = 0.949(24)(14)(49) is quoted, where the first error comes from the lattice
computation, the second from the A. lifetime, and the third from the branching frac-
tion of the decay. While the lattice uncertainty is competitive with meson channels (for
Ny =2+1), the experimental uncertainty is far larger.

The value obtained in Ref. [523] is however completely dominated by the uncertainty of the lattice form factors,
and changes very little once the full experimental information is incorporated into the determination.
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Figure 25: The D — K/{v differential decay rates.

Our estimates for |V4| and |Vs| from semileptonic decay are

Vool = 0.2141(93)(29)  Ref. [64],
SL averages for Ny =2+ 1: |Ves| = 0.967(25)(5) Ref. [66], (195)
Visl(A) = 0.949(24)(51)  Ref. [514],

[V.a| = 0.2341(74) Refs. [63, 523),

V| = 0.9714(69) Refs. 63, 65, 00

SL averages for Ny =24+ 1+ 1:
where the errors for Ny = 2+ 1 are lattice and experimental (plus nonlattice theory), re-
spectively. It has to be stressed that for meson decay errors are largely theory-dominated,
save for the D — K mode for Ny = 2 4+ 1 4 1 where the lattice contribution to the error
is only slightly larger than the experimental one; while in the baryon mode for |V4| the
dominant error is experimental. The above values are compared with individual leptonic
determinations in Tab. 38.

In Tab. 40, we summarize the results for |V.4| and |V.s| from leptonic and semileptonic
decays, and compare them to determinations from neutrino scattering (for |V.4| only) and
global fits assuming CKM unitarity. These results are also plotted in Fig. 26. For both
[Veq| and |Vgs|, the errors in the direct determinations from leptonic and semileptonic
decays are approximately one order of magnitude larger than the indirect determination
from CKM unitarity. The direct and indirect determinations are still always compatible
within at most 1.20, save for the leptonic determinations of |V.s|—that show a ~ 20
deviation for all values of Ny—and |V,q| using the Ny = 2 + 1 + 1 lattice result, where
the difference is 1.80.

In order to provide final estimates, we average all the available results separately
for each value of Ny. Whenever two results share ensembles, we have conservatively
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fully correlated their statistical uncertainties. This is a particularly sensitive issue in the
average for |V, that is dominated by the FNAL/MILC 17 and HPQCD 21A results, and
for which precision has been greatly improved by the latter; however, the uncertainty of
the leptonic determination is completely dominated by the experimental uncertainty, and
therefore the impact of the statistical correlation is all but negligible. We have also 100%
correlated the errors from the heavy-quark discretization and scale setting in HPQCD’s
Ny = 2+ 1 results. Finally, we include a 100% correlation in the fraction of the error
of [Veq(s)| leptonic determinations that comes from the experimental input, to avoid an
artificial reduction of the experimental uncertainty in the averages. Our results thus are

our average, Ny =2+ 141 [Veal = 0.2236(37), |Vis| = 0.9741(65),  (197)
Refs. [18, 41, 63, 65, 523] ,

our average, Ny =2+1: [Vea| = 0.2192(54),  |Ves| = 0.982(16), (198)
Refs. [26, 5759, 61, 64, 66, 514] ,

our average, Ny = 2 : [Ved| = 0.2221(93),  |Ves| = 0.998(24) , (199)
Refs. [60, 62] ,

where the errors include both theoretical and experimental uncertainties. These averages
also appear in Fig. 26. The mutual consistency between the various lattice results is good
except for the case of [Voq4| with Ny = 24141, where a ~ 20 tension between the leptonic
and semileptonic determinations is observed. Currently, the leptonic and semileptonic de-
terminations of V.4 are controlled by experimental and lattice uncertainties, respectively.
The leptonic error will be reduced by Belle IT and BES III. It would be valuable to have
other lattice calculations of the semileptonic form factors.

Using the lattice determinations of |Vz4| and |V.s| in Tab. 40, we can test the unitarity
of the second row of the CKM matrix. We obtain

Ny=2+1+1: Veal® + [Ves|? + [Vap|* = 1 = —0.001(8),  (200)
Ny=2+1: [Veal® + [Ves|? + Ve = 1= 0.01(3),, (201)
Ny=2: [Vea|® + [Ves|? + [Vip|? — 1 = 0.05(6) . (202)

The much-improved precision in |Vs| —cf. the value 0.025(22) quoted in the latest PDG
review, Ref. [169]— has thus not resulted in any tension with CKM unitarity. Note
that, given the current level of precision, this result does not depend on |V,|, which is of
O(1072). Notice, on the other hand, that the final quoted precision of 0.7% makes the
incorporation of electromagnetic corrections from first principles a necessary step for the
near future, similarly to the ongoing developments in the light-meson sector.
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Figure 26: Comparison of determinations of |V.4| and |V s| obtained from lattice methods
with nonlattice determinations and the Standard Model prediction based on CKM unitarity.
When two references are listed on a single row, the first corresponds to the lattice input
for |V,4| and the second to that for |V s|. The results denoted by squares are from leptonic
decays, while those denoted by triangles are from semileptonic decays. The points indicated
as (¢ = 0) do not contribute to the average, and are shown to stress the decrease in the
final uncertainty obtained by considering the full ¢*> dependence. Notice that the HPQCD
21A point includes estimates of the electroweak and soft electromagnetic uncertainties that

0.951.001.05

we have not incorporated into our average.
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Collaboration Ref. Ny from |Ved| or | Ve

FNAL/MILC 17 [18] 2+1+1 fp 0.2179(6)(57)
ETM 17D/Riggio 17 (63, 523] 2+1+1 D — mly 0.2341(74)
ETM 14E [41] 2+1+1 fp 0.2228(41)(57)
RBC/UKQCD 17 [59] 2+1 fo 0.2214(36)(57)
HPQCD 12A [57] 2+1 fo 0.2218(36)(57)
HPQCD 11 [64] 2+1 D — mly 0.2140(93)(29)
FNAL/MILC 11 [58] 2+1 fo 0.2110(108)(55)
ETM 13B [60] 2 fp 0.2221(74)(57)
HPQCD 21A [65] 2+1+1 D — Klv 0.9750(54)(45)f
FNAL/MILC 17 [18] 2+1+1 fp, 0.983(2)(18)
ETM 17D/Riggio 17 (63, 523] 2+1+1 D — Klv 0.970(33)
ETM 17D (¢% = 0) [63] 2+1+1 D — Kt 0.939(38)
ETM 14E [41] 2+1+1 fp. 0.994(17)(19)
RBC/UKQCD 17 [59] 2+1 Ip, 0.997(9)(19)
Meinel 16 [514] 2+1 A — My 0.949(24)(51)
xQCD 14 [26] 2+1 I, 0.968(17)(19)
FNAL/MILC 11 [58] 2+1 Ip, 0.945(40)(19)
HPQCD 10A [61] 2+1 fp. 0.991(10)(19)
HPQCD 10B [66] 2+1 D — Kl 0.975(25)(7)
Balasubramanian 19 [62] 2 I, 1.007(18)(19)
ETM 13B [60] 2 fp. 0.983(28)(19)

T The value quoted in HPQCD 21A is actually |Ves| = 0.9663(53)1att(39)exp(19)npw (40)mn, and takes into
account an electroweak correction ngw = 1.009(2) that we have eliminated to allow for a straight comparison
with the other results. The three remaining errors have been combined in quadrature. Note also that the other
computations in the table do not incorporate estimates of electroweak and soft electromagnetic corrections.
HPQCD 21A also quotes a value for |Vs| obtained from the total branching fraction that results in a very
small decrease in the total error due to a reduction in the estimate of electromagnetic corrections.

Table 38: Determinations of |V,4| (upper panel) and |V.s| (lower panel) obtained from lattice
calculations of D-meson leptonic decay constants and semileptonic form factors. The errors
shown are from the lattice calculation and experiment (plus nonlattice theory), respectively,
save for ETM 17D /Riggio 17, where the joint fit to lattice and experimental data does not
provide a separation of the two sources of error (although the latter is largely theory domi-
nated, like other results using D — 7 and D — K decays).
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D— Ky (Ny=2+1+1)

values correlation matrix
aa' 0.7864(54) 1 —0.282248 —0.052775 0.760032 0.631483 —0.899274
af —0.849(68) | —0.282248 1 —0.640953 —0.088377 0.041977 0.128087
a; —1.5(1.1) | —0.052775 —0.640953 1 0.018139 0.115382 0.020790
a8 0.6958(32) 0.760032 —0.088377 0.018139 1 0.300343 —0.734376
a) 0.781(45) 0.631483 0.041977 0.115382 0.300343 1 —0.664113
[Ves| | 0.9714(69) | —0.899274 0.128087 0.020790 —0.734376 —0.664113 1

Table 39: Coefficients for the N* = N° = 3 z-expansion of the D — K form factors f, and
fo, |Ves|, and their correlation matrix.

from Ref. |Vedl [Ves|
Ny=2+1+1 o & fp. [18,41]  0.2179(57)  0.983(18)
Ny=2+1 o & fp. 26, 57-59, 61]  0.2211(62)  0.991(20)
Ny=2 o & fp. 60, 62]  0.2220(93)  0.999(25)
Ny=2+1+1 D—nlvand D— Kfv 63, 65, 523]  0.2341(74)  0.9714(69)
Ny=2+1 D = nbv and D — Kfv 64, 66]  0.2141(97)  0.967(25)
Ny=2+1 Ao — Abv [514] n/a 0.949(56)
PDG neutrino scattering [169] 0.230(11)
PDG CKM unitarity [169]  0.2265(5)  0.9732(1)

Table 40: Comparison of determinations of |V,4| and |V.s| obtained from lattice methods with
nonlattice determinations and the Standard Model prediction from global fits assuming CKM

unitarity.

Experimental and lattice errors have been combined in quadrature.

figures quoted are taken from the “CKM Quark-Mixing Matrix” review.
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8 Bottom hadron decays and mixings

Authors: Y. Aoki, M. Della Morte, E. Lunghi, S. Meinel, C. Monahan, S. Simula, A. Va-
quero

The (semi)leptonic decay and mixing processes of B, mesons have been playing a
crucial role in flavour physics. In particular, they contain important information for the
investigation of the b—d unitarity triangle in the Cabibbo-Kobayashi-Maskawa (CKM)
matrix, and can be ideal probes of physics beyond the Standard Model. The charged-
current decay channels Bt — [Ty, and B® — 7~ [Ty, where [T is a charged lepton with
v; being the corresponding neutrino, are essential in extracting the CKM matrix element
|Vis|. Similarly, the B to D) semileptonic transitions can be used to determine |V|.
The flavour-changing neutral current (FCNC) processes, such as B — K®)¢*/~ and
Bysy — £+~ occur only beyond the tree level in weak interactions and are suppressed
in the Standard Model. Therefore, these processes can be sensitive to new physics, since
heavy particles can contribute to the loop diagrams. They are also suitable channels
for the extraction of the CKM matrix elements involving the top quark that can appear
in the loop. The decays B — D"y and B — K¢ can also be used to test lepton
flavour universality by comparing results for ¢ = e, y and 7. In particular, anomalies have
been seen in the ratios R(D™) = B(B — D"7v)/B(B — D)., and R(K™) =
B(B — K pup)/B(B — K®ee). In addition, the neutral B,(,)-meson mixings are FCNC
processes and are dominated by the 1-loop “box” diagrams containing the top quark and
the W bosons. Thus, using the experimentally measured neutral Bg s -meson oscillation
frequencies, AM,(,, and the theoretical calculations for the relevant hadronic mixing
matrix elements, one can obtain |Vi4| and |V;s| in the Standard Model.

At the Large Hadron Collider, decays of b quarks can also be probed with A, and other
bottom baryons, which can provide complementary constraints on physics beyond the
Standard Model. The most important processes are the charged-current decays Ay — pfv
and Ay — A, and the neutral-current decay A, — ALT 0.

Accommodating the light quarks and the b quark simultaneously in lattice-QCD
computations is a challenging endeavour. To incorporate the pion and the b hadrons
with their physical masses, the simulations have to be performed using the lattice size
L = L/a ~ O(10%), where a is the lattice spacing and L is the physical (dimensionful) box
size. The most ambitious calculations are now using such volumes; however, many ensem-
bles are smaller. Therefore, in addition to employing Chiral Perturbation Theory for the
extrapolations in the light-quark mass, current lattice calculations for quantities involving
b hadrons often make use of effective theories that allow one to expand in inverse powers of
mp. In this regard, two general approaches are widely adopted. On the one hand, effective
field theories such as Heavy-Quark Effective Theory (HQET) and Nonrelativistic QCD
(NRQCD) can be directly implemented in numerical computations. On the other hand,
a relativistic quark action can be improved a la Symanzik to suppress cutoff errors, and
then re-interpreted in a manner that is suitable for heavy-quark physics calculations. This
latter strategy is often referred to as the method of the Relativistic Heavy-Quark Action
(RHQA). The utilization of such effective theories inevitably introduces systematic un-
certainties that are not present in light-quark calculations. These uncertainties can arise
from the truncation of the expansion in constructing the effective theories (as in HQET
and NRQCD), or from more intricate cutoff effects (as in NRQCD and RHQA). They
can also be introduced through more complicated renormalization procedures which often
lead to significant systematic effects in matching the lattice operators to their continuum
counterparts. For instance, due to the use of different actions for the heavy and the light
quarks, it is more difficult to construct absolutely normalized bottom-light currents.

Complementary to the above “effective theory approaches”, another popular method
is to simulate the heavy and the light quarks using the same (normally improved) lattice
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action at several values of the heavy-quark mass my with amy, < 1 and my < my. This
enables one to employ HQET-inspired relations to extrapolate the computed quantities
to the physical b mass. When combined with results obtained in the static heavy-quark
limit, this approach can be rendered into an interpolation, instead of extrapolation, in
my,. The discretization errors are the main source of the systematic effects in this method,
and very small lattice spacings are needed to keep such errors under control.

In recent years, it has also been possible to perform lattice simulations at very fine
lattice spacings and treat heavy quarks as fully relativistic fermions without resorting to
effective field theories. Such simulations are, of course, very demanding in computing
resources.

Because of the challenge described above, the efforts that have been made to obtain re-
liable, accurate lattice-QCD results for physics of the b quark have been enormous. These
efforts include significant theoretical progress in formulating QCD with heavy quarks on
the lattice. This aspect is briefly reviewed in Appendix A.1.3 of FLAG 19 [4].

In this section, we summarize the results of the B-meson leptonic decay constants,
the neutral B-mixing parameters, and the semileptonic form factors of B mesons and Ay
baryons, from lattice QCD. To focus on the calculations that have strong phenomeno-
logical impact, we limit the review to results based on modern simulations containing
dynamical fermions with reasonably light pion masses (below approximately 500 MeV).

Following our review of B,)-meson leptonic decay constants, the neutral B-meson mix-
ing parameters, and semileptonic form factors, we then interpret our results within the
context of the Standard Model. We combine our best-determined values of the hadronic
matrix elements with the most recent experimentally-measured branching fractions to ob-
tain |Vyp| and |V|, and compare these results to those obtained from inclusive semilep-
tonic B decays.

8.1 Leptonic decay constants fp and [z,

The B- and B;-meson decay constants are crucial inputs for extracting information from
leptonic B decays. Charged B mesons can decay to a lepton-neutrino final state through
the charged-current weak interaction. On the other hand, neutral B, mesons can decay
to a charged-lepton pair via a flavour-changing neutral current (FCNC) process.

In the Standard Model, the decay rate for BT — ¢Tv, is described by a formula
identical to Eq. (170), with D(y) replaced by B, and the relevant CKM matrix element
Veq replaced by Vi,

m m2\>

B

(B ) = 52 G 13 VaslP? (1 m;) . (203)
The only two-body charged-current B-meson decay that has been observed so far is BT —
7tv,, which has been measured by the Belle and Babar collaborations [529, 530]. Both
collaborations have reported results with errors around 20%. These measurements can be
used to determine |V,;| when combined with lattice-QCD predictions of the corresponding
decay constant.

Neutral B(s)-meson decays to a charged-lepton pair Bg(s) — IT1~ is a FCNC process,
and can only occur at one loop in the Standard Model. Hence these processes are expected
to be rare, and are sensitive to physics beyond the Standard Model. The corresponding
expression for the branching fraction has the form

G2 a 2 m?2
BBy =007 ) =15 —LY | ———— ) mp, f5 |ViVig|*mZ |1 —4—5, (204
(B, 00 =, Sy (g ) ma ViV [1 -4 o
where the light quark ¢ = s or d, and the function Y includes NLO QCD and electro-weak
corrections [419, 531]. Evidence for the By — p ™ decay was first observed by the CMS

147 Updated Feb. 2024



and the LHCD collaborations, and a combined analysis was presented in 2014 in Ref. [532].
In 2020, the ATLAS, CMS and LHCb collaborations reported their measurements from
a preliminary combined analysis as [533]

B(Bg— p p™) < (1.9) x 107% at 95% CL,
B(By = ptp”) = (2697937) x 1077, (205)

which are compatible with the Standard Model predictions within approximately 2 stan-
dard deviations [534]. We note that the errors of these results are currently too large to
enable a precise determination of |Vi4| and |V,

The decay constants fp, (with ¢ = u, d, s) parameterize the matrix elements of the
corresponding axial-vector currents Ag‘q = by"~°q analogously to the definition of fp, in
Sec. 7.1:

(0]A"|By(p)) = ipp fB, - (206)
For heavy-light mesons, it is convenient to define and analyse the quantity
®p, = fB,\/MB, ; (207)

which approaches a constant (up to logarithmic corrections) in the mpg — oo limit, because
of heavy-quark symmetry. In the following discussion, we denote lattice data for ®, and
the corresponding decay constant f, obtained at a heavy-quark mass my and light valence-
quark mass my as ®pp and fr;, to differentiate them from the corresponding quantities at
the physical b- and light-quark masses.

The SU(3)-breaking ratio fp./fp is of phenomenological interest, because many sys-
tematic effects can be partially reduced in lattice-QCD calculations of this ratio. The
discretization errors, heavy-quark mass tuning effects, and renormalization/matching er-
rors may all be partially reduced. This SU(3)-breaking ratio is, however, still sensitive
to the chiral extrapolation. Provided the chiral extrapolation is under control, one can
then adopt fp./fp as an input in extracting phenomenologically-interesting quantities.
In addition, it often happens to be easier to obtain lattice results for fp, with smaller
errors than direct calculations of fg. Therefore, one can combine the Bs-meson decay
constant with the SU (3)-breaking ratio to calculate fg. Such a strategy can lead to better
precision in the computation of the B-meson decay constant, and has been adopted by
the ETM [33, 60] and the HPQCD collaborations [535]. An alternative strategy, used in
Ref. [62], is to obtain the Bs-meson decay constant by combining the Dg-meson decay
constant with the ratio fp_ /fp,-

It is clear that the decay constants for charged and neutral B mesons play different
roles in flavour-physics phenomenology. Knowledge of the B*-meson decay constant fpz+
is essential for extracting |V,;| from leptonic B* decays. The neutral B-meson decay
constants fpo and fp, are inputs to searches for new physics in rare leptonic BY decays.
In view of this, it is desirable to include isospin-breaking effects in lattice computations for
these quantities, and have results for fp+ and fgo. With the increasing precision of recent
lattice calculations, isospin splittings for B-meson decay constants can be significant, and
will play an important role in the foreseeable future. A few collaborations have reported
fp+ and fpo separately by taking into account strong isospin effects in the valence sector,
and estimated the corrections from electromagnetism. The Ny = 24141 strong isospin-
breaking effect was computed in HPQCD 13 [67] (see Tab. 41 in this subsection). However,
since only unitary points (with equal sea- and valence-quark masses) were considered in
HPQCD 13 [67], this procedure only correctly accounts for the effect from the valence-
quark masses, while introducing a spurious sea-quark contribution. The decay constants
fp+ and fpo are also separately reported in FNAL/MILC 17 [18] by taking into account
the strong-isospin effect. The new FNAL/MILC results were obtained by keeping the
averaged light sea-quark mass fixed when varying the quark masses in their analysis
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procedure. Their finding indicates that the strong isospin-breaking effects, fg+ — f ~ 0.5
MeV, could be smaller than those suggested by previous computations. One would have
to take into account QED effects in the B-meson leptonic decay rates to properly use
these results for extracting phenomenologically relevant information.?¢ Currently, errors
on the experimental measurements on these decay rates are still very large. In this review,
we will therefore concentrate on the isospin-averaged result fp and the Bs;-meson decay
constant, as well as the SU(3)-breaking ratio fp_/f5.

The status of lattice-QCD computations for B-meson decay constants and the SU(3)-
breaking ratio, using gauge-field ensembles with light dynamical fermions, is summarized
in Tabs. 41 and 42, while Figs. 27 and 28 contain the graphical presentation of the collected
results and our averages. Most results in these tables and plots have been reviewed in
detail in FLAG 19 [4]. Here, we only describe the new results published after January
2019.

FIAG2021 fz [MeV] FIAG2021 fs, [MeV]

our average for Ne=2+1+1
FNAL/MILC 17

HPQCD 17A
ETM 16B
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ETM 13E ETM 13E

HPQCD 13 HPQCD 13
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.
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Figure 27: Decay constants of the B and Bs mesons. The values are taken from Tab. 41 (the
fp entry for FNAL/MILC 11 represents fg+). The significance of the colours is explained in
Sec. 2. The black squares and grey bands indicate our averages in Eqs. (208), (211), (214),
(209), (212) and (215).

One new Ny = 2 calculation of fp, has appeared after the publication of the previous
FLAG review [4]. In Tab. 41, this result is labelled Balasubramamian 19 [62].

In Balasubramamian 19 [62], simulations at three values of the lattice spacing, a =
0.0751, 0.0653 and 0.0483 fm were performed with nonperturbatively O(a)-improved
Wilson-clover fermions and the Wilson plaquette gauge action. The pion masses in this
work range from 194 to 439 MeV, and the lattice sizes are between 2.09 and 4.18 fm. A
key feature of this calculation is the use of a variant of the ratio method [543], applied for
the first time to Wilson-clover fermions. This variant is required because, in contrast to
twisted-mass Wilson fermions, there is no simple relationship between the heavy quark
pole mass and the bare quark mass. In the application of this approach to the Bs-decay
constant, one first computes the quantity Fpnq = frq/Mpq, where fr, and My, are the
decay constant and mass of the pseudoscalar meson composed of valence (relativistic)
heavy quark h and light (or strange) quark g. The matching between the lattice and the
continuum heavy-light currents for extracting the above fp, is straightforward because
the valence heavy quark is also described by Wilson-clover fermions. In the second step,

the ratio z4(Mpg, \) = [}“th’Ztat(Mh/q)M%Q]/[]:h/qutat(th)Ms,/qQ] is calculated, where

36Sce Ref. [239] for a strategy that has been proposed to account for QED effects.
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Collaboration Ref. Ny QQCS) T &S IB+ fBo /B iz}
FNAL/MILC 17 [18] 24+1+1 A 189.4(1.4) 190.5(1.3) 189.9(1.4) 230.7(1.2)
HPQCD 17A [68] 2+1+1 A - - 196(6)  236(7)
ETM 16B [33] 2+14+1 A - - 193(6)  229(5)
ETM 13E [536] 24+1+1 C - - 196(9)  235(9)
HPQCD 13 [67] 24141 A 184(4) 188(4) 186(4)  224(5)
RBC/UKQCD 14 [72] 241 A 195.6(14.9) 199.5(12.6) — 235.4(12.2)
RBC/UKQCD 14A [71] 241 A - - 219(31)  264(37)
RBC/UKQCD 13A [53712+1 C - - 191(6)star 233(5)Stat
HPQCD 12 [535] 241 A - - 191(9)  228(10)
HPQCD 12 [535] 24+1 A - - 189(4)~  —
HPQCD 11A [69] 2+1 A - - - 225(4)Y
FNAL/MILC 11 [58] 24+1 A 197(9) - - 242(10)
HPQCD 09 [76] 2+1 A - - 190(13)*  231(15)*
Balasubramamian 197 [62] 2 A - - — 215(10)(2)(*3)
ALPHA 14 [73] 2 A - - 186(13)  224(14)
ALPHA 13 [538] 2 C - - 187(12)(2) 224(13)
ETM 13B, 13C* [60, 539] 2 A - - 189(8)  228(8)
ALPHA 12A [540] 2 C - - 193(9)(4) 219(12)
ETM 12B [541] 2 C - - 197(10)  234(6)
ALPHA 11 [542] 2 ¢ - - 174(11)(2) —
ETM 11A [232] 2 A - - 195(12)  232(10)
ETM 09D [543] 2 A - - 194(16)  235(12)

®Statistical errors only.

“Obtained by combining fp, from HPQCD 11A with fg_/fs calculated in this work.
VThis result uses one ensemble per lattice spacing with light to strange sea-quark mass ratio me/ms ~ 0.2.
*This result uses an old determination of r1 = 0.321(5) fm from Ref. [122] that has since been superseded.

1Obtained by combining fp,, updated in this work, with fg_/fp,, calculated in this work.
tUpdate of ETM 11A and 12B.

Table 41: Decay constants of the B, BT, BY and Bs; mesons (in MeV). Here fp stands
for the mean value of fp+ and fpo, extrapolated (or interpolated) in the mass of the light
valence-quark to the physical value of mq.

C52*(Mp,q) is the matching coefficient for the (hg)-meson decay constant in QCD and
its counterpart in HQET, and M}, = AMj/4. The authors of Balasubramamian 19 [62]
use the NNLO perturbative result of C5**(Mp,,) [545-547] and A = 1.18. By starting
from a “triggering” point with the heavy-meson mass around that of the Dy meson, one
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Collaboration Ref. Ny & TS &S fu/fer  folfs  fo.)fs
FNAL/MILC 17 (18] 2+1+1 A 1.2180(49) 1.2109(41) —
HPQCD 17A 68] 2+1+1 A - - 1.207(7)
ETM 16B 33] 24+1+1 A - - 1.184(25)
ETM 13E 536] 2+1+1 C - - 1.201(25)
HPQCD 13 67] 2+1+1 A 1.217(8)  1.194(7)  1.205(7)
RBC/UKQCD 18A [74] 241 P - - 1.1949(60) (17s
RBC/UKQCD 14 [72] 241 A 1.223(71)  1.197(50) —
RBC/UKQCD 14A 7] 241 A - - 1.193(48)
RBC/UKQCD 13A  [537] 241 C - - 1.20(2) s
HPQCD 12 [635] 241 A - - 1.188(18)
FNAL/MILC 11 58] 241 A 1.229(26) — -
RBC/UKQCD 10C  [544] 241 A W ® H - - 1.15(12)
HPQCD 09 [76] 241 A - - 1.226(26)
ALPHA 14 (73] 2 A - - 1.203(65)
ALPHA 13 [538] 2 C - - 1.195(61)(20)
ETM 13B, 13CT  [60, 539] 2 A - - 1.206(24)
ALPHA 12A [540] 2 C - - 1.13(6)
ETM 12B [541] 2 C - - 1.19(5)
ETM 11A [232] 2 A - - 1.19(5)

°Statistical errors only.

tUpdate of ETM 11A and 12B.

Table 42: Ratios of decay constants of the B and Bs mesons (for details see Tab. 41).

can proceed with the calculations in steps, such that M}, is increased by a factor of A
at each step. The authors simulate up to heavy-quark mass around 4.5 GeV, but ob-
served significant (aMp,)? cutoff effects on ensembles with lattice spacings a = 0.0751
and 0.0653 fm and so simulate up to 3.2 GeV on these lattices. In this formulation of
the ratio method, the ratio obeys z4(Mpq, A) = 1/+/X in the limit Mpq — oo. Designing
the computations in such a way that in the last step My, is equal to the physical B,
mass, one obtains fB(S)/fD(,g). Combining this ratio with results for fp , updated with a
third lattice spacing, the decay constant of the B; meson can be extracted. The authors
estimated the systematic uncertainty associated with their generic fit form, which com-
bines chiral-continuum extrapolation with heavy quark discretization effects, and quote a
single systematic uncertainty. The systematic uncertainty associated with scale-setting is
estimated from fp,.
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Figure 28: Ratio of the decay constants of the B and B; mesons. The values are taken from
Tab. 42. Results labelled as FNAL/MILC 17 1 and FNAL/MILC 17 2 correspond to those
for fp,/fpo and fp,/fg+ reported in FNAL/MILC 17. The significance of the colours is
explained in Sec. 2. The black squares and grey bands indicate our averages in Eqs. (210),
(213), and (216).

There have been no new Ny = 2 calculations of fg or fg,/fp. Therefore, our averages
for these two cases stay the same as those in Ref. [4]. We update our average of fp_ to
include the new calculation of Balasubramamian 19 [62]:

Ny=2: f5 = 188(7) MeV Refs. [60, 73], (208)

Ny=2: fB. = 225.3(6.6) MeV Refs. [60, 62, 73], (209)

Ny =2: J;BS = 1.206(0.023) Refs. [60, 73]. (210)
B

One new Ny = 2+ 1 calculation of fp,/fp was completed after the publication of the
previous FLAG review [4]. In Tab. 42, this result is labelled RBC/UKQCD 18A [74].

The RBC/UKQCD collaboration presented in RBC/UKQCD 18A [74] the ratio of
decay constants, fp,/fp, using Ny = 241 dynamical ensembles generated using Domain
Wall Fermions (DWF). Three lattice spacings, of a = 0.114, 0.0835 and 0.0727 fm, were
used, with pion masses ranging from 139 to 431 MeV, and lattice sizes between 2.65 and
5.47 fm. Two different Domain Wall discretizations (Mobius and Shamir) have been used
for both valence and sea quarks. These discretizations correspond to two different choices
for the DWF kernel. The Mobius DWF are loosely equivalent to Shamir DWF at twice
the extension in the fifth dimension [10]. The bare parameters for these discretizations
were chosen to lie on the same scaling trajectory, to enable a combined continuum ex-
trapolation. Heavy quark masses between the charm and approximately half the bottom
quark mass were used, with a linear extrapolation in 1/my applied to reach the physical
B, mass, where my is the mass of the heavy meson used to set the heavy quark mass.
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For the central fit, the authors set the heavy quark mass through the pseudoscalar heavy-
strange meson Hy, and estimate systematic uncertainties by comparing these results to
those obtained with H a heavy-light meson or a heavy-heavy meson. For the quenched
heavy quark Mébius DWF are always used, with a domain-wall height slightly different
from the one adopted for light valence quarks. The choice helps to keep cutoff effects
under control, according to the study in Ref. [548]. The chiral-continuum extrapolations
are performed with a Taylor expansion in a? and m2 — (mP"$)2 and the associated sys-
tematic error is estimated by varying the fit function to apply cuts in the pion mass.
The corresponding systematic error is estimated as approximately 0.5%, which is roughly
equal to the statistical uncertainty and to the systematic uncertainties associated with
extrapolation to the physical mp, mass and with higher-order corrections to the static
limit. These latter corrections take the form O(A2/ mQBS). The error estimate comes from
assuming the coefficient of such terms is up to five times larger than the fitted O(A/mp,)
coefficient. Isospin corrections and heavy-quark discretization effects are estimated to be
less than 0.1%.

At time of writing, RBC/UKQCD 18A [74] has not been published and therefore is
not included in our average. Thus, our averages for these quantities remain the same as
in Ref. [4],

Ny=2+41: f5 = 192.0(4.3) MeV Refs. [58, 69, 71, 72, 535], (211)

Ny=2+1: fB. = 228.4(3.7) MeV Refs. [58, 69, 71, 72, 535), (212)

Ny =2+1: ffi = 1.201(0.016) Refs. [58, 71, 72, 74, 535). (213)
B

No new Ny = 2+1+1 calculations of fg, fp,/fB or /B, have appeared since the last
FLAG review. Therefore, our averages for these quantities remain the same as in Ref. [4],

Ny =2+1+1: /5 =190.0(1.3) MeV Refs. [18, 33, 67, 68], (214)

Np=241+1: fB. = 230.3(1.3) MeV Refs. [18, 33, 67, 68], (215)

Ny=2+1+1: J;i = 1.209(0.005) Refs. [18, 33, 67, 68). (216)
B

The PDG presented averages for the Ny = 24+ 1 and Ny = 2+ 1 + 1 lattice-QCD
determinations of the isospin-averaged fg, fg, and fp,/fp in 2020 [169]. The Ny =2+1
and Ny = 2 + 1+ 1 lattice-computation results used in Ref. [169] are identical to those
included in our current work, and the averages quoted in Ref. [169] are those determined
in [4].

8.2 Neutral B-meson mixing matrix elements

Neutral B-meson mixing is induced in the Standard Model through 1-loop box diagrams
to lowest order in the electroweak theory, similar to those for short-distance effects in
neutral kaon mixing. The effective Hamiltonian is given by

9AB=2SM _ G2 M3, (FOQ 1 FOQ%) + h .,
eff - 167‘(’2 d =1 s =<1 -C., ( )
with ) )

Q1 = [bru(1 = 75)a] [bru(1 = ¥5)a] (218)

where ¢ = d or s. The short-distance function ]-'g in Eq. (217) is much simpler compared
to the kaon mixing case due to the hierarchy in the CKM matrix elements. Here, only
one term is relevant,
0 2
Fy = NigSo(zt) (219)
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where
Mg = Vi Viv, (220)

and where Sp(z;) is an Inami-Lim function with z; = m?/M3,, which describes the basic
electroweak loop contributions without QCD [419]. The transition amplitude for Bg with
q = d or s can be written as

G2 M2
= 1FG7TQW [/\quo(a:t)nQB]

. (95532> m/@ﬁo)exp{/og(m i (Z;EZ; N g;,)}

< (BYQL(WIBY + hec. . (221)

(ByHa =2\ By)

where Q% (p) is the renormalized four-fermion operator (usually in the NDR scheme of
MS). The running coupling g, the S-function 8(g), and the anomalous dimension of the
four-quark operator (g) are defined in Eqgs. (143) and (144). The product of p-dependent
terms on the second line of Eq. (221) is, of course, p-independent (up to truncation errors
arising from the use of perturbation theory). The explicit expression for the short-distance
QCD correction factor n2p (calculated to NLO) can be found in Ref. [412].

For historical reasons the B-meson mixing matrix elements are often parameterized in
terms of bag parameters defined as

(B31Q4(01 BY)

Boy (1) = (222)

The renormalization group independent (RGI) B parameter B is defined as in the case of
the kaon, and expressed to 2-loop order as

b () o g e

with Bo, B1, Y0, and v, defined in Eq. (145). Note, as Eq. (221) is evaluated above the
bottom threshold (my, < p < my), the active number of flavours here is Ny = 5.

Nonzero transition amplitudes result in a mass difference between the CP eigenstates
of the neutral B-meson system. Writing the mass difference for a Bg meson as Amy, its
Standard Model prediction is

2 2
Am, = GFmeBq
1 672

\\igl*So(x1) 128 /3, B, (224)
Experimentally, the mass difference is determined from the oscillation frequency of the CP
eigenstates. The frequencies are measured precisely with an error of less than a percent.
Many different experiments have measured Amg, but the current average [169] is domi-
nated by the LHCb experiment. For Amg the experimental average is again dominated
by results from LHCbH [169] and the precision reached is about one per mille. With these
experimental results and lattice-QCD calculations of f%q B B,» Atq can be determined. In
lattice-QCD calculations the flavour SU(3)-breaking ratio

_ I5.Bs,

&= (225)

f&,BB,
can be obtained more precisely than the individual B,-mixing matrix elements because
statistical and systematic errors cancel in part. From &2, the ratio |V;q/V;s| can be deter-

mined and used to constrain the apex of the CKM triangle.
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Neutral B-meson mixing, being loop-induced in the Standard Model, is also a sensitive
probe of new physics. The most general AB = 2 effective Hamiltonian that describes
contributions to B-meson mixing in the Standard Model and beyond is given in terms of
five local four-fermion operators:

5
HeAfE%:SQM = Z ZQ‘Q?, (226)

q=d,s i=1
where Q5 is defined in Eq. (218) and where

Qf = [b(1 —5)q] [b(1 —s)q],  QF = [6*(1 —5)d”] [b°(1 —s)g"]
Qf = [b(1 —5)q] [6(L +75)q],  Qf = [6™(1 —5)d”] [0° (1 +5)q%], (227)

with the superscripts «, 8 denoting colour indices, which are shown only when they are
contracted across the two bilinears. There are three other basis operators in the AB = 2
effective Hamiltonian. When evaluated in QCD, however, they give identical matrix el-
ements to the ones already listed due to parity invariance in QCD. The short-distance
Wilson coefficients C; depend on the underlying theory and can be calculated perturba-
tively. In the Standard Model only matrix elements of Qf contribute to Amg, while all
operators do, for example, for general SUSY extensions of the Standard Model [471]. The
matrix elements or bag parameters for the non-SM operators are also useful to estimate
the width difference AT’y between the CP eigenstates of the neutral B meson in the Stan-
dard Model, where combinations of matrix elements of Qf, Q3. and Q contribute to AT,
at O(1/my) [549, 550].

In this section, we report on results from lattice-QCD calculations for the neutral B-

meson mixing parameters Bg,, Bp., f5,\/Bp,, f5.\/Bs, and the SU(3)-breaking ratios
Bp./Bp, and ¢ defined in Egs. (222), (223), and (225). The results are summarized in
Tabs. 43 and 44 and in Figs. 29 and 30. Additional details about the underlying simu-
lations and systematic error estimates are given in Appendix C.6.2. Some collaborations
do not provide the RGI quantities BBq, but quote instead B (u)M* NP In such cases,
we convert the results using Eq. (223) to the RGI quantities quoted in Tab. 43 with a
brief description for each case. More detailed descriptions for these cases are provided
in FLAG13 [2]. We do not provide the B-meson matrix elements of the other operators
Qs_5 in this report. They have been calculated in Ref. [60] for the Ny = 2 case and in
Refs. [77, 551] for Ny =2+ 1.

There are no new results for Ny = 2 reported after the previous FLAG review. In this
category, one work (ETM 13B) [60] passes the quality criteria. A description of this work
can be found in the FLAG 13 review [2] where it did not enter the average as it had not
appeared in a journal. Because this is the only result available for Ny = 2, we quote their
values as our estimates

fB,\/ By, = 216(10)MeV  fp.\/Bp. = 262(10)MeV  Ref. [60], (228)

Ny =2: Bg, = 1.30(6) By, = 1.32(5) Ref. [60], (229)
€ =1.225(31) Bg,/Bp, = 1.007(21) Ref. [60].  (230)

For the Ny = 2+ 1 case the RBC/UKQCD collaboration reported their new results
on the flavour SU(3) breaking ratio of neutral B-meson mixing parameters in 2018. Their
paper [74] has not been published yet, thus the results will not be included in our averages
presented here. Their computation uses ensembles generated by the 2+ 1 flavour domain-
wall fermion (DWF) formulation. The use of the DWF's also for the heavy quarks makes
the renormalization structure simple. Because of the chiral symmetry, the mixing is
the same as in the continuum theory. The operators for standard model mixing matrix
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Collaboration Ref. Ny Q00 X< fBa\/ BBy fBs\/ BB, BBy Bg,
HPQCD 19A [75]241+1A0 O kO  210.6(5.5) 256.1(5.7) 1.222(61)  1.232(53)
FNAL/MILC 16 [77] 241 Ak O K0V  227.7(9.5) 274.6(8.4) 1.38(12)(6)©1.443(88)(48)°
RBC/UKQCD 14A [71] 241 Aoo ooV  240(15)(33)290(09)(40)1.17(11)(24) 1.22(06)(19)
FNAL/MILC 11A [551] 241 Cx 0O *ov  250(23)" 291(18)" ~— -
HPQCD 09 [76] 241 AooYoo v  216(15)* 266(18)* 1.27(10)*  1.33(6)*
HPQCD 06A [552] 2+1 AME *o0v  — 281(21) - 1.17(17)
ETM 13B 60] 2 AkxoO oKV 216(6)(8) 262(6)(8) 1.30(5)(3) 1.32(5)(2)
ETM 12A, 12B [541,553] 2 Ck0 Okv  — - 1.32(8)°  1.36(8)°

PDG averages of decay constant fgo and fp, [168] are used to obtain these values.

Reported f2B at p = my is converted to RGI by multiplying the 2-loop factor 1.517.

While wrong-spin contributions are not included in the HMrSxPT fits, the effect is expected to be
small for these quantities (see description in FLAG 13 [2]).

This result uses an old determination of 1 = 0.321(5) fm from Ref. [122] that has since been superseded,
which however has only a small effect in the total error budget (see description in FLAG 13 [2]) .

® Reported B at u = myp = 4.35 GeV is converted to RGI by multiplying the 2-loop factor 1.521.

Table 43: Neutral B- and Bs-meson mixing matrix elements (in MeV) and bag parameters.

FzG2021 fg,\/ Bg, fs,\ Bg, FAG2021  Bg, Bs,

F T

T FLAG average for Ny=2+1+ ¥ | FLAG average for Ny=2+1+1 |

~ ~

I ]

= HPQCD 19A = | HPQCD 19A .

- FLAG average for Ny=2+1 HEH - FLAG average for Ny=2+1 ——

i - FNAL/MILC 16 HaH 7 —m—— FNAL/MILC 16 —H—

‘}T RBC/UKQCD 14A Z — . RBC/UKQCD 14A ——.
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Figure 29: Neutral B- and Bs-meson mixing matrix elements and bag parameters [values in
Tab. 43 and Eqgs. (228), (231), (234), (229), (232), (235)].

156 Updated Feb. 2024



)
S S s
X (SN
$ F§
s .8 g8
F SF A
a4 RS
% é" Q o X &
4 SRS
$ §5 58
é? SRS ,5@ >
§F §& ¢ S
Collaboration Ref. Ny QQ Y F&F & Bg,/Bg,
HPQCD 19A [75]  2+41+1 A 1.216(16) 1.008(25)
RBC/UKQCD 18A [74] 241 P 1.1939(67)(*93,)  0.9984(45)(*53)
FNAL/MILC 16 [77] 241 A 1.206(18) 1.033(31)(26)°
RBC/UKQCD 14A [71]  2+1 A 1.208(41)(52) 1.028(60)(49)
FNAL/MILC 12 [554]  2+1 A 1.268(63) 1.06(11)
RBC/UKQCD 10C [544] 241 A EE B 1.13(12) -
HPQCD 09 [76]  2+1 A v 1.258(33) 1.05(7)
ETM 13B [60] 2 A 1.225(16)(14)(22)  1.007(15)(14)
ETM 12A, 12B  [541, 553] 2 C 1.21(6) 1.03(2)

© PDG average of the ratio of decay constants fp,/fgo [168] is used to obtain the value.
V' Wrong-spin contributions are not included in the HMrSyPT fits. As the effect may not be negligible,
these results are excluded from the average (see description in FLAG 13 [2]).

Table 44: Results for SU(3)-breaking ratios of neutral By- and Bs-meson mixing matrix
elements and bag parameters.

elements are multiplicatively renormalized. Since they only report the SU(3) breaking
ratio, the renormalization of the operators is not needed. The lattice spacings employed
are not as fine as some of the recent results reported here. But, by applying successive
stout link smearings in the heavy DWF, the reach to heavy mass is improved, which
allows them to simulate up to half of the physical bottom mass. Two ensembles are of
physical ud quark mass at a = 0.11 and 0.09 fm, and there is yet another ensemble off the
physical point but with finer lattice spacing, a = 0.07 fm. This is the first computation
using physical light-quark mass for these quantities, which yields a drastic reduction of
the chiral extrapolation error.

The results that enter our averages for Ny = 2 + 1 are FNAL/MILC 16 [77], which
had been included in the averages at FLAG 19 [4], RBC/UKQCD 14A [71], included in
the averages at FLAG 16 [3], and HPQCD 09 [76] for which a description is available in
FLAG 13 [2]. Thus, the averages for Ny = 2 + 1 are unchanged:

Nf=2—|-1:

fe,\/Bp, =225(9)MeV  fg.\/Bp, = 274(8)MeV  Refs. [71, 76, 77),  (231)

Bg, = 1.30(10) Bp, =1.35(6) Refs. [71, 76, 77],  (232)
€ =1.206(17) Bg./Bg, = 1.032(38) Refs. [71, 77].  (233)

Here all the above equations have not been changed from the FLAG 19. The averages
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Figure 30: The SU(3)-breaking quantities { and B, /Bp, [values in Tab. 44 and Egs. (230),
(233), (236)].

were obtained using the nested averaging scheme described in Sec. 2.3.2, due to a nested
correlation structure among the results. Details are discussed in the FLAG 19 report [4].

We have the first Ny = 2+1+1 calculation for these quantities by the HPQCD collab-
oration HPQCD 19A [75], using the MILC collaboration’s HISQ ensembles. The lattice
spacings used are 0.15, 0.12 and 0.09 fm, among which the mass of the Nambu-Goldstone
pion (lightest in the staggered taste multiplets) is as small as 130 MeV for two coarser
lattices. However, the smallest root-mean-squared pion mass through all taste multiplets
is 241 MeV, which is a similar size as the FNAL/MILC 16 result [77] with Ny = 2+1 and
makes the rating on the chiral extrapolation a green circle. The heavy quark formulation
used is non-relativistic QCD (NRQCD). The NRQCD action employed is improved from
that used in older calculations, especially by including one-loop radiative corrections to
most of the coefficients of the O(v}) terms [555]. The b-quark mass is pre-tuned with
the spin-averaged kinetic mass of the T and 7, states. Therefore, there is no need for
extrapolation or interpolation on the b-quark mass. The HISQ-NRQCD four-quark op-
erators are matched through O(1/M) and renormalized to one-loop, which includes the
effects of O(a), O(Aqen/M), Olas/aM), and O(as Agep/M). The remaining error is
dominated by O(asAqep/M) 2.9% and O(a?) 2.1% for individual bag parameters. The
bag parameters are the primary quantities calculated in this work. The mixing matrix
elements are obtained by combining the so-obtained bag parameters with the B-meson
decay constants calculated by Fermilab-MILC collaboration (FNAL/MILC 17 [18]).

Because this is the only result available for Ny = 2 + 1 + 1, we quote their values as
the FLAG estimates
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Ny=241+1:

fB.\/ By, = 210.6(5.5) MeV  fp.\/Bp, = 256.1(5.7) MeV  Ref. [75], (234)

Bp, = 1.222(61) Bp, = 1.232(53) Ref. [75],  (235)
) Ref. [75].  (236)

& =1.216(16) Bp./Bp, = 1.008(25
We note that the above results within same Ny (e.g., those in Eqgs. (234-236)) are all
correlated with each other, due to the use of the same gauge field ensembles for different
quantities. The results are also correlated with the averages obtained in Sec. 8.1 and
shown in Eqs. (208)-(210) for Ny = 2, Eqgs. (211)—(213) for Ny = 2+ 1 and Eqgs. (214)-
(216) for Ny = 2+1+1. This is because the calculations of B-meson decay constants and
mixing quantities are performed on the same (or on similar) sets of ensembles, and results
obtained by a given collaboration use the same actions and setups. These correlations
must be considered when using our averages as inputs to unitarity triangle (UT) fits. For

this reason, if one were for example to estimate fBS\/E from the separate averages of
fB. (BEq. (212)) and B, (Eq. (232)) for Ny = 2 + 1, one would obtain a value about one
standard deviation below the one quoted above in Eq. (231). While these two estimates
lead to compatible results, giving us confidence that all uncertainties have been properly
addressed, we do not recommend combining averages this way, as many correlations would
have to be taken into account to properly assess the errors. We recommend instead
using the numbers quoted above. In the future, as more independent calculations enter
the averages, correlations between the lattice-QCD inputs to UT fits will become less
significant.

8.3 Semileptonic form factors for B decays to light flavours

The Standard Model differential rate for the decay By — P{v involving a quark-level
b — wu transition is given, at leading order in the weak interaction, by a formula analogous
to the one for D decays in Eq. (182), but with D — B(,) and the relevant CKM matrix
element |Veg| — [Visl:

dU(Bis) = Plv) Gy |Vil* (¢ — m)2VEE —m3

2 3 1,2
dq 24 ¢mip,
m% 2 2 2 2\(2
X 1+72q2 mB(s)(EP_mP)|f+(q )l
3m§ 2 212 2\12

Again, for ¢ = e, i the contribution from the scalar form factor f; can be neglected, and
one has a similar expression to Eq. (184), which, in principle, allows for a direct extraction
of |Vus| by matching theoretical predictions to experimental data. However, while for D
(or K) decays the entire physical range 0 < ¢ < ¢2,. can be covered with moderate
momenta accessible to lattice simulations, in B — mfv decays one has ¢2,,, ~ 26 GeV?
and only part of the full kinematic range is reachable. As a consequence, obtaining |V,;|
from B — mlv is more complicated than obtaining |V.4()| from semileptonic D-meson
decays.

In practice, lattice computations are restricted to large values of the momentum trans-
fer g% (see Sec. 7.2) where statistical and momentum-dependent discretization errors can
be controlled,?” which in existing calculations roughly cover the upper third of the kine-

37The variance of hadron correlation functions at nonzero three-momentum is dominated at large Euclidean
times by zero-momentum multiparticle states [556]; therefore the noise-to-signal grows more rapidly than for
the vanishing three-momentum case.
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matically allowed ¢? range. Since, on the other hand, the decay rate is suppressed by
phase space at large g%, most of the semileptonic B — 7 events are observed in experi-
ment at lower values of ¢2, leading to more accurate experimental results for the binned
differential rate in that region.3® It is, therefore, a challenge to find a window of inter-
mediate values of ¢ at which both the experimental and lattice results can be reliably
evaluated.

State-of-the-art determinations of CKM matrix elements, say, e.g., |Vy|, are obtained
from joint fits to lattice and experimental results, keeping the relative normalization |V,|?
as a free parameter. This requires, in particular, that both experimental and lattice
data for the ¢?-dependence be parameterized by fitting data to specific ansétze, with the
ultimate aim of minimizing the systematic uncertainties involved. This plays a key role
in assessing the systematic uncertainties of CKM determinations, and will be discussed
extensively in this section. A detailed discussion of the parameterization of form factors
as a function of ¢ can be found in Appendix B.1.

8.3.1 Form factors for B — wlv

The semileptonic decay process B — mwfv enables determination of the CKM matrix el-
ement |Vyp| within the Standard Model via Eq. (237). Early results for B — mfv form
factors came from the HPQCD [557] and FNAL/MILC [558] collaborations. Our 2016
review featured a significantly extended calculation of B — wfv from FNAL/MILC [559]
and a new computation from RBC/UKQCD [560]. In 2022, the JLQCD collaboration pub-
lished another new calculation using Mobius Domain Wall fermions [561]. FNAL/MILC
and RBC/UKQCD continue working on further new calculations of the B — 7 form fac-
tors and have reported on their progress at the annual Lattice conferences and the 2020
Asia-Pacific Symposium for Lattice Field Theory. The results are preliminary or blinded,
so not yet ready for inclusion in this review. FNAL/MILC is using Ny = 2+ 1+ 1 HISQ
ensembles with a ~ 0.15, 0.12, 0.088 fm, 0.057 fm, with Goldstone pion mass down to its
physical value [562, 563]. The RBC/UKQCD Collaborations have added a new Mdébius-
domain-wall-fermion ensemble with a =~ 0.07 fm and m, = 230 MeV to their analysis
[564]. In addition, HPQCD using MILC ensembles had published the first Ny =2+1+1
results for the B — mlv scalar form factor, working at zero recoil (¢? = ¢2,,,) and pion
masses down to the physical value [565]; this adds to previous reports on ongoing work to
upgrade their 2006 computation [566, 567]. Since this latter result has no immediate im-
pact on current |V, determinations, which come from the vector-form-factor-dominated
decay channels into light leptons, we will from now on concentrate on the Ny = 2 + 1
determinations of the ¢?>-dependence of B — 7 form factors.

Both the HPQCD and the FNAL/MILC computations of B — wfv amplitudes use
ensembles of gauge configurations with Ny = 24-1 flavours of rooted staggered quarks pro-
duced by the MILC collaboration; however, the latest FNAL/MILC work makes a much
more extensive use of the currently available ensembles, both in terms of lattice spacings
and light-quark masses. HPQCD have results at two values of the lattice spacing (a =
0.12, 0.09 fm), while FNAL/MILC employs four values (a ~ 0.12, 0.09, 0.06, 0.045 fm).
Lattice-discretization effects are estimated within heavy-meson rooted staggered chiral
perturbation theory (HMrSxPT) in the FNAL/MILC computation, while HPQCD quotes
the results at @ =~ 0.12 fm as central values and uses the a = 0.09 fm results to quote
an uncertainty. The relative scale is fixed in both cases through the quark-antiquark
potential-derived ratio r1/a. HPQCD set the absolute scale through the T 25-15 split-
ting, while FNAL /MILC uses a combination of f; and the same T splitting, as described
in Ref. [58]. The spatial extent of the lattices employed by HPQCD is L ~ 2.4 fm, save

38Upcoming data from Belle IT are expected to significantly improve the precision of experimental results,
in particular, for larger values of ¢2.
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for the lightest mass point (at a =~ 0.09 fm) for which L ~ 2.9 fm. FNAL/MILC, on the
other hand, uses extents up to L ~ 5.8 fm, in order to allow for light-pion masses while
keeping finite-volume effects under control. Indeed, while in the 2006 HPQCD work the
lightest RMS pion mass is 400 MeV, the latest FNAL/MILC work includes pions as light
as 165 MeV—in both cases the bound m,L = 3.8 is kept. Other than the qualitatively
different range of MILC ensembles used in the two computations, the main difference
between HPQCD and FNAL/MILC lies in the treatment of heavy quarks. HPQCD uses
the NRQCD formalism, with a 1-loop matching of the relevant currents to the ones in
the relativistic theory. FNAL/MILC employs the clover action with the Fermilab inter-
pretation, with a mostly nonperturbative renormalization of the relevant currents, within
which the overall renormalization factor of the heavy-light current is written as a prod-
uct of the square roots of the renormalization factors of the light-light and heavy-heavy
temporal vector currents (which are determined nonperturbatively) and a residual factor
that is computed using 1-loop perturbation theory. (See Tab. 45; full details about the
computations are provided in tables in Appendix C.6.3.)

The RBC/UKQCD computation is based on Ny = 2 4+ 1 DWF ensembles at two
values of the lattice spacing (a = 0.12, 0.09 fm), and pion masses in a narrow interval
ranging from slightly above 400 MeV to slightly below 300 MeV, keeping m,L 2 4.
The scale is set using the (2~ baryon mass. Discretization effects coming from the light
sector are estimated in the 1% ballpark using HMxPT supplemented with effective higher-
order interactions to describe cutoff effects. The b quark is treated using the Columbia
RHQ action, with a mostly nonperturbative renormalization of the relevant currents.
Discretization effects coming from the heavy sector are estimated with power-counting
arguments to be below 2%.

The JLQCD collaboration is using Mobius Domain Wall fermions, including for the
heavy quark, with a ~ 0.08, 0.055, and 0.044 fm and pion masses down to 230 MeV.
The relative scales are set using the gradient-flow time t(l)/ 2 /a, with the absolute scale
t(l)/ ? taken from Ref. [118]. All ensembles have m,L > 4.0. The bare heavy-quark masses
satisfy amg < 0.7 and reach from the charm mass up to 2.44 times the charm mass. The
form factors are extrapolated linearly in 1/mg to the bottom mass. For the lower range
of the quark masses, the vector current is renormalized using a factor Zy,  obtained from
position-space current-current correlators. For heavier quark masses, y/Zv,,, Zv,, is used,
where Zy,,, is the renormalization factor of the flavor-conserving temporal vector current,
determined using charge conservation.

Given the large kinematical range available in the B — 7 transition, chiral extrapola-
tions are an important source of systematic uncertainty: apart from the eventual need to
reach physical pion masses in the extrapolation, the applicability of yPT is not guaran-
teed for large values of the pion energy F.. Indeed, in all computations F, reaches values
in the 1 GeV ballpark, and chiral extrapolation systematics is the dominant source of
errors. FNAL/MILC uses SU(2) NLO HMrSxPT for the continuum-chiral extrapolation,
supplemented by NNLO analytic terms and hard-pion xPT terms [509];3? systematic un-
certainties are estimated through an extensive study of the effects of varying the specific
fit ansatz and/or data range. RBC/UKQCD and JLQCD use SU(2) hard-pion HMyPT
to perform their combined continuum-chiral extrapolations, and obtain estimates for sys-
tematic uncertainties by varying the ansitze and ranges used in fits. HPQCD performs
chiral extrapolations using HMrSyPT formulae, and estimates systematic uncertainties
by comparing the result with the ones from fits to a linear behaviour in the light-quark
mass, continuum HMyPT, and partially quenched HMrSyPT formulae (including also
data with different sea and valence light-quark masses).

391t is important to stress the finding in Ref. [508] that the factorization of chiral logs in hard-pion xPT
breaks down, implying that it does not fulfill the expected requisites for a proper effective field theory. Its use
to model the mass dependence of form factors can thus be questioned.
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JLQCD 22 [561] 2+1 A BCL
FNAL/MILC 15 [559] 2+1 A BCL
RBC/UKQCD 15[560] 2+1 A BCL
HPQCD 06 [657] 241 A n/a

Table 45: Results for the B — mfr semileptonic form factor.

FNAL/MILC, RBC/UKQCD, and JLQCD describe the ¢g*>-dependence of f, and fy by
applying a BCL parameterization to the form factors extrapolated to the continuum limit,
within the range of values of ¢® covered by data. (A discussion of the various parameter-
izations can be found in Appendix B.1.) RBC/UKQCD and JLQCD generate synthetic
data for the form factors at some values of ¢ (evenly spaced in z) from the continuous
function of ¢? obtained from the joint chiral-continuum extrapolation, which are then used
as input for the fits. After having checked that the kinematical constraint f(0) = fo(0)
is satisfied within errors by the extrapolation to ¢?> = 0 of the results of separate fits, this
constraint is imposed to improve fit quality. In the case of FNAL/MILC, rather than
producing synthetic data a functional method is used to extract the z-parameterization
directly from the fit functions employed in the continuum-chiral extrapolation. In the case
of HPQCD, the parameterization of the ¢?-dependence of form factors is somewhat inter-
twined with chiral extrapolations: a set of fiducial values {Eﬁn)} is fixed for each value of
the light-quark mass, and f o are interpolated to each of the E,(Tn); chiral extrapolations
are then performed at fixed E, (i.e., m, and ¢? are varied subject to E,=constant). The
interpolation is performed using a Ball-Zwicky (BZ) ansatz [568]. The g>-dependence of
the resulting form factors in the chiral limit is then described by means of a BZ ansatz,
which is cross-checked against Becirevic-Kaidalov (BK) [502], Richard Hill (RH) [569], and
Boyd-Grinstein-Lebed (BGL) [570] parameterizations (see Appendix B.1), finding agree-
ment within the quoted uncertainties. Unfortunately, the correlation matrix for the values
of the form factors at different ¢ is not provided, which severely limits the possibilities
of combining them with other computations into a global z-parameterization.

The different ways in which the current results are presented do not allow a straight-
forward averaging procedure. RBC/UKQCD only provides synthetic values of fi and
fo at a few values of ¢ as an illustration of their results, and FNAL/MILC does not
quote synthetic values at all. In both cases, full results for BCL z-parameterizations de-
fined by Eq. (533) are quoted. In the case of HPQCD 06, unfortunately, a fit to a BCL
z-parameterization is not possible, as discussed above.

In order to combine these form factor calculations, we start from sets of synthetic data
for several ¢ values. HPQCD, RBC/UKQCD, and JLQCD directly provide this infor-
mation; FNAL/MILC present only fits to a BCL z-parameterization from which we can
easily generate an equivalent set of form factor values. It is important to note that in both
the RBC/UKQCD and JLQCD synthetic data and the FNAL/MILC z-parameterization
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B—>7T(Nf:2-|—1)

Central Values Correlation Matrix
ag 0.423 (21) 1 -0.00466 -0.0749  0.402  0.0920
af —0.507 (93) | -0.00466 1 0.498 -0.0556 0.659
ag —0.75 (34) -0.0749 0.498 1 -0.152  0.677
al 0.561 (24) 0.402 -0.0556  -0.152 1 -0.548
af —1.42 (11) 0.0920 0.659 0.677  -0.548 1

Table 46: Coefficients and correlation matrix for the N* = N? = 3 z-expansion fit of the
B — 7 form factors f, and fy. The coefficient af is fixed by the fi(¢> = 0) = fo(¢®> = 0)
constraint. The chi-square per degree of freedom is x2/dof = 43.6/12 and the errors on the
z-parameters have been rescaled by \/x2/dof = 1.9. The lattice calculations that enter this
fit are taken from FNAL/MILC 15 [559], RBC/UKQCD 15 [560] and JLQCD 22 [561]. The

parameterizations are defined in Egs. (533) and (534).

fits the kinematic constraint at ¢> = 0 is automatically included (in the FNAL/MILC case
the constraint is manifest in an exact degeneracy of the (a,7,a’) covariance matrix). Due
to these considerations, in our opinion, the most accurate procedure is to perform a simul-
taneous fit to all synthetic data for the vector and scalar form factors. Unfortunately, the
absence of information on the correlation in the HPQCD result between the vector and
scalar form factors even at a single ¢? point makes it impossible to include consistently
this calculation in the overall fit. In fact, the HPQCD and FNAL/MILC statistical un-
certainties are highly correlated (because they are based on overlapping subsets of MILC
Ny = 2+1 ensembles) and, without knowledge of the f — fy correlation we are unable to
construct the HPQCD-FNAL/MILC off-diagonal entries of the overall covariance matrix.

In conclusion, we will present as our best result a combined vector and scalar form
factor fit to the FNAL/MILC, RBC/UKQCD, and JLQCD results that we treat as com-
pletely uncorrelated.

The resulting data set is then fitted to the BCL parameterization in Egs. (533) and
(534). We assess the systematic uncertainty due to truncating the series expansion by
considering fits to different orders in z. In Fig. 31 (left), we show (1 — ¢*/m%.)f+(¢%)
and fy(g?) versus z; Fig. 31 (right) shows the full form factors versus ¢?. The fit has
x2/dof = 43.6/12 with N* = N° = 3. The poor quality of the fit is caused by slight
tensions between the results from the different collaborations; in particular in the slopes
of fo, which are very constrained due to strong correlations between data points. We
have therefore rescaled the uncertainties of the z parameters by /x?/dof = 1.9. We
point out that tensions in the form factors, especially in f, might be an artifact associ-
ated with the basis of form factors employed to take the continuum limit, as explained
in Appendix B.1. The outcome of the five-parameter N* = N° = 3 BCL fit to the
FNAL/MILC, RBC/UKQCD, and JLQCD calculations is shown in Tab. 46.

The fit shown in Tab. 46 can therefore be used as the averaged FLAG result for the
lattice-computed form factor f (q?). The coefficient a3 can be obtained from the values
for af—a using Eq. (532). The coefficient a3 can be obtained from all other coefficients
imposing the fi(¢> = 0) = fo(¢> = 0) constraint. We emphasize that future lattice-
QCD calculations of semileptonic form factors should publish their full statistical and
systematic correlation matrices to enable others to use the data. It is also preferable to
present a set of synthetic form factors data equivalent to the z-fit results, since this allows
for an independent analysis that avoids further assumptions about the compatibility of
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Figure 31: The form factors f (¢?) and fo(q?) for B — 7fv plotted versus z (left panel) and
q? (right panel). In the left plot, we removed the Blaschke factors. See text for a discussion
of the data set. The grey and salmon bands display our preferred N* = N? = 3 BCL fit (five
parameters).

the procedures to arrive at a given z-parameterization.?? It is also preferable to present
covariance/correlation matrices with enough significant digits to calculate correctly all
their eigenvalues.

8.3.2 Form factors for B, — K/v

Similar to B — wflr, measurements of By, — K/{v decay rates enable determinations of
the CKM matrix element |V,;| within the Standard Model via Eq. (237). From the lattice
point of view, the two channels are very similar. As a matter of fact, B, — K/v is actually
somewhat simpler, in that the kaon mass region is easily accessed by all simulations making
the systematic uncertainties related to chiral extrapolation smaller.

At the time of our FLAG 19 review [4], results for B, — K/{v form factors were
provided by HPQCD [571] and RBC/UKQCD [560] for both form factors fi and fo, in
both cases using Ny = 2 + 1 dynamical configurations. HPQCD has recently emphasized
the value of using ratios of form factors for the processes B; — K/v and B; — D v for the
determination of |Vip/Vep| [572]). In the FLAG Review 19 [4], FNAL/MILC preliminary
results had been reported for both Ny = 241 [573] and Ny = 2+1+1 [562], but were not
included in the average due to their non-final status. The Ny = 2 + 1 results have since
been published [574]; we, therefore, include them in the average here. Moreover, in this
web update, we replace the RBC/UKQCD 15 [560] results for the By — K form factors
by the superseding results of RBC/UKQCD 23 [575].

The HPQCD computation uses ensembles of gauge configurations with Ny = 2 41
flavours of asqtad rooted staggered quarks produced by the MILC collaboration at two
values of the lattice spacing (a = 0.12, 0.09 fm), for three and two different sea-pion
masses, respectively, down to a value of 260 MeV. The b quark is treated within the
NRQCD formalism, with a 1-loop matching of the relevant currents to the ones in the
relativistic theory, omitting terms of O(asAqep/mey). The HISQ action is used for the
valence s quark. The continuum-chiral extrapolation is combined with the description of
the g%-dependence of the form factors into a modified z-expansion (cf. Appendix B.1) that
formally coincides in the continuum with the BCL ansatz. The dependence of form factors
on the pion energy and quark masses is fitted to a 1-loop ansatz inspired by hard-pion

49Note that generating synthetic data is a trivial task, but less so is choosing the number of required points
and the ¢? values that lead to an optimal description of the form factors.
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RBC/UKQCD 23* [575] 2+1 A BGLS
FNAL/MILC 19 [574] 2+1 A BCL
RBC/UKQCD 15  [560] 2+1 A BCL
HPQCD 14 [571] 2+1 A BCL'

* Supersedes RBC/UKQCD 15.
§ generalized as discussed in Ref. [576].
t Results from modified z-expansion.

Table 47: Summary of lattice calculations of the By — K /v semileptonic form factors.

XPT [509], that factorizes out the chiral logarithms describing soft physics.

The FNAL/MILC computation coincides with HPQCD’s in using ensembles of gauge
configurations with Ny = 2+1 flavours of asqtad rooted staggered quarks produced by the
MILC collaboration, but only one ensemble is shared, and a different valence regularization
is employed; we will thus treat the two results as fully independent from the statistics point
of view. FNAL/MILC uses three values of the lattice spacing (a ~ 0.12, 0.09, 0.06 fm);
only one value of the sea pion mass and the volume is available at the extreme values of the
lattice spacing, while four different masses and volumes are considered at a = 0.09 fm.
Heavy quarks are treated within the Fermilab approach. HMrSxPT expansion is used
at next-to-leading order in SU(2) and leading order in 1/Mp, including next-to-next-to-
leading-order (NNLO) analytic and generic discretization terms, to perform continuum-
chiral extrapolations. Hard kaons are assumed to decouple, i.e., their effect is reabsorbed
in the SU(2) LECs. Continuum- and chiral-extrapolated values of the form factors are
fitted to a z-parametrization imposing the kinematical constraint f1(0) = fo(0). See
Tab. 47 and the tables in Appendix C.6.3 for full details.

The RBC/UKQCD 15 computation had been published together with the B — wfv
computation discussed in Sec. 8.3.1, all technical details being practically identical. The
RBC/UKQCD 23 computation (which considers By — K{v only) differs from RBC/UKQCD
15 by the addition of one new ensemble with a third, finer lattice spacing that also has
a lower pion mass than the other ensembles, updated scale setting and updated tuning
of my and of the RHQ parameters, and a change of the form-factor basis in which the
chiral-continuum extrapolation is performed (previously: fj and fi, now: f; and fo).
Reference [575] furthermore uses a new method to perform extrapolations of the form
factors to the full ¢ range with unitarity bounds, taking into account that the dispersive
integral ranges only of an arc of the unit circle instead of the full circle [576, 577]. How-
ever, we do not use these extrapolations in performing our average and instead use the
synthetic data points provided in Ref. [575].

In order to combine the results for the ¢? dependence of the form factors from the three
collaborations, we will follow a similar approach to the one adopted above for B — wfv,

165 Updated Feb. 2024



By — K (Nf =2+1)

Central Values Correlation Matrix

ag 0.370(21) 1. 0.2781 —0.3169 —0.3576 0.6130 0.3421 0.2826
af —0.68(10) 0.2781 1. 0.3672 0.1117 0.4733 0.8487 0.8141
ag 0.55(48) —0.3169 0.3672 1. 0.8195 0.3323 0.6614 0.6838
as 2.11(83) —0.3576 0.1117 0.8195 1. 0.2350 0.4482 0.4877
ad 0.234(10) 0.6130 0.4733  0.3323 0.2350 1. 0.6544 0.5189
a? 0.135(86) 0.3421  0.8487 0.6614 0.4482  0.6544 1. 0.9440
a9 0.20(35) 0.2826  0.8141  0.6838 0.4877 0.5189 0.9440 1.

Table 48: Coefficients and correlation matrix for the Nt = N = 4 z-expansion of the
Bs — K form factors fy and fy. The coefficient aj is fixed by the f1(¢*> = 0) = fo(¢® = 0)
constrain. The chi-square per degree of freedom is x?/dof = 3.82 and the errors on the
z-parameters have been rescaled by /x?/dof = 1.95.

and produce synthetic data from the preferred fits quoted in the papers (or use the
synthetic data provided in the paper), to obtain a dataset to which a joint fit can be
performed. Note that the kinematic constraint at ¢ = 0 is included in all three cases;
we will impose it in our fit as well, since the synthetic data will implicitly depend on
that fitting choice. However, it is worth mentioning that the systematic uncertainty of
the resulting extrapolated value f1(0) = fp(0) can be fairly large, the main reason being
the required long extrapolation from the high-¢® region covered by lattice data. While
we stress that the average far away from the high-¢? region has to be used carefully, it
is possible that increasing the number of z coefficients beyond what is sufficient for a
good description of the lattice data and using unitarity constraints to control the size of
additional terms, might yield fits with a more stable extrapolation at very low ¢?. We
plan to include said unitarity analysis into the next edition of the FLAG review. It is,
however, important to emphasize that joint fits with experimental data, where the latter
accurately map the ¢2 region, are expected to be safe.

Our fits employ a BCL ansatz with t; = (Mp + M;)? and tg =t — \/t (ty —t—),
with t_ = (Mp, —Mp)?. Our pole factors will contain a single pole in both the vector and
scalar channels, for which we take the mass values Mp« = 5.32465 GeV and Mp-(+) =
5.68 GeV.*! The constraint f4(0) = fo(0) is imposed by expressing the coefficient b%,
in terms of all others. The outcome of the seven-parameter Nt = N° = 4 BCL fit,
which we quote as our preferred result, is shown in Tab. 48. The fit has a chi-square
per degree of freedom x?/dof = 3.82. Following the PDG recommendation, we rescale
the whole covariance matrix by x?/dof: the errors on the z-parameters are increased
by /x?/dof = 1.95 and the correlation matrix is unaffected. The parameters shown in
Tab. 48 provide the averaged FLAG results for the lattice-computed form factors f. (¢?)
and fo(q?). The coefficient aj can be obtained from the values for aj —aj using Eq. (532).
The fit is illustrated in Fig. 32.*> As can be seen in Fig. 32, the large value of x2/dof is
caused by a significant tension between the lattice results from the different collaborations

“'These are the values used in the FNAL/MILC determination, while HPQCD and RBC/UKQCD use
Mp=(04) = 5.6794(10) GeV and Mp=(o4+) = 5.63 GeV, respectively. They also employ different values of ¢
and to than employed here, which again coincide with FNAL/MILC’s choice.

“2Note that in FLAG 19 [4] we had adopted the threshold ¢t = (Mg, + Mx)? rather than t4 = (Mg + M)
This change impacted the z-range which the physical ¢2 interval maps onto. We also point out that, in the
FLAG 19 version of Fig. 32, the three synthetic fo data points from HPQCD were plotted incorrectly, but this
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Figure 32: The form factors f (¢%) and fo(q?) for By — K/{v plotted versus z (left panel) and
q? (right panel). In the left plot, we remove the Blaschke factors. See text for a discussion
of the data sets. The grey and salmon bands display our preferred N* = N9 = 4 BCL fit
(seven parameters).

for fp. Compared to the 2021 FLAG fit that used RBC/UKQCD 15, the tension has
increased as the RBC/UKQCD results for fy have shifted upward. The tension indicates
that the uncertainties have been underestimated in at least some of the calculations. One
possible, at least partial, explanation was offered by the authors of RBC/UKQCD 23 [575],
who found that the results for fy shift upward when performing the chiral/continuum
extrapolation directly for fo and f, rather than f; and f, as was done in RBC/UKQCD
15 and FNAL/MILC 19. Using fo and f is argued to be the better choice because these
form factors have definite J© quantum numbers for the bound states producing poles in
¢?, and the chiral-continuum extrapolation fit functions include these poles. More details
on the problems associated with taking the chiral/continuum extrapolation in the fj and
f1 basis can be found in Appendix B.1.

We will conclude by pointing out progress in the application of the npHQET method to
the extraction of semileptonic form factors, reported for B, — K transitions in Ref. [578],
which extends the work of Ref. [579]. This is a methodological study based on CLS
Ny = 2 ensembles at two different values of the lattice spacing and pion masses, and full
1/my corrections are incorporated within the npHQET framework. Emphasis is on the
role of excited states in the extraction of the bare form factors, which are shown to pose
an impediment to reaching precisions better than a few percent.

8.3.3 Form factors for rare and radiative B-semileptonic decays to
light flavours

Lattice-QCD input is also available for some exclusive semileptonic decay channels involv-
ing neutral-current b — ¢ transitions at the quark level, where ¢ = d, s. Being forbidden
at tree level in the SM, these processes allow for stringent tests of potential new physics;
simple examples are B — K*v, B — K®*){t¢= or B — nfT{~ where the B meson (and
therefore the light meson in the final state) can be either neutral or charged.

The corresponding SM effective weak Hamiltonian is considerably more complicated
than the one for the tree-level processes discussed above: after integrating out the top
quark and the W boson, as many as ten dimension-six operators formed by the product
of two hadronic currents or one hadronic and one leptonic current appear.*? Three of

did not affect the fit.
13Gee, e.g., Ref. [580] and references therein.
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Table 49: Summary of lattice calculations of the B — K semileptonic form factors.

the latter, coming from penguin and box diagrams, dominate at short distances and
have matrix elements that, up to small QED corrections, are given entirely in terms of
B — (w, K, K*) form factors. The matrix elements of the remaining seven operators can
be expressed, up to power corrections whose size is still unclear, in terms of form factors,
decay constants and light-cone distribution amplitudes (for the 7, K, K* and B mesons)
by employing OPE arguments (at large di-lepton invariant mass) and results from Soft
Collinear Effective Theory (at small di-lepton invariant mass). In conclusion, the most
important contributions to all of these decays are expected to come from matrix elements
of current operators (vector, tensor, and axial-vector) between one-hadron states, which
in turn can be parameterized in terms of a number of form factors (see Ref. [581] for a
complete description).

In channels with pseudoscalar mesons in the final state, the level of sophistication of
lattice calculations is similar to the B — 7 case and there are results for the vector, scalar,
and tensor form factors for B — K¢T¢~ decays by HPQCD [583], and more recent results
for both B — 7¢t¢~ [584] and B — K¢*¢~ [582] from FNAL/MILC. Full details about
these two calculations are provided in Tab. 49 and in Appendix C.6.4. Both computations
employ MILC Ny = 2+ 1 asqtad ensembles. HPQCD [585] and FNAL/MILC [586] have
also companion papers in which they calculate the Standard Model predictions for the
differential branching fractions and other observables and compare to experiment. The
HPQCD computation employs NRQCD b quarks and HISQ valence light quarks, and
parameterizes the form factors over the full kinematic range using a model-independent
z-expansion as in Appendix B.1, including the covariance matrix of the fit coefficients.
In the case of the (separate) FNAL/MILC computations, both of them use Fermilab b
quarks and asqtad light quarks, and a BCL z-parameterization of the form factors.

Reference [584] includes results for the tensor form factor for B — ™ ¢~ not included
in previous publications on the vector and scalar form factors [559]. Nineteen ensembles
from four lattice spacings are used to control continuum and chiral extrapolations. The
results for N, = 4 z-expansion of the tensor form factor and its correlations with the
expansions for the vector and scalar form factors, which we consider the FLAG estimate,
are shown in Tab. 50. Partial decay widths for decay into light leptons or 777~ are
presented as a function of ¢?. The former is compared with results from LHCb [587],
while the latter is a prediction.

The averaging of the HPQCD and FNAL/MILC results for the B — K form factors
is similar to our treatment of the B — 7 and By — K form factors. In this case,
even though the statistical uncertainties are partially correlated because of some overlap
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B—)?T(NfZQ—I—l)

Central Values Correlation Matrix
al 0.393(17) 1.000 0.400 0.204 0.166
al —0.65(23) 0.400 1.000 0.862 0.806
al —0.6(1.5) 0.204 0.862 1.000 0.989
al 0.1(2.8) 0.166 0.806 0.989 1.000

Table 50: Coefficients and correlation matrix for the N* = NY = 3 z-expansion of the B — 7
form factor fp.

between the adopted sets of MILC ensembles, we choose to treat the two calculations as
independent. The reason is that, in B — K, statistical uncertainties are subdominant and
cannot be easily extracted from the results presented by HPQCD and FNAL/MILC. Both
collaborations provide only the outcome of a simultaneous z-fit to the vector, scalar and
tensor form factors, that we use to generate appropriate synthetic data. We then impose
the kinematic constraint fy(¢> = 0) = fo(¢?> = 0) and fit to (Nt = N° = NT = 3)
BCL parameterization. The functional forms of the form factors that we use are identical
to those adopted in Ref. [586].*% The results of the fit are presented in Tab. 51. The
fit is illustrated in Fig. 33. Note that the average for the fr form factor appears to
prefer the FNAL/MILC synthetic data. This happens because we perform a correlated
fit of the three form factors simultaneously (both FNAL/MILC and HPQCD present
covariance matrices that include correlations between all form factors). We checked that
the average for the fr form factor, obtained neglecting correlations with fy and f, is a
little lower and lies in between the two data sets. There is still a noticeable tension between
the FNAL/MILC and HPQCD data for the tensor form factor; indeed, a standalone fit
to these data results in x2, = 7.2/3 = 2.4, while a similar standalone joint fit to fy
and fo has x2, = 9.2/7 = 1.3. Finally, the global fit that is shown in the figure has
X2, =18.6/10 = 1.86.

Lattice computations of form factors in channels with a vector meson in the final
state face extra challenges with respect to the case of a pseudoscalar meson: the state
is unstable, and the extraction of the relevant matrix element from correlation functions
is significantly more complicated; xPT cannot be used as a guide to extrapolate results
at unphysically heavy pion masses to the chiral limit. While field-theory procedures to
take resonance effects into account are available [330-332, 589-596], they have not yet
been implemented in the existing preliminary computations, which therefore suffer from
uncontrolled systematic errors in calculations of weak decay form factors into unstable
vector meson final states, such as the K* or p mesons.*®

As a consequence of the complexity of the problem, the level of maturity of these
computations is significantly below the one present for pseudoscalar form factors. There-
fore, we only provide a short guide to the existing results. Horgan et al. have obtained
the seven form factors governing B — K*{T¢~ (as well as those for By — ¢ ¢T¢~ and
for the charged-current decay Bs — K*fv) in Ref. [597] using NRQCD b quarks and
asqtad staggered light quarks. In this work, they use a modified z-expansion to simul-
taneously extrapolate to the physical light-quark masses and fit the ¢>-dependence. As
discussed above, the unstable nature of the vector mesons was not taken into account.

“Note in particular that not much is known about the sub-threshold poles for the scalar form factor.
FNAL/MILC includes one pole at the B}, mass as taken from the calculation in Ref. [588].

45Tn cases such as B — D™ transitions, that will be discussed below, this is much less of a practical problem
due to the very narrow nature of the resonance.
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Figure 33: The B — K form factors fy(q?), fo(q®) and fr(q¢?) plotted versus z (left panels)
and ¢? (right panels). In the plots as a function of z, we remove the Blaschke factors. See
text for a discussion of the data sets. The grey, salmon and blue bands display our preferred

Nt = NY= NT =3 BCL fit (eight parameters).
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B— K (N;j=2+1)

Central Values Correlation Matrix
af')' 0.471 (14) 1 0.513 0.128 0.773 0.594 0.613 0.267 0.118
af —0.74 (16) 0.513 1 0.668 0.795 0.966 0.212 0.396 0.263

ay 0.32 (71) 0.128 0.668 1 0.632 0.768 -0.104 0.0440 0.187
a) 0.301 (10) 0.773 0.795 0.632 1 0.864 0.393 0.244 0.200
al 0.40 (15) 0.594 0.966 0.768 0.864 1 0.235 0333 0.253
al 0.455 (21) 0.613 0.212 -0.104 0.393 0.235 1 0.711  0.608
al —1.00 (31) 0.267 0.396 0.0440 0.244 0.333 0.711 1 0.903
al —0.9 (1.3) 0.118 0.263 0.187 0.200 0.253 0.608 0.903 1

Table 51: Coefficients and correlation matrix for the N* = N° = N7 = 3 z-expansion of the
B — K form factors f, fo and fr. The coefficient @) is fixed by the fi (¢*> = 0) = fo(¢> = 0)
constraint. The chi-square per degree of freedom is x?/dof = 1.86 and the errors on the
z-parameters have been rescaled by 1/x?/dof = 1.36.

Horgan et al. use their form-factor results to calculate the differential branching fractions
and angular distributions and discuss the implications for phenomenology in a compan-
ion paper [598]. An update of the form factor fits that enforces endpoint relations and
also provides the full correlation matrices can be found in Ref. [599]. Finally, prelimi-
nary results on B — K*/*¢~ and Bs — ¢¢T¢~ by RBC/UKQCD have been reported in
Refs. [600-602].

8.4 Semileptonic form factors for B — D){v and B — D’(S)EV

The semileptonic processes B,y — D) fv and B, — DE‘S fv have been studied exten-
sively by experimentalists and theorists over the years. They allow for the determination
of the CKM matrix element |Vg|, an extremely important parameter of the Standard
Model. The matrix element V., appears in many quantities that serve as inputs to CKM
unitarity triangle analyses and reducing its uncertainties is of paramount importance. For
example, when €, the measure of indirect CP violation in the neutral kaon system, is
written in terms of the parameters p and 7 that specify the apex of the unitarity triangle,
a factor of |V|* multiplies the dominant term. As a result, the errors coming from |V|
(and not those from B ) are now the dominant uncertainty in the Standard Model (SM)
prediction for this quantity.

The decay rate for B — D/{v can be parameterized in terms of vector and scalar
form factors in the same way as, e.g., B — wlv (see Sec. 8.3). The decay rate for
B — D*{v is different because the final-state hadron is spin-1. There are four form factors
used to describe the vector and axial-vector current matrix elements that are needed to
calculate this decay. We define the 4-velocity of the meson P as vp = pp/mp and the
polarization vector of the D* as e. When the light lepton £ = e, or p, it is traditional to
use w = vp - Vpo rather than ¢? as the variable upon which the form factors depend.
Then, the form factors hy and hga,, with ¢ =1, 2 or 3 are defined by

(D*|V,|B) = ,/mBmD*hV(w)am,age*”U%*vg , (238)
(D*|A,|B) = iv/mpmp- [hAl(w)(l +w)e™t — ha,(w)e" -vpvp, — ha,(w)e" - ’UBUD*M] )
(239)
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The differential decay rates can then be written as*®

2.3
dl'p- spog-5 Ggmyp

dw T (mB + mD)z(wQ _ 1)3/2‘77EW|2|Vcb|2|g(w)|2, (240)
dl' - -5 GEmS,,
: ;150 = ZW3D (mp —mp-)*(w? — 1) 2new *[Va|*x (w)| F(w)[?,  (241)

where w = vp - vp) (depending on whether the final-state meson is D or D*) and
new = 1.0066 is the 1-loop electroweak correction [603]. The function x(w) in Eq. (241)
depends on the recoil w and the meson masses, and reduces to unity at zero recoil [580].47
These formulas do not include terms that are proportional to the lepton mass squared,
which can be neglected for ¢ = e, p. Further details of the definitions of F and G (which
can be expressed in terms of the form factors hy and hy4,) may be found, e.g., in Ref. [580].
Until recently, most unquenched lattice calculations for B — D*/v and B — D{v decays
focused on the form factors at zero recoil FE7P" (1) and GB7P(1); these can then be
combined with experimental input to extract |Vp|. aThe main reasons for concentrating
on the zero recoil point are that (i) the decay rate then depends on a single form factor, and
(ii) for B — D*{v, there are no O(Agcp/mg) contributions due to Luke’s theorem [604].
Further, the zero recoil form factor can be computed via a double ratio in which most of
the current renormalization cancels and heavy-quark discretization errors are suppressed
by an additional power of Agcp/meg. Recent work on B — D™ ¢y transitions has started
to explore the dependence of the relevant form factors on the momentum transfer, using
a similar methodology to the one employed in B — wflv transitions; see Sec. 8.3 for a
detailed discussion.

Early computations of the form factors for B — D{v decays include Ny = 24-1 results
by FNAL/MILC [605, 606] for GZ~P(1) and the Ny = 2 study by Atoui et al. [607],
that in addition to providing GB~(1) explored the w > 1 region. This latter work also
provided the first results for By, — D¢fv amplitudes, again including information about the
momentum-transfer dependence. The first published unquenched results for FZ=P"(1),
obtained by FNAL/MILC, date from 2008 [608]. In 2014 and 2015, significant progress was
achieved in Ny = 241 computations: the FNAL/MILC value for F57P" (1) was updated
in Ref. [609], and full results for B — D{v at w > 1 were published by FNAL/MILC [610]
and HPQCD [611]. These works also provided full results for the scalar form factor,
allowing analysis of the decay with a final-state 7. In the FLAG 19 review [4], we included
new results for B — D fv form factors over the full kinematic range for Ny = 241 from
HPQCD [612, 613], and for B, — DE‘S)&/ form factors at zero recoil with Ny =2+1+1
also from HPQCD [614, 615]. Most recently, HPQCD published further new calculations
of the B, — D¥ form factor at zero recoil [616] and of the B; — D form factors in the
full kinematic range [617], now using MILC’s HISQ Ny = 2 + 1+ 1 ensembles and using
the HISQ action also for the b quark, reaching up to m; = 4m,. (unrenormalized mass)
in their finest ensemble. Both of these calculations have recently been used by LHCb to
determine |Vg| [618, 619], as discussed further in Sec. 8.9. HPQCD also extended their

46These are the only meson decay channels dealt with in this review where we apply the Sirlin correction fac-
tor ngpw, that incorporates leading-order, structure-independent corrections. This is in keeping with common
practice. While including ngw in the analysis of b — ¢ transitions is nearly universal in the literature, this is
not so in other flavour-changing decays. It is worth stressing that this is just part of the expected corrections
—cf. the discussion of QED corrections in the sections of this review dealing with light meson decay— and
therefore its inclusion is largely arbitrary, insofar as a precise control of the full corrections, including the
structure-dependent ones, is unavailable for a given channel. It is also necessary to remark, on the other hand,
that different practices contribute to a small ambiguity in the comparison of CKM matrix elements determined
from different decays, precisely of the order of the typically neglected electromagnetic corrections.

“TThe reason to keep the factor x(w) outside the combination of form factors that defines JF(w) is conven-
tional, and inspired by the heavy-quark limit. One particular consequence of this notation is that at zero recoil
F(1) =ha,(1).
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zero recoil analysis of By — D} to the full recoil range, using the ensembles as in their
Bs; — Dglv analysis, but with a small increase in statistics [620]. The last breakthrough
in the field came from the FNAL/MILC collaboration, that recently published a complete
calculation of the B — D* form factors at nonzero recoil [621]. The HPQCD and the
JLQCD collaborations are also working on this channel, as well as on improving their
existing B — D calculations, and have presented preliminary results at nonzero recoil in
several conferences [622, 623]. Improved calculations of the B — D and By, — D, form
factors are also underway by RBC/UKQCD [564].

In the discussion below, we mainly concentrate on the latest generation of results,
which supersedes previous Ny = 2+ 1 determinations and allows for an extraction of |Vep|
that incorporates information about the ¢g>-dependence of the decay rate (cf. Sec. 8.9).

8.4.1 B, — D(, decays

We will first discuss the Ny = 2 + 1 computations of B — D{v by FNAL/MILC and
HPQCD mentioned above, both based on MILC asqtad ensembles. Full details about all
the computations are provided in Tab. 54 and in the tables in Appendix C.6.5.

The FNAL/MILC study [610] employs ensembles at four values of the lattice spacing
ranging between approximately 0.045 fm and 0.12 fm, and several values of the light-quark
mass corresponding to pions with RMS masses ranging between 260 MeV and 670 MeV
(with just one ensemble with MEMS ~ 330 MeV at the finest lattice spacing). The b and
c quarks are treated using the Fermilab approach. The quantities directly studied are the
form factors hy defined by

(D(pp)licy,b|B(ps))
mpmpg

= hy(w)(vs +vp)y + ho(w)(vp —vp).,  (242)

which are related to the standard vector and scalar form factors by

Fola) = 5z [+ 1) = (1= ) ()] (243)
old®) =V | (w) + T—oh- ()] (244)

with r = mp/mp. (Recall that ¢*> = (pgp — pp)?> = m% + m% — 2wmpmp.) The
hadronic form factor relevant for experiment, G(w), is then obtained from the relation
G(w) = Varf(¢*)/(1 + 7). The form factors are obtained from double ratios of three-
point functions in which the flavour-conserving current renormalization factors cancel.
The remaining matching factor to the flavour-changing normalized current is estimated
with 1-loop lattice perturbation theory. In order to obtain hy(w), a joint continuum-
chiral fit is performed to an ansatz that contains the light-quark mass and lattice-spacing
dependence predicted by next-to-leading order HMrSxPT, and the leading dependence
on m, predicted by the heavy-quark expansion (1/m? for hy and 1/m, for h_). The
w-dependence, which allows for an interpolation in w, is given by analytic terms up to
(1 —w)?, as well as a contribution from the logarithm proportional to g%., . The total
resulting systematic error, determined as a function of w and quoted at the representative
point w = 1.16 as 1.2% for f. and 1.1% for fy, dominates the final error budget for the
form factors. After fi and fy have been determined as functions of w within the interval
of values of ¢? covered by the computation, synthetic data points are generated to be
subsequently fitted to a z-expansion of the BGL form, cf. Sec. 8.3, with pole factors set to
unity. This in turn enables one to determine |V| from a joint fit of this z-expansion and
experimental data. The value of the zero-recoil form factor resulting from the z-expansion
is

GP7P(1) = 1.054(4) spat (8)sys - (245)
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The HPQCD computations [611, 613] use ensembles at two values of the lattice spacing,
a = 0.09, 0.12 fm, and two and three values of light-quark masses, respectively. The b
quark is treated using NRQCD, while for the ¢ quark the HISQ action is used. The form
factors studied, extracted from suitable three-point functions, are

(Do) (pp,))IV°|B(s)) = y/2Mp,, )fHS ; (D(s)(PD))IVF|Bsy) = 1/2Mp,, P, )
(246)
where V), is the relevant vector current and the By, rest frame is chosen. The standard

vector and scalar form factors are retrieved as

f-(',-S) :é |:f”8) + (MB(S) - ED(S))fJ(_S):I s (247)

V2ZMs,,,
f(S) V2Msp,)

M2 2 {(MB(S) - ED(S))fHS) + (Mlzi’(s) - EQD(S))fJ(_S) . (248>
By D)

The currents in the effective theory are matched at 1-loop to their continuum counter-
parts. Results for the form factors are then fitted to a modified BCL z-expansion ansatz,
that takes into account simultaneously the lattice spacing, light-quark masses, and ¢2-
dependence. For the mass dependence, NLO chiral logarithms are included, in the form
obtained in hard-pion xPT (see footnote 33). As in the case of the FNAL/MILC compu-
tation, once fy and fo have been determined as functions of ¢2, |Vi| can be determined
from a joint fit of this z-expansion and experimental data. The papers quote for the
zero-recoil vector form factor the result

GB=P (1) =1.035(40)  GP:7Ps(1) = 1.068(40) . (249)

The HPQCD and FNAL/MILC results for B — D differ by less than half a standard de-
viation (assuming they are uncorrelated, which they are not as some of the ensembles are
common) primarily because of lower precision of the former result. The HPQCD central
value is smaller by 1.8 of the FNAL/MILC standard deviations than the FNAL/MILC
value. The dominant source of errors in the | V| determination by HPQCD are discretiza-
tion effects and the systematic uncertainty associated with the perturbative matching.

In order to combine the form factor determinations of HPQCD and FNAL/MILC
into a lattice average, we proceed in a similar way as with B — wfv and By — K/lv
above. FNAL/MILC quotes synthetic values for each form factor at three values of w (or,
alternatively, ¢?) with a full correlation matrix, which we take directly as input. In the
case of HPQCD, we use their preferred modified z-expansion parameterization to produce
synthetic values of the form factors at five different values of ¢* (three for f, and two
for fp). This leaves us with a total of six (five) data points in the kinematical range
w € [1.00,1.11] for the form factor fi (fp). As in the case of B — 7lv, we conservatively
assume a 100% correlation of statistical uncertainties between HPQCD and FNAL/MILC.
We then fit this data set to a BCL ansatz, using t, = (Mpo + Mp+)? ~ 51.12 GeV? and
to = (Mpo 4+ Mp+)(vV/Mpo — /Mp+)? =~ 6.19 GeVZ. In our fits, pole factors have been
set to unity, i.e., we do not take into account the effect of sub-threshold poles, which is
then implicitly absorbed into the series coefficients. The reason for this is our imperfect
knowledge of the relevant resonance spectrum in this channel, which does not allow us to
decide the precise number of poles needed.*® This, in turn, implies that unitarity bounds
do not rigorously apply, which has to be taken into account when interpreting the results
(cf. Appendix B.1).

8 As noted above, this is the same approach adopted by FNAL/MILC in their fits to a BGL ansatz. HPQCD,
meanwhile, uses one single pole in the pole factors that enter their modified z-expansion, using their spectral
studies to fix the value of the relevant resonance masses.
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B—D(Nf=2+1)

| Central Values Correlation Matrix

ag 0.896 (10) 1 0.423 -0.231 0.958 0.596
al -7.94 (20) 0.423 1 0.325 0.498 0.919
ag 51.4 (3.2) -0.231 0.325 1 -0.146 0.317
al 0.7821 (81) 0.958 0.498 -0.146 1 0.593
af -3.28 (20) 0.596 0.919 0.317 0.593 1

Table 52: Coefficients and correlation matrix for the N* = N? = 3 z-expansion of the B — D
form factors f; and fo. The chi-square per degree of freedom is x?/dof = 4.6/6 = 0.77. The
lattice calculations that enter this fit are taken from FNAL/MILC [610] and HPQCD [611].
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Figure 34: The form factors fi(q?) and fo(q?) for B — D/{v plotted versus z (left panel)
and ¢? (right panel). See text for a discussion of the data sets. The grey and salmon bands
display our preferred N* = N? = 3 BCL fit (five parameters).

With a procedure similar to what we adopted for the B — 7 and By, — K cases,
we impose the kinematic constraint at ¢> = 0 by expressing the a%,_, coefficient in the
z-expansion of fy in terms of all the other coefficients. As mentioned above, FNAL/MILC
provides synthetic data for f; and fy including correlations; HPQCD presents the result
of simultaneous z-fits to the two form factors including all correlations, thus enabling us to
generate a complete set of synthetic data for fi and fy. Since both calculations are based
on MILC ensembles, we then reconstruct the off-diagonal HPQCD-FNAL/MILC entries of
the covariance matrix by conservatively assuming that statistical uncertainties are 100%
correlated. The Fermilab/MILC (HPQCD) statistical error is 58% (31%) of the total error
for every f, value, and 64% (49%) for every f one. Using this information we can easily
build the off-diagonal block of the overall covariance matrix (e.g., the covariance between
[f+(q?)]pnar and [fo(a3)]npqep is (3[f+(af)]rNaL x 0.58) (8[fo(a3)]npqep x 0.49), where
0f is the total error).

For our central value, we choose an Nt = N° = 3 BCL fit, shown in Tab. 52.
The coefficient af can be obtained from the values for aj—aj using Eq. (532). We find
x?%/dof = 4.6/6 = 0.77. The fit, which is dominated by the FNAL/MILC calculation, is
illustrated in Fig. 34.

Reference [607] is the only existing Ny = 2 work on B — D/{v transitions, that
furthermore provided the first available results for By, — D frv. This computation uses
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the publicly available ETM configurations obtained with the twisted-mass QCD action at
maximal twist. Four values of the lattice spacing, ranging between 0.054 fm and 0.098 fm,
are considered, with physical box lengths ranging between 1.7 fm and 2.7 fm. At two values
of the lattice spacing two different physical volumes are available. Charged-pion masses
range between x 270 MeV and =~ 490 MeV, with two or three masses available per lattice
spacing and volume, save for the a ~ 0.054 fm point at which only one light mass is
available for each of the two volumes. The strange- and heavy-valence quarks are also
treated with maximally twisted-mass QCD.

The quantities of interest are again the form factors h4 defined above. In order to
control discretization effects from the heavy quarks, a strategy similar to the one employed
by the ETM collaboration in their studies of B-meson decay constants (cf. Sec. 8.1) is
employed: the value of G(w) is computed at a fixed value of m, and several values of a

(k)
h

heavier quark mass m; ’ = A\m,, where ) is a fixed scaling parameter, and step-scaling

functions are built as
g(w7 )\k+1m67 mC) a2)

G(w, Xeme, me, a?)

S (w) = (250)
Each ratio is extrapolated to the continuum limit, ox(w) = lim,—0 Xx(w). One then
exploits the fact that the mj; — oo limit of the step-scaling is fixed. In particular, it is
easy to find from the heavy-quark expansion that lim,,, ., o(1) = 1. In this way, the
physical result at the b-quark mass can be reached by interpolating o(w) between the
charm region (where the computation can be carried out with controlled systematics) and
the known static limit value.

In practice, the values of m,. and m are fixed at each value of the lattice spacing such
that the experimental kaon and Ds masses are reached at the physical point, as deter-
mined in Ref. [624]. For the scaling parameter, A = 1.176 is chosen, and eight scaling
steps are performed, reaching my,/m. = 1.176° ~ 4.30, approximately corresponding to
the ratio of the physical b- and c-masses in the MS scheme at 2 GeV. All observables
are obtained from ratios that do not require (re)normalization. The ansatz for the con-
tinuum and chiral extrapolation of ¥; contains a constant and linear terms in mge, and
a?. Twisted boundary conditions in space are used for valence-quark fields for better
momentum resolution. Applying this strategy, the form factors are finally obtained at
four reference values of w between 1.004 and 1.062, and, after a slight extrapolation to
w = 1, the result is

GB:=D=(1) = 1.052(46) . (251)

The authors also provide values for the form factor relevant for the meson states with
light-valence quarks, obtained from a similar analysis to the one described above for the
B; — Dy case. Values are quoted from fits with and without a linear mgq,/ms term in
the chiral extrapolation. The result in the former case, which safely covers systematic
uncertainties, is

GB7P(1) = 1.033(95) . (252)

Given the identical strategy, and the small sensitivity of the ratios used in their method to
the light valence- and sea-quark masses, we assign this result the same ratings in Tab. 54
as those for their calculation of GZ+=Ps(1). Currently, the precision of this calculation is
not competitive with that of Ny = 241 works, but this is due largely to the small number
of configurations analyzed by Atoui et al. The viability of their method has been clearly
demonstrated, however, which leaves significant room for improvement on the errors of
both the B — D and By — D, form factors with this approach by including either
additional two-flavour data or analysing more recent ensembles with Ny > 2.

Atoui et al. also study the scalar and tensor form factors, as well as the momentum-
transfer dependence of f. . The value of the ratio fo(q?)/f+(¢?) is provided at a reference
value of g% as a proxy for the slope of G(w) around the zero-recoil limit.
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Let us finally discuss the most recent results for By — D, form factors, obtained by
the HPQCD collaboration using MILC’s Ny = 2 + 1 + 1 ensembles in Ref. [617]. Three
values of the lattice spacing are used, including a very fine ensemble at a ~ 0.044 fm; the
pion mass is kept fixed at around 300 MeV, and in addition at the coarser a ~ 0.09 fm
lattice an ensemble with the physical pion mass is included. The scalar current needs
no renormalization because of the PCVC relation, while the vector current is nonpertur-
batively normalized by imposing a condition based on the PCVC relation at zero recoil.
Heavy quarks are treated in a fully relativistic fashion through the use of the HISQ regu-
larization, employing bare values of the quark mass up to amy = 0.8 for the extrapolation
to the physical b point.

Results for the form factors are fitted to a modified z-expansion ansatz, based on a
BCL ansatz with a Blaschke factor containing one sub-threshold pole, tuned to reproduce
the lattice-spacing and heavy-quark-mass-dependent mass of the corresponding resonance.
The final error budget is equally dominated by statistics and the combined effect of the
continuum and heavy quark mass extrapolations, which correspond to 1.1% and 1.2%
uncertainties, respectively, for the scalar form factor at zero recoil. The total uncertainty
of the latter is thus below 2%, which remains true in the whole ¢ range. The uncertainty
of f, is somewhat larger, starting at around 2% at ¢ = 0 and increasing up to around
3.5% at zero recoil.

One important matter of concern with this computation is the use of the a ~ 0.044 fm
ensemble with periodic boundary conditions, which suffers from severe topology freezing.
Other than possible implications for statistical uncertainties, the lack of topology fluc-
tuations are expected to significantly enhance finite-volume effects, which are no longer
exponential in m, L, but become power-like in the spatial volume. The authors neglect
the impact of finite-volume effects in the computation, with a twofold argument: for the
two coarser lattice spacings, the impact of pion-mass-related corrections on the heavy-
meson states involved is presumably negligible; and, for the finest ensemble, the estimate
of finite-volume effects on the D, decay constant obtained in Ref. [146] turns out to be
very small, a result which is presumed to extend to form factors. It is however unclear
whether the latter argument would really hold, since the computation in Ref. [146] does
show that the expected effect is heavily observable-dependent, reaching, e.g., more than
1% for fp. We have, therefore, concluded that our standard criteria for finite-volume
effects cannot be applied at the finest lattice spacing, and opted to assign rating to
them.

We thus proceed to quote the final result of HPQCD 19 as the FLAG estimate for the
Ny =2+1+1 By — D, form factors. The preferred fit is a constrained BCL form with
the imposition of the kinematical constraint fy(0) = fo(0), carried through 22 for fu and
23 for f.. Both form factors contain just one sub-threshold pole, to which the masses
Mp: = 6.329 GeV and Mp,, = 6.704 GeV, respectively, have been assigned. The fit
parameters and covariance matrix, quoted in Table VIII of Ref. [617], are reproduced in
Table 53.

8.4.2 Lepton-flavour-universality ratios R(D*)) and R(Dg*))

The availability of results for the scalar form factor f, for B — D/v amplitudes allows
us to study interesting observables that involve the decay in the 7 channel. One such
quantity is the ratio

_ B(B — D1v) ) B

which, in the Standard Model, depends only on the form factors and hadron and lepton
masses. Indeed, the recent availability of experimental results for R(D) has made this
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By — D (Ny=24+1+1)

a’, | Central Values Correlation Matrix

af 0.666(12) 1 0.62004  0.03149 1 0.03973  0.00122
a? -0.26(25) 0.62004 1 0.36842  0.62004 0.12945 0.00002
a9 -0.1(1.8) 0.03149 0.36842 1 0.03149 0.22854 -0.00168
ag -0.075(12) 1 0.62004  0.03149 1 0.03973  0.00122
al -3.24(45) 0.03973 0.12945 0.22854  0.03973 1 0.11086
ay 0.7(2.0) 0.00122  0.00002 -0.00168 0.00122 0.11086 1

Table 53: Coeflicients and correlation matrix for the z-expansion of the By, — D, form factors
f+ and fo. These results are a reproduction of Table VIII of Ref. [617].

quantity particularly relevant in the search for possible physics beyond the Standard
Model. The most recent HFLAV average reads [625]:

R(D)exp = 0.340(27)(13) . (254)

Using the FLAG average of the B — D form factors discussed above and presented
in Table 52, we find R(D)ELAG = 0.2934(38). The ratio R(D) requires the integral of the
branching ratios for ¢ = e, u, 7 over the whole phase space. Since lattice simulations are
sensitive mostly to relatively large ¢? values, lattice-only calculations of R(D) rely on the
extrapolation of the form factors to low ¢? and are especially sensitive to the choice of
parameterization. In order to estimate this source of systematics, we repeated the fit using
the parameterization adopted by HPQCD in Ref. [611]. The main difference with respect
to our default paremeterization is the inclusion of Blaschke factors for the form factors
f+ and fo located at M = Mp: = 6.330(9) GeV and My = 6.420(9) GeV; additionally,
the parameter o is set to (mp — mp)?. Using five coefficients (a), 5 and af , with a§
fixed by the f1(¢%> = 0) = fo(¢> = 0) condition) we find R(D)IT 2P = 0.3009(38) which
deviates from R(D)EI;AG by 1.4 . To take this potential source of systematic uncertainty
into account we rescale accordingly the uncertainty of our default fit and obtain:

R(D)ias = 0.2934(53), Ny =2+ 1 (our average). (255)

After including the B — D/v (¢ = e, u) data in the fit, as discussed at the end of Sec. 8.9,
we obtain the following combined lattice plus experiment result:

R(D)iat+exp = 0.2951(31), Ny =2+ 1 (our average). (256)

HPQCD also computes values for R(Ds), the analog of R(D) with both heavy-light
mesons containing a strange quark. The earlier calculation using NRQCD b quarks gives

R(Dg)1at = 0.301(6) , Ny =2+1 [613]. (257)
The newer calculation with HISQ b quarks yields the somewhat more precise value
R(Dg)1at = 0.2987(46) , Ny=2+1+1 [617]. (258)

A similar ratio R(D*) can be considered for B — D* transitions. As a matter of fact,
the experimental value of R(D*) is significantly more precise than the one of R(D). As
of today, the only complete, unquenched calculation of the B — D* form factors that has
been published is Ref. [621], by the FNAL/MILC collaboration, that reports

R(D*)jay = 0.265(13), Ny =2+1 [621]. (259)

178 Updated Feb. 2024



But there are other efforts to be considered, by the JLQCD and the HPQCD collabora-
tions, that have already presented preliminary results in Refs. [623] and [622], respectively.

There is a growing interest in the B, — D?/v channel, both from the theoretical and
the experimental side. The only available calculation right now comes from the HPQCD
collaboration [620], giving,

R(D?)1ar = 0.2490(60) 104t (35)En s Ny =241+ 1 [620], (260)

where the first error comes from the lattice calculation, and the second error is an estimate
of electromagnetic effects.

8.4.3 Fragmentation fraction ratio fs/fy

Another area of immediate interest in searches for physics beyond the Standard Model is
the measurement of B, — u™p~ decays, recently studied at the LHC. One of the inputs
required by the LHCD analysis is the ratio of B, meson (¢ = d, s) fragmentation fractions
fs/fa, where f, is the probability that a ¢ quark hadronizes into a B,. This ratio can
be measured by writing it as a product of ratios that involve experimentally measurable
quantities, cf. Refs. [626, 627]. One of the factors is the ratio fé )(MQ)/ (d)( 2 of
scalar form factors for the corresponding semileptonic meson decay, which is where lattice
input becomes useful.

A dedicated Ny = 2 + 1 study by FNAL/MILC*® [628] addresses the ratios of scalar

form factors f(q)( 2), and quotes:
FEOM2) /P (ME) = 1.046(44)(15), £ (M2)/ f5D (M2) = 1.054(47)(17),  (261)

where the first error is statistical and the second systematic. The more recent results from
HPQCD [613] are:

[0/ 1P (ME) = 1.000(62), £ (M2)/ f§? (M2) = 1.006(62). (262)

Results from both groups lead to fragmentation fraction ratios fs/fq that are consistent
with LHCb’s measurements via other methods [627].

8.44 B — DE“S) decays

The most precise computation of the zero-recoil form factors needed for the determination
of |Vg| from exclusive B semileptonic decays comes from the B — D*{v form factor at
zero recoil FB7P7(1), calculated by the FNAL/MILC collaboration. The original com-
putation, published in Ref. [608], was updated [609] by employing a much more extensive
set of gauge ensembles and increasing the statistics of the ensembles originally considered,
while preserving the analysis strategy. Later on, the same setup was used to calculate
the same form factors away from the zero recoil point [621]. Other collaborations are also
working on nonzero recoil results, mainly HPQCD [622] and JLQCD [623].

References [609] and [621] use the MILC Ny = 2 + 1 ensembles. The bottom and
charm quarks are simulated using the clover action with the Fermilab interpretation and
light quarks are treated via the asqtad staggered fermion action. Recalling the definition
of the form factors in Eq. (239), at zero recoil FZ~P" (1) reduces to a single form factor
ha, (1) coming from the axial-vector current

(D*(v,€)|Au|B(v)) = iv2mp2mp- e “ha, (1), (263)

4*This work also provided a value for R(D), now superseded by Ref. [610].
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where ¢ is the polarization of the D*. The form factor is accessed through a ratio of
three-point correlators, viz.,

D*|év,;v5b|B) (B|by;vsc|D*
R, = LMD BIngsdl) _ | ), (264
(D" |eviciD*) (BlbabiB)

There are several strategies to calculate the form factor h4, away from the zero recoil
point. The FNAL/MILC collaboration generalizes Eq. (264) to nonzero momentum. The
HPQCD and JLQCD collaborations compute h 4, (1) and the ratio

(DY, €")|evv5b| B(p))
R e)levjsblB(p)) (265)

which gives ha, (w)/ha, (1) times other factors that must be removed. Simulation data of
the FNAL/MILC calculation is obtained on MILC ensembles with five lattice spacings,
ranging from a = 0.15 fm to a ~ 0.045 fm, and as many as five values of the light-quark
masses per ensemble (though just one at the finest lattice spacing). Results are then
extrapolated to the physical, continuum/chiral, limit employing staggered xPT.

The D* meson is not a stable particle in QCD and decays predominantly into a D
plus a pion. Nevertheless, heavy-light meson yPT can be applied to extrapolate lattice
simulation results for the B — D*/v form factor to the physical light-quark mass. The
D* width is quite narrow, 0.096 MeV for the D**(2010) and less than 2.1 MeV for
the D*°(2007), making this system much more stable and long lived than the p or the
K™ systems. The fact that the D* — D mass difference is close to the pion mass leads
to the well-known “cusp” in R4, just above the physical pion mass [629-631]. This
cusp makes the chiral extrapolation sensitive to values used in the xPT formulas for the
D*Dm coupling gp«pr. In order to take this sensitivity into account, the FNAL/MILC
collaboration includes this coupling in their fits as an input prior gp=p, = 0.53 £ 0.08,
resulting in an increase of 0.3% in the total uncertainty for ha, (1) in Ref. [609]. The
FNAL/MILC calculation at nonzero recoil uses the same prior, but the effect on the final
result is not specified.

The final value presented in Ref. [621], which supersedes that of Ref. [609], is

Ny=2+1: FB=P7(1) =0.909(17), (266)

making up a total error of 1.9%, up from the 1.4% of Ref. [609] due to more conservative
choices. The largest systematic uncertainty comes from discretization errors followed by
effects of higher-order corrections in the chiral perturbation theory ansatz.

In 2017, the HPQCD collaboration has published the first study of By — DE‘S)ZV
form factors at zero recoil for Ny = 2 + 1 4 1 using eight MILC ensembles with lattice
spacing a ~ 0.15 fm, 0.12 fm, and 0.09 fm [615]. There are three ensembles with varying
light-quark masses for the two coarser lattice spacings and two choices of light-quark mass
for the finest lattice spacing. In each case, there is one ensemble for which the light-quark
mass is very close to the physical value. The b quark is treated using NRQCD and the
light quarks are treated using the HISQ action. The resulting zero-recoil form factors are:

Ny=2+1+1: FB2P7(1) =0.895(10)(24), FPP:(1) =0.883(12)(28). (267)

In 2019, the HPQCD collaboration published a new Ny = 2 + 1 + 1 calculation of the
Bs — D form factor at zero recoil, now using the HISQ action also for the b quark [616].
The lattice methodology and ensembles used are the same as in their 2019 calculation of
the By — D; form factors [617], which was discussed in detail in Sec. 8.4.1. The resulting
form factor is:

Ny =2+4+1+1: FB=DPi(1) =0.9020(96)(90) . (268)

180 Updated Feb. 2024



The calculations in Refs. [615, 616] use different b-quark actions and share only two
ensambles at ¢ = 0.09 fm and can be considered essentially independent, yielding the
average:

Np=2+1+1: FB7P(1)=0.899(12), our average. (269)

The HPQCD and JLQCD collaborations are also devoting their efforts to determine
the full momentum dependence of By — D’(ks fv form factors, and preprints for both
calculations are already available. JLQCD efforts are based on Ny = 2 + 1 Mobius
domain-wall ensembles and a relativistic heavy quark action. The latest status update
can be found in Ref. [623]. The HPQCD computation, Ref. [622], is based on Ny = 2+1+1
HISQ ensembles, and uses the same regularization for heavy quarks. This calculation, once
finalized, will supersede the existing HPQCD results in the By — D} channel presented
in Ref. [616]. Upon publication of both works, we intend to include full details for them
in an upcoming intermediate update of this section.

8.5 Semileptonic form factors for B. — (1., J/1{)lv decays

In a recent publication, HPQCD 20B [632] provided the first full determination of B. —
J /v form factors, extending earlier preliminary work that also covered B, — 7., Refs. [633,
634]. While the latter employed both NRQCD and HISQ actions for the valence b quark,
and the HISQ action for the ¢ quark, in HPQCD 20B the HISQ action is used throughout
for all flavors. The setup is the same as for the By — Dy computation discussed above,
HPQCD 19; we refer to the entries for the latter paper in summary tables for details. The
flavor singlet nature of the final state means that there are contributions to the relevant
three-point functions from disconnected Wick contractions, which are not discussed in the
paper.

There are however some relevant differences with By — D, decays. In the J/v case,
since the hadron in the final state has vector quantum numbers, the description of the
hadronic amplitude requires four independent form factors V', Ag, A1, As. Specifically,

iV (a2
(/6 V)bl B () =~ (L)

_ ghvpo * / A / "
MBU + M']/w eu(p7 )ppp Y

*(p! \) -
(/' Nler bl B (p) :2MJ/on(q2)M‘I“

q
§ e* p/7/\ q
+ (Mp, + M) Ai(q”) [e "' A) - (qz)q”]
) S [ ME M
Mp, + My, ¢ ’

(270)

where ¢, is the polarization vector of the J/i¢ state. The computed form factors are
fitted to a z-parameterization-inspired ansatz, where coefficients are modified to model
the lattice-spacing and the heavy- and light-mass dependences, for a total of 280 fit
parameters. In the continuum and at physical kinematics only 16 parameters survive, as
each form factor is parameterized by an expression of the form

3
1
F(¢*) = anz" (271)
P(q?) ,;)
where the pole factor is given by
P(¢*) =[] 2(¢* M7) (272)
k
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with {M}.} a different set of pole energies below the BD* threshold for each set of J¥
quantum numbers, taken from a mixture of experimental results, lattice determinations,
and model estimates. The values used (in GeV) are

0™ : 6.275, 6.872, 7.25;

17 : 6.335, 6.926, 7.02, 7.28; (273)

17 6.745, 6.75, 7.15, 7.15.

The outcome of the fit, that we quote as a FLAG estimate, is

ago ai a2 as

V [ 0.1057(55) -0.746(92) 0.10(98) 0.006(1.000)
A0 | 0.1006(37) -0.731(72)  0.30(90)  -0.02(1.00)
Al | 0.0553(19) -0.266(40) 0.31(70)  0.11(99)
A2 | 0.0511(91) -0.22(19) -0.36(82)  -0.05(1.00)

The correlation matrix for the coefficients is provided in Tables XIX-XXVII of Ref. [632]

8.6 Semileptonic form factors for A, — (p, A((;*))KD decays

The b — ¢fv and b — wlp transitions can also be probed in decays of A, baryons. With
the LHCb experiment, the final state of A, — puv is easier to identify than that of
B — mup [635], and the first determination of |Vy3|/|Ves| at the Large Hadron Collider
was performed using a ratio of Ay, — puv and Ay — A v decay rates [636] (cf. Sec. 8.10).

The amplitudes of the decays A, — plv and A, — A v receive contributions from
both the vector and the axial-vector components of the current in the matrix elements
(play*(1 — ~5)b|Ap) and (Ac|ey* (1 — ~5)b|Ap). The matrix elements split into three form
factors fy, fo, f1L mediated by the vector component of the current, and another three
form factors g4, go, g1 mediated by the axial-vector component—see, e.g., Ref. [513] for
a complete description. Given the sensitivity to all Dirac structures, measurements of
the baryonic decay rates also provides useful complementary constraints on right-handed
couplings beyond the Standard Model [636].

To date, only one unquenched lattice-QCD computation of the Ay, — p and Ay, — A,
form factors with physical heavy-quark masses has been published: Detmold 15 [518].
This computation uses RBC/UKQCD N; = 241 DWF ensembles, and treats the b and ¢
quarks within the Columbia RHQ approach. The renormalization of the currents is carried
out using a mostly nonperturbative method, with residual matching factors computed
at one loop. Two values of the lattice spacing (a = 0.11, 0.085 fm) are considered,
with the absolute scale set from the Y(25)-T(1S) splitting. Sea pion masses lie in a
narrow interval ranging from slightly above 400 MeV to slightly below 300 MeV, keeping
myL 2 4; however, lighter pion masses are considered in the valence DWF action for
the w,d quarks. The lowest valence-valence pion mass is 227(3) MeV, which leads to a
B rating of finite-volume effects. Results for the form factors are obtained from suitable
three-point functions, and fitted to a modified z-expansion ansatz that combines the ¢2-
dependence with the chiral and continuum extrapolations. The main results of the paper
are the predictions (errors are statistical and systematic, respectively)

1 [Omax dT(Ap — pp= 7, B

CpHD(15GeV2) = |V b|2 /;s o ( b dq2p:u’ f ) dq2 — 1231(76)(77) ps 1 , (274)
1[G dT(Ap = A0 .

(o (TGeV?) = W/mw (A g H0) g2 8.37(16)(34) ps—!,  (275)
C e

(1 2
Sur(I5GVT) 1 471(95)(109) (276)
CACMD(7GGV )
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which are the input for the LHCb analysis. Predictions for the total rates in all possible
lepton channels, as well as for ratios similar to R(D) (cf. Sec. 8.4) between the 7 and
light-lepton channels are also available, in particular,

. F(Ab — A, TiﬁT)
B F(Ab — A, ,LL_DM)

R(A,) = 0.3328(74)(70). (277)

Datta 2017 [637] additionally includes results for the A, — A. tensor form factors h,
hy, E+, i~zJ_, based on the same lattice computation as Detmold 15 [518]. The main focus
of Datta 2017 is the phenomenology of the A, — A.77, decay and how it can be used to
constrain contributions from beyond the Standard Model physics. Unlike in the case of
the vector and axial-vector currents, the residual matching factors of the tensor currents
are set to their tree-level value. While the matching systematic uncertainty is augmented
to take this fact into account, the procedure implies that the tensor current retains an
uncanceled logarithmic divergence at O(a).

Recently, first lattice calculations have also been completed for A; semileptonic decays
to negative-parity baryons in the final state. Such calculations are substantially more
challenging and have not yet reached the same level of precision. Meinel 21 [638] considers
the decays A, — A%(2595)¢0 and A, — A%(2625)¢0, where the A%(2595) and A%(2625) are
the lightest charm baryons with isospin 0 and J© = %_ and JF = %_, respectively. These
decay modes may eventually provide new opportunities to test lepton-flavor universality at
the LHC, but are also very interesting from a theoretical point of view. The lattice results
for the form factors may help tighten dispersive constraints in global analyses of b — ¢
semileptonic decays [639], and may provide new insights into the internal structure of
the negative-parity heavy baryons and their description in heavy-quark-effective-theory.
The A%(2595) and A}(2625) are very narrow resonances decaying through the strong
interaction into A.mm. The strong decays are neglected in Meinel 21 [638]. The calculation
was performed using the same lattice actions as previously for Ay, — A, albeit with newly
tuned RHQ parameters. Only three ensembles are used, with a =~ 0.11, 0.08 fm and pion
masses in the range from approximately 300 to 430 MeV, with valence-quark masses
equal to the sea-quark masses. Chiral-continuum extrapolations linear in m?2 and a? are
performed, with systematic uncertainties estimated using higher-order fits. Finite-volume
effects and effects associated with the strong decays of the A’s are not quantified. The
calculation is done in the A} rest frame, where the cubic symmetry is sufficient to avoid
mixing with unwanted lower-mass states. As a consequence, the calculation is limited to
a small kinematic region near the zero-recoil point w = 1. On each ensemble, lattice data
were produced for two values of w — 1 of approximately 0.01 and 0.03. The final results
for the form factors are parameterized as linear functions of w — 1 and can be found in
Meinel 21 [638] and associated supplemental files.

8.7 Semileptonic form factors for A, — A® ¢/

The decays Ay, — AlT¢~ are mediated by the same underlying b — s¢T¢~ FCNC transi-
tion as, for example, B — K/T¢~ and B — K*¢T¢~, and can therefore provide additional
information on the hints for physics beyond the Standard Model seen in the meson decays.
The A baryon in the final state decays through the weak interaction into pr~ (or nz?),
leading to a wealth of angular observables even for unpolarized A,. When including the
effects of a nonzero A, polarization, Ay, — A(— pr~)fT£~ decays are characterized by five
angles leading to 34 angular observables [640], which have been measured by LHCD in the
bin ¢? € [15,20] GeV? [641]. Given that the A is stable under the strong interactions, the
Ay — A form factors parametrizing the matrix elements of local sI'b currents can be cal-
culated on the lattice with high precision using standard methods. Of course, the process
Ay — ALT¢ also receives contributions from nonlocal matrix elements of four-quark and
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quark-gluon operators in the weak effective Hamiltonian combined with the electromag-
netic current. As with the mesonic b — s¢T¢~ decays, these contributions cannot easily
be calculated on the lattice and one relies on other theoretical tools for them, including
the local OPE at high ¢? and a light-cone OPE / QCD factorization at low ¢>.

Following an early calculation with static b quarks [642], Detmold 16 [643] provides
results for all ten relativistic A, — A form factors parametrizing the matrix elements of
the local vector, axial-vector and tensor b — s currents. The lattice setup is identical to
that used in the 2015 calculation of the Ay — p form factors in Detmold 15 [518], and
similar considerations as in the previous section thus apply. The lattice data cover the
upper 60% of the ¢? range, and the form factors are extrapolated to the full ¢? range
using BCL z-expansion fits. This extrapolation is done simultaneously with the chiral
and continuum extrapolations. The caveat regarding the renormalization of the tensor
currents also applies here.

Reference [644] uses the lattice results for the A, — A form factors together with
the experimental results for A, — A(— pr~)uTp~ from LHCD [641, 645] to perform
fits of the b — su™u~ Wilson coefficients and of the A; polarization parameter. Given
the uncertainties (which are still dominated by experiment), the results for the Wilson
coefficients are presently consistent both with the Standard-Model values and with the
deviations seen in global fits that include all mesonic decays [646, 647].

As with the b — ¢ semileptonic form factors, a first lattice calculation, Meinel 2020
[648], was also recently completed for a b — s transition to a negative-parity baryon

in the final state, in this case the A*(1520) with J¥ = %_ (no calculation has yet been
published for the strange J* = %_ final states, which would be the broader and even more
challenging A*(1405)/A*(1380) [169]). The A*(1520) decays primarily to pK~ /nK°, 3,
and Amm with a total width of 15.6 £ 1.0 MeV [169] . The analysis of the lattice data
again neglects the strong decays and does not quantify finite-volume effects, and is again

limited to a small kinematic region near ¢2,,. .
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Collaboration Ref. Ny gy & v F &< w = 1 form factor / ratio
HPQCD 15, HPQCD 17[611, 613]  2+1 A GB87P(1)  1.035(40)
FNAL/MILC 15C [610] 2+1 A GE7P(1)  1.054(4)(8)
Atoui 13 [607] 2 A — GE=P(1)  1.033(95)
HPQCD 19 617 2+14+1 A * GB==Ps(1)  1.071(37)
HPQCD 15, HPQCD 17[611, 613] 241 A GB==Ps(1)  1.068(40)
Atoui 13 [607] 2 A — GB==Ps (1) 1.052(46)
HPQCD 17B [615] 2+14+1 A FE2PY(1)  0.895(10)(24)
FNAL/MILC 22 [621] 2+1 A FE=PT(1)  0.909(17)
HPQCD 17B [615] 2+14+1 A FB=Di(1) 0.883(12)(28)
HPQCD 19B [616] 2+14+1 A * FB:=DPi(1)  0.9020(96)(90)
HPQCD 15, HPQCD 17[611, 613]  2+1 A GB==Pa(1)  1.068(40)
HPQCD 20B 632] 2+1+1 A * n/a n/a
HPQCD 15, HPQCD 17[611, 613]  2+1 A R(D) 0.300(8)
FNAL/MILC 15C [610] 2+1 A R(D) 0.299(11)
FNAL/MILC 22 [621] 2+1 A R(D™) 0.265(13)

* The rationale for assigning a

rating is discussed in the text.

Table 54: Lattice results for mesonic processes involving b — ¢ transitions.
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Process Collaboration Ref. Ny < & § & & «
Ay — AZ(2625) 0”7 Meinel 21 638] 241 A n
Ay — AZ(2595) 0" Meinel 21 638] 241 A n
Ay — A*(1520) €+6~  Meinel 20 [648] 2+1 A n
Ay — AT~ Detmold 16 [643] 2+1 A n
Ay — pl iy Detmold 15 [518] 241 A [ ]
Ay = Al Dy Detmold 15, Datta 17 [518, 637] 2+1 A [ |

Table 55:  Summary of computations of bottom baryon semileptonic form factors (see also
Refs. [642, 649] for calculations with static b quarks). The rationale for the B rating of finite-
volume effects in Meinel 20 and 21 (despite meeting the
pion mass) is that the unstable nature of the final-state baryons was neglected in the analysis.

186

criterion based on the minimum

Updated Feb. 2024



8.8 Determination of |V,

We now use the lattice-determined Standard Model transition amplitudes for leptonic
(Sec. 8.1) and semileptonic (Sec. 8.3) B-meson decays to obtain exclusive determinations
of the CKM matrix element |V,;|. In this section, we describe the aspect of our work that
involves experimental input for the relevant charged-current exclusive decay processes.
The relevant formulae are Egs. (203) and (237). Among leptonic channels the only input
comes from B — 7v,, since the rates for decays to e and p have not yet been measured.
In the semileptonic case, we only consider B — m/v transitions (experimentally measured
for ¢ = e, ).

We first investigate the determination of |V,;| through the B — 7v, transition. This
is the only experimentally measured leptonic decay channel of the charged B meson. The
experimental measurements of the branching fraction of this channel, B(B~ — 7~ ), have
not been updated since the publication of the FLAG Review in 2016 [3]. The status of
the experimental results for this branching fraction, summarized in Tab. 56, is unchanged
from FLAG Review 16 [3]. Our corresponding values of |V,;| are unchanged from FLAG

Review 19 [4].
Collaboration Tagging method B(B~ — 77 p) x 10*
Belle [650] Hadronic 0.721527 +0.11
Belle [530] Semileptonic 1.254+0.28 £0.27
BaBar [529] Hadronic 1.831055 4+ 0.24
BaBar [651] Semileptonic 1.7+0.8+£0.2

Table 56: Experimental measurements for B(B~ — 7~ 7). The first error on each result is
statistical, while the second error is systematic.

It is obvious that all the measurements listed in Tab. 56 have significance smaller than
50, and the large uncertainties are dominated by statistical errors. These measurements
lead to the averages of experimental measurements for B(B~ — 7o) [529, 530],

B(B~ = 77) x 100 = 0.91 +0.22 from Belle, (278)
= 1.79 4+ 0.48 from BaBar, (279)
= 1.06 £+ 0.33 average, (280)

where, following our standard procedure we perform a weighted average and rescale the
uncertainty by the square root of the reduced chi-squared. Note that the Particle Data
Group [168] did not inflate the uncertainty in the calculation of the averaged branching
ratio.

Combining the results in Eqs. (278-280) with the experimental measurements of the
mass of the 7-lepton and the B-meson lifetime and mass we get

[Violfe = 0.72+0.09 MeV from Belle, (281)
= 1.01+0.14 MeV from BaBar, (282)
= 0.77+0.12 MeV average, (283)
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which can be used to extract |Vypl, viz.,

Ny =2 Belle B — v, : |Vip| = 3.83(14)(48) x 1072, (284)
Ny=2+1 Belle B — 7v, : |Vus| = 3.75(8)(47) x 1073, (285)
Ny=2+1+1 Belle B — v, : V| = 3.79(3)(47) x 1073 (286)
Ny =2 Babar B — Tv; : |Vis| = 5.37(20)(74) x 1072, (287)
Ny=2+1 Babar B — Tv; : |Vis| = 5.26(12)(73) x 1073, (288)
Ny=2+1+1 Babar B — Tv; : |Vi| = 5.32(4)(74) x 1073, (289)
Ny =2 average B — Tu; : |Vap| = 4.10(15)(64) x 1073, (290)
Ny=2+1 average B — Tv, : [Vaup| = 4.01(9)(63) x 1072, (291)
Np=2+1+1 average B — Tv, : |Vip| = 4.05(3)(64) x 1073, (292)

where the first error comes from the uncertainty in fg and the second comes from exper-
iment.

Let us now turn our attention to semileptonic decays. The experimental value of
|Vub|f+(¢?) can be extracted from the measured branching fractions for B® — 7/(v
and/or B¥ — 7% applying Eq. (237);°° |V, can then be determined by performing fits
to the constrained BCL z-parameterization of the form factor f, (¢?) given in Eq. (533).
This can be done in two ways: one option is to perform separate fits to lattice and
experimental results, and extract the value of |V,;| from the ratio of the respective ag
coefficients; a second option is to perform a simultaneous fit to lattice and experimental
data, leaving their relative normalization |V,;| as a free parameter. We adopt the second
strategy, because it combines the lattice and experimental input in a more efficient way,
leading to a smaller uncertainty on |Vyp].

The available state-of-the-art experimental input consists of five data sets: three un-
tagged measurements by BaBar (6-bin [652] and 12-bin [653]) and Belle [654], all of which
assume isospin symmetry and provide combined B® — 7~ and Bt — 70 data; and the
two tagged Belle measurements of B® — 7% (13-bin) and B~ — 7° (7-bin) [655]. Includ-
ing all of them, along with the available information about cross-correlations, will allow
us to obtain a meaningful final error estimate.”’ The lattice input data set will be the
same discussed in Sec. 8.3.

We perform a constrained BCL fit of the vector and scalar form factors (this is nec-
essary in order to take into account the fi(¢> = 0) = fo(¢®> = 0) constraint) together
with the combined experimental data sets. We find that the error on |V,;| stabilizes
for Nt = NY = 3. The result of the combined fit is presented in Tab. 57. The fit
has a chi-square per degree of freedom x?/dof = 116.7/62 = 1.88. Following the PDG
recommendation we rescale the whole covariance matrix by x?/dof: the errors on the
z-parameters are increased by /x2/dof = 1.37 and the correlation matrix is unaffected.

In Fig. 35, we show both the lattice and experimental data for (1 — ¢%/m%.)f+(¢?) as
a function of z(¢?), together with our preferred fit; experimental data has been rescaled
by the resulting value for |V,;|?. It is worth noting the good consistency between the
form factor shapes from lattice and experimental data. This can be quantified, e.g., by
computing the ratio of the two leading coefficients in the constrained BCL parameteriza-
tion: the fit to lattice form factors yields af /ag = —1.20(23) (cf. the results presented in
Sec. 8.3.1), while the above lattice+-experiment fit yields a /ag = —1.039(94).

®0Gince ¢ = e, i the contribution from the scalar form factor in Eq. (237) is negligible.
18ee, e.g., Sec. V.D of Ref. [559] for a detailed discussion.
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B = 7mlv (Ny=2+1)

Central Values Correlation Matrix
[V.,| x 10° 3.64 (16) 1 -0.812  -0.108 0.128 -0.326  -0.151
ag 0.425 (15) -0.812 1 -0.188 -0.309 0.409  0.00926
al —0.441 (39) | -0.108 -0.188 1 -0.498 -0.0343  0.150
ay —0.52 (13) 0.128  -0.309  -0.498 1 -0.190 0.128
ad 0.560 (17) -0.326  0.409  -0.0343 -0.190 1 -0.772
al —1.346 (53) | -0.151 0.00926  0.150  0.128 -0.772 1

Table 57: |V, coefficients for the N* = NY = NT = 3 z-expansion of the B — =

form factors fi and fy, and their correlation matrix. The chi-square per
freedom is x%/dof = 116.7/62 = 1.88 and the errors on the fit parameters

degree of
have been

rescaled by (/x?/dof = 1.37. The lattice calculations that enter this fit are taken from

FNAL/MILC [559], RBC/UKQCD [560] and JLQCD [561]. The experimental
taken from BaBar [652, 653] and Belle [654, 655].

inputs are

We plot the values of |Vi;| we have obtained in Fig. 38, where the GGOU [656]
determination through inclusive decays, |V, |inc1 = (4.32£0.12¢xp £0.134heo £0.23a5F) X
1073 [169, 263] (the ABF error has been added in Ref. [169] to account for the spread
in results obtained using different theoretical models), is also shown for comparison.®?
In this plot, the tension between the BaBar and the Belle measurements of B(B~ —
T~ U) is manifest. As discussed above, it is for this reason that we do not extract |Vy|
through the average of results for this branching fraction from these two collaborations. In
fact, this means that a reliable determination of |V,,;| using information from leptonic B-
meson decays is still absent; the situation will only clearly improve with the more precise
experimental data expected from Belle IT [657, 658]. The value for |V,;| obtained from
semileptonic B decays for Ny = 2 + 1, on the other hand, is significantly more precise
than both the leptonic and the inclusive determinations, and exhibits a ~ 1.70 tension
with the latter.

8.9 Determination of |V

We will now use the lattice-QCD results for the B — D™ ¢y form factors in order to
obtain determinations of the CKM matrix element |Vg| in the Standard Model. The
relevant formulae are given in Eq. (241).

Let us summarize the lattice input that satisfies FLAG requirements for the control
of systematic uncertainties, discussed in Sec. 8.4. In the (experimentally more precise)
B — D*{v channel, there is only one Ny = 2+ 1 lattice computation of the relevant form
factor FE=P" at zero recoil. Concerning the B — D/v channel, for Ny = 2 there is one
determination of the relevant form factor G872 at zero recoil, while for Ny = 2+ 1 there
are two determinations of the B — D form factor as a function of the recoil parameter
in roughly the lowest third of the kinematically allowed region. In this latter case, it is
possible to replicate the analysis carried out for |V,;| in Sec. 8.8, and perform a joint fit
to lattice and experimental data; in the former, the value of |V| has to be extracted by
matching to the experimental value for FZ=P" (1)ngw|Ves| and GZ=P (1) ngw|Ves|-

52Note that a recent Belle measurement of partial B — X, £ v, branching fractions which superseeds their
previous result and which yields the somewhat lower value |Vyp| = 4.10(9)(22)(15) x 1072, has not been included

in the HFLAV average yet.
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Figure 35: Lattice and experimental data for f277(¢%) and fP~™(¢?) versus z (left panel)
and ¢? (right panel). Experimental data has been rescaled by the value for |V,;| found from
the joint fit. Green symbols denote lattice-QCD points included in the fit, while blue and
indigo points show experimental data divided by the value of |V,;| obtained from the fit. The
grey and orange bands display the preferred N* = N = 3 BCL fit (five z-parameters and

’Vub’)-

The latest experimental average by HFLAV [625] for the B — D* form factor at zero
recoil makes use of the CLN [659] parameterization of the B — D* form factor and is

[FE2DP" (1) new|Vis oLy, mrrav = 35.61(43) x 1073 (293)

Recent experimental measurements of the B — D*{v branching ratio presented by the
BaBar [660], Belle [661, 662] and Belle-II [663] collaborations in which, as suggested
in Refs. [664-666], the impact of the form factor parameterization has been studied by
comparing the CLN [659] and BGL [570, 667] ansétze. The fit results using the two pa-
rameterizations are now consistent. In light of the fact that the BGL parameterization has
a much stronger theoretical standing than the CLN one and that it imposes less stringent
constraints on the shape of the form factors, we do not consider the CLN determination
any further and focus on the BGL fit. Using the BGL fits presented by the BaBar [660],
Belle [661, 662] and Belle-II [663] collaborations and assuming a conservative 50% cor-
relation between the untagged [661] and tagged [662] Belle measurements, we obtain the
following average:3

[]:B_)D*(l)nEW“/chBGL, exp — 3607(51) X 10_3’ (294)

where a PDG rescaling factor of 1.35 has been applied. Given the fact that the two
determinations in Egs. (293) and (294) are quite compatible and that the BGL parame-
terization is on firmer theoretical ground, in the following we present the determination of
|Ves| obtained from Eq. (294). We refer to the discussion presented at the end of Sec. 8.8
of the previous edition of this review [4] for further comments on the CLN and BGL
parameterizations.

By using 7ew = 1.00662 °* and the N = 2+1 lattice value for FZ~P" (1) in Eq. (266) *°,

53Note that the BGL fit employed by Belle uses very few z parameters and that this could lead to an
underestimation of the error on [FZ7P" (1) ew|Ves|. See Ref. [668] for a thorough review of this point.

54Note that this determination does not include the electromagnetic Coulomb correction roughly estimated
in Ref. [609]. Currently the numerical impact of this correction is negligible.

®51n light of our policy not to average Ny = 2+ 1 and Ny = 2 + 1 + 1 calculations and of the controversy
over the use of the CLN vs. BGL parameterizations, we prefer to simply use only the more precise Ny =241
determination of FZ7P" (1) in Eq. (266) for the extraction of V.
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Figure 36: Extractions of ngw|Ve|F(w) from the BaBar [660], Belle [661, 662] and Belle-
IT [663] measurements of the B — D*{v branching ratio at several recoil points (left panel) and
corresponding determinations of |V| using the Fermilab/MILC results for F5~P"(w) [609,
621].

we thus extract the average
Ny=2+1 [B — D*lv|par : |Vip| = 39.37(74)(56) x 1073, (295)

where the first uncertainty comes from the lattice computation and the second from the
experimental input. As a consistency check of the extraction of |V| using experimental
and lattice information extrapolated to a single recoil point, we have repeated the analy-
sis for w = 1.03, 1.10 and 1.17. The result of this exercise is presented in two panels of
figure 36. It is apparent that the extractions of |V | at different recoil points are perfectly
compatible with each other (the standard deviation of the four central values is 0.18 and
is much smaller than the error on the individual determinations). The small systematic
slope of the four determinations is a consequence of the tension between the experimental
and lattice determinations of the shape of form factor F(w). Note that these four deter-
minations of V| are essentially 100% correlated and should not be averaged; a detail
study of the extraction of |V | which fully takes into account the several measured angular
distributions will be presented in the forthcoming version of the FLAG report.
For the zero-recoil B — D form factor, HFLAV [625] quotes

HFLAV:  GB7P (1) ngw| V| = 41.57(45)(89) x 1073, (296)
yielding the following average for Ny = 2:
Ny =2 B — Dlv: |Vey| = 40.0(3.7)(1.0) x 1073, (297)

where the first uncertainty comes from the lattice computation and the second from the
experimental input.

Finally, for Ny = 2 + 1 we perform, as discussed above, a joint fit to the available
lattice data, discussed in Sec. 8.4, and state-of-the-art experimental determinations. In
this case, we will combine the aforementioned Belle measurement [669], which provides
partial integrated decay rates in 10 bins in the recoil parameter w, with the 2010 BaBar
data set in Ref. [670], which quotes the value of GB= (w)ngw|V.s| for ten values of w.%¢

56We thank Marcello Rotondo for providing the ten bins result of the BaBar analysis.
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B — Dtv (Ny=2+1)

Central Values Correlation Matrix
[V, | x 103 40.0 (1.0) 1.00 -0.525 -0.339 0.0487 -0.521 -0.433
ag 0.8946 (94) -0.525 1.00 0.303 -0.351 0.953 0.529
ay -8.03 (16) -0.339 0.303 1.00 0.203 0.375 0.876
ag 50.1 (3.1) 0.0487 -0.351 0.203 1.00 -0.276 0.196
ad 0.7804 (75) -0.521 0.953 0.375 -0.276 1.0 0.502
a? -3.38 (16) -0.433 0.529 0.876 0.196  0.502 1.0

Table 58: |V, coefficients for the N* = N z-expansion of the B — D form factors f; and
fo, and their correlation matrix. The coefficient aj is fixed by the fi(¢> = 0) = fo(q*> = 0)
constrain. The chi-square per degree of freedom is x?/dof = 20.0/25 = 0.80. The lattice
calculations that enter this fit are taken from FNAL/MILC [610] and HPQCD [611]. The
experimental inputs are taken from BaBar [670] and Belle [669].

The fit is dominated by the more precise Belle data; given this, and the fact that only
partial correlations among systematic uncertainties are to be expected, we will treat both
data sets as uncorrelated.®”

A constrained (N+ = N° = 3) BCL fit using the same ansatz as for lattice-only data
in Sec. 8.4, yields our average, which we present in Tab. 58. The chi-square per degree of
freedom is x?/dof = 20.0/25 = 0.80. The fit is illustrated in Fig. 37. In passing, we note
that, if correlations between the FNAL/MILC and HPQCD calculations are neglected,
the |V central value rises to 40.3 x 1072 in nice agreement with the results presented in
Ref. [671].

Before discussing the combination of the above |V| results, we note that the LHCb
Collaboration recently reported the first determination of |V,p| at the Large Hadron Col-
lider using B, — D, p*v, and By — D*~ ptuy, decays [618, 619]. The differential decay
rates, in combination with the Ny =2+ 1+ 1 HPQCD 19 [617] and HPQCD 19B [616]
lattice results for ff*‘_)Ds and FBs=D: (1), were analyzed using either the CLN or BGL
form-factor parameterizations. The result for |V ;| from the BGL fit is [619]

V| = (41.7£084094+1.1) x 107> B, — D~ pu*y,, BGL,LHCb . (298)

The LHCD analysis used ratios to the reference decay modes B® — D~ pty, and BY —
D*~ ptv,,, whose branching fractions are used as input in the form of the Particle Data
Group averages of measurements by other experiments [433]. The result (298) is therefore
correlated with the determinations of |V | from B — D and B — D* semileptonic decays.
Given the challenges involved in performing our own fit to the LHCb data, we do not,
at present, include the LHCb results for By — D;ptv, and B, — D: ptwy, in our
combination of |Vp|.

We now proceed to combine the determinations of |V| from exclusive B — D and
B — D* semileptonic decays. To this end, we need to estimate the correlation between
the lattice uncertainties in the two modes. We assume conservatively that the statistical
component of the lattice error in both determinations are 100% correlated because they
are based on the same MILC configurations (albeit on different subsets). We obtain:

Ny=2+1 [B — (D, D*)fv]paL [Viy| = 39.66(69) x 1073, (299)

5TWe have checked that results using just one experimental data set are compatible within 1o. In the case
of BaBar, we have taken into account the introduction of some EW corrections in the data.
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from |Vip| x 103
our average for Ny =2+ 1 (BGL) B — D*lv 39.37(74)(56)
our average for Ny =2+ 1 B — Dtv 40.0(1.0)
our average for Ny =2+ 1 (BGL) B — (D, D*)tv 39.66(69)
our average for Ny = 2 B — Dtv 40.0(3.7)(1.0)
LHCb result for Ny =2+ 1+ 1 (BGL) B, — DMt 41.7(0.8)(0.9)(1.1)
Bordone et al. B — X Alv 42.16(51)

Table 59: Results for |Vz|. When two errors are quoted in our averages, the first one comes
from the lattice form factor, and the second from the experimental measurement. The LHCb

result using By — Dg*)
kinetic scheme from Ref. [673] are shown for comparison.

lv decays [616-619], as well as the inclusive average obtained in the
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Figure 37: Lattice and experimental data for f270(¢?) and fP7P(¢?) versus z (left panel)
and ¢? (right panel). Green symbols denote lattice-QCD points included in the fit, while blue
and indigo points show experimental data divided by the value of |V,| obtained from the fit.
The grey and orange bands display the preferred N* = N = 3 BCL fit (five z-parameters

and |Vg)).

Our results are summarized in Tab. 59, which also shows the HFLAV inclusive de-
termination of |V = 42.16(51) x 1073 [672] for comparison, and illustrated in Fig. 38.
Finally, using the fit results in Tab. 59, we extract a value for R(D) which includes both
lattice and experimental information:

R(D)1at+exp = 0.2951(31),  our average. (300)

Note that we do not need to rescale the uncertainty on R(D)iatexp because, after the

inclusion of experimental B — D{v (£ = e, u) results, the shift in central value caused by
using a different parameterization is negligible (see the discussion above Eq. (255)).
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8.10 Determination of |V,,/V,| from A, decays
In 2015, the LHCb Collaboration reported a measurement of the ratio [636]

/qilax dB(Ay = pu~7,)
15 GeV? dg?
2
/qmax dB(Ay — Acp™1y,)
7 GeV? dg¢?
which, combined with the lattice QCD prediction [518] discussed in Sec. 8.6 yields a
determination of |V,,/Vey|. The LHCD analysis uses the decay A, — pK7 to reconstruct
the A. and requires the branching fraction B(A. — pKn) of this decay as an external

input. Using the latest world average of B(A. — pKn) = (6.28 + 0.32)% [169] to update
the LHCb measurement gives [263]

dg?
Rpr(Ap) =

; (301)

dg?

Rpr(Ap) = (0.92 4 0.04 4+ 0.07) x 1072, (302)
and, combined with the lattice QCD prediction for % discussed in Sec. 8.6,
[Vib/Ven| = 0.079 £ 0.004 15, £ 0.004 exp.- (303)

8.11 Determination of |V,,/V,| from By decays
More recently, LHCb reported the measurements [674]

TGV AB(B, — Kt u,)

d 2
q2. =m?2 dq2 4
RBF (387 IOW) — min H —
B(Bs — Ds ptvy,)
= (1.6640.12) x 1073, (304)
/ = =) AB(By - K~ ptw,) dg?
. dg?
R Bs,h h _ 7 GeV?
B ( igh) B(Bs — Dg utvy,)
= (3.25+£0.28) x 1073, (305)
RBF(B au) _ B(Bs — K_M+VN)
> B(Bs — D5 ptv
KTV
= (4.8940.33) x 1073, (306)

Using our average of the B, — K form factors from lattice QCD as discussed in Sec. 8.3.2,
we obtain the Standard-Model predictions

(2.51+£0.62)ps™t,  (307)

1 /7G6V2 dr(B, — K~ ptu,)
q

|VUb|2 12niu:m}2b dq2
2 2
1 max=(mB,—mK)” (B, — K~ pt
72/ (B, = —_—_ V) (4024050)pst,  (308)
Vun|* J7 Geve dg
1
WF(BS — K pty,) = (65+1.1)ps "t (309)
ub
For the denominator, we use the B; — D, form factors from Ref. [617], which yields
1
WF(BS — Dypty,) = (9.15+0.37) ps™ . (310)
cb
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Combined with the LHCb measurements we obtain

|Vub|

pray(ow) = 0.0779%0.0098 ot 40.0028cxp. (311)
v
||V“Z|| (high) = 0.0861 % 0.0057 ja¢. = 0.0038 exp., (312)
[Vuo| 1) = 0.0828 £+ 0.00701,;. = 0.0028 313
|‘/Cb| (a ) = . . lat. . exp. ( )

We will use the result from the high-¢® region in our combination in Sec. 8.12, as this is
the region in which the form factor shape is most reliably constrained by the lattice data.

8.12 Summary: |V,;| and |V

FIAG2023 IVylx10? FIAG2023 IVeplx103

+ w1 B> (BaBar) % )
X — B—1v (Belle) b —— Bs— D¢v (BGL,LHCD)
1 - B—1v (average) =

- FLAG average . FLAG average
T = B—ntv I B
TI .~ @+ B-tv(BaBar) bl o B— D" ¢v (BGL)
= B—1v (Belle) = - B Dtv

- B—1v (average) -
b m B—tv(BaBar) o~
o~ |
Py — B—1v (Belle) £ B— Dtv
= ——— B—1v (average)
;E PDG inclusive 1 - Bordone et al.
3.0 35 4.0 45 50 55 6.0 36 38 40 42 44 46

Figure 38: Left: Summary of |V,;| determined using: i) the B-meson leptonic decay branching
fraction, B(B~ — 7~ v), measured at the Belle and BaBar experiments, and our averages for
fp from lattice QCD; and ii) the various measurements of the B — mw/fv decay rates by Belle
and BaBar, and our averages for lattice determinations of the relevant vector form factor
f+(¢?). Right: Same for determinations of |V,| using semileptonic decays. The inclusive
results are taken from Refs. [625, 673].

In Fig. 39, we present a summary of determinations of |V, and |Vg| from B —
(7, DNy, B, — (K,D,)lv (high ¢*> only), B — 7v and Ay, — (p,A.)lv, as well as
the results from inclusive B — X, .fv decays. Note that constraints on |V,,/V,,| from
baryon modes are displayed but, in view of the rating in Tab. 55, are not included in the
global fit. As discussed in Sec. 8.9, experimental inputs used in the extraction of |V |
from By — DMy decays [618, 619] given in Eq. (298) are highly correlated with those
entering the global (|Visl,|Ves|) fit described in this section. Given these correlations and
the challenges in reproducing the LHCb analysis, for the time being we do not include
the result Eq. (298) into the global fit.

Currently, the determinations of Vi, from B — D* and B — D decays are quite com-
patible; however, a sizeable tension involving the extraction of V,, from inclusive decays
remains. In the determination of the 1o and 20 contours for our average, we have included
an estimate of the correlation between |V,;| and |Ve| from semileptonic B decays: the
lattice inputs to these quantities are dominated by results from the Fermilab/MILC and
HPQCD collaborations that are both based on MILC Ny = 24-1 ensembles, leading to our
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conservatively introducing a 100% correlation between the lattice statistical uncertainties
of the three computations involved. The results of the fit are

V.| = 39.75(69) x 1072 , (314)
|V.p] = 3.61(14) x 1073 (315)
p—value = 0.74 . (316)

For reference, the inclusive determinations read |V, |inc = (42.16 +£0.51) x 1073 [673] and
[V plinet = (4.32£0.126xp £0.13theo £0.23a57) x 1073 [169, 263] (the ABF error has been
added in Ref. [169] to account for the spread in results obtained using different theoretical
models). Note that a recent Belle analysis [675] of partial B — X, ¢ v, branching fractions

finds a slightly lower central value |V, |inc1,Belle = (4.10 £ 0.09¢a¢ £ 0.22gy6¢ £ 0.15¢he0) X
1073,
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Figure 39: Summary of |V,| and |V,| determinations. The black solid and dashed
lines correspond to 68% and 95% C.L. contours, respectively. The result of the global
fit (which does not include |V,,/V,| from baryon modes nor |Vg| from By — Dg*)&/)
is (V. [V = (39.75 & 0.69,3.61 = 0.14) x 103 with a p-value of 0.74. The lat-
tice and experimental results that contribute to the various contours are the following.
B — wlv: lattice (FNAL/MILC [559], RBC/UKQCD [560], and JLQCD [561]) and ex-
periment (BaBar [652, 653] and Belle [654, 655]). B — D/{v: lattice (FNAL/MILC [610]
and HPQCD [611]) and experiment (BaBar [670] and Belle [669]). B — D*{v: lattice
(FNAL/MILC [609]) and experiment (Belle [661]). B — 7v: lattice (fp determinations
in Fig 27) and experiment (BaBar [530] and Belle [529]). Bs — K{lv/Bs; — Dglv: lat-
tice (HPQCD [571], RBC/UKQCD [575], FNAL/MILC [574], HPQCD [617]) and experi-
ment (LHCb [674]). Ay — plv/Ay, — A lv: lattice (Detmold 15 [518]) and experiment
(LHCb [636]). Bs — Dilv/B; — Dgly: lattice (HPQCD 19 [617] and HPQCD 19B
[616]) and experiment (LHCb [618, 619]). The inclusive determinations are taken from
Refs. [169, 263, 672] and read (|V,;|,|V.;)ina = (42.16 £ 0.51,4.32 + 0.29) x 1073.
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9 The strong coupling oy

Authors®® : R. Horsley, P. Petreczky, S. Sint

9.1 Introduction

The strong coupling g,(u) defined at scale p, plays a key role in the understanding of
QCD and in its application to collider physics. For example, the parametric uncertainty
from «; is one of the dominant sources of uncertainty in the Standard-Model prediction
for the H — bb partial width, and the largest source of uncertainty for H — gg. Thus
higher precision determinations of as are needed to maximize the potential of experimental
measurements at the LHC, and for high-precision Higgs studies at future colliders and
the study of the stability of the vacuum [676-683]. The value of «; also yields one of the
essential boundary conditions for completions of the Standard Model at high energies.
In order to determine the running coupling at scale u

=2
gs (1)
= 317
as(p) = ==, (317)
we should first “measure” a short-distance quantity Q at scale u either experimentally
or by lattice calculations, and then match it to a perturbative expansion in terms of a
running coupling, conventionally taken as aggg(i),

Qu) = croggs () + caogg()® + -+ - (318)

The essential difference between continuum determinations of « and lattice determina-
tions is the origin of the values of Q in Eq. (318).

The basis of continuum determinations are experimentally measurable cross sections
or decay widths from which Q is defined. These cross sections have to be sufficiently
inclusive and at sufficiently high scales such that perturbation theory can be applied.
Often hadronization corrections have to be used to connect the observed hadronic cross
sections to the perturbative ones. Experimental data at high p, where perturbation theory
is progressively more precise, usually have increasing experimental errors, and it is not
easy to find processes that allow one to follow the u-dependence of a single Q(u) over a
range where a(p) changes significantly and precision is maintained.

In contrast, in lattice gauge theory, one can design Q(u) as Euclidean short-distance
quantities that are not directly related to experimental observables. This allows us to fol-
low the p-dependence until the perturbative regime is reached and nonperturbative “cor-
rections” are negligible. The only experimental input for lattice computations of « is the
hadron spectrum which fixes the overall energy scale of the theory and the quark masses.
Therefore experimental errors are completely negligible and issues such as hadronization
do not occur. We can construct many short-distance quantities that are easy to calculate
nonperturbatively in lattice simulations with small statistical uncertainties. We can also
simulate at parameter values that do not exist in nature (for example, with unphysical
quark masses between bottom and charm) to help control systematic uncertainties. These
features mean that precise results for a can be achieved with lattice-gauge-theory com-
putations. Further, as in the continuum, the different methods available to determine
in lattice calculations with different associated systematic uncertainties enable valuable
cross-checks. Practical limitations are discussed in the next section, but a simple one is

58There is a strong overlap with the FLAG 19 report’s section on as, authored by R. Horsley, T. Onogi and
R. Sommer [4]. In particular the introduction, and the description of methods without new data have been
taken over almost unchanged.
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worth mentioning here. Experimental results (and therefore the continuum determina-
tions) of course have all quarks present, while in lattice gauge theories in practice only
the lighter ones are included and one is then forced to use the matching at thresholds, as
discussed in the following subsection.

It is important to keep in mind that the dominant source of uncertainty in most
present day lattice-QCD calculations of ag are from the truncation of continuum/lattice
perturbation theory and from discretization errors. Perturbative truncation errors are
of particular concern because they often cannot easily be estimated from studying the
data itself. Further, the size of higher-order coefficients in the perturbative series can
sometimes turn out to be larger than naive expectations based on power counting from
the behaviour of lower-order terms. We note that perturbative truncation errors are also
the dominant source of uncertainty in several of the phenomenological determinations of
Q.

The various phenomenological approaches to determining the running coupling con-
stant, a%(M z) are summarized by the Particle Data Group [169]. The PDG review lists
five categories of phenomenological results used to obtain the running coupling: using
hadronic 7 decays, hadronic final states of e*e™ annihilation, deep inelastic lepton—nucleon
scattering, electroweak precision data, and high energy hadron collider data. Excluding
lattice results, the PDG quotes the weighted average as

ol (Mz) = 0.1176(11), PDG 20 [169] (319)

compared to a%(MZ) = 0.1174(16) of the older PDG 2018 [433]. For a general overview

of the various phenomenological and lattice approaches see, e.g., Ref. [684]. The extraction

of a, from 7 data, which is one of the most precise and thus has a large impact on

the nonlattice average in Eq. (319), is especially sensitive to the treatment of higher-

order perturbative terms as well as the treatment of nonperturbazsi)ve effects. This is
5

important to keep in mind when comparing our chosen range for am(M z) from lattice

determinations in Eq. (396) with the nonlattice average from the PDG.

9.1.1 Scheme and scale dependence of o, and Aqcp

Despite the fact that the notion of the QCD coupling is initially a perturbative concept,
the associated A parameter is nonperturbatively defined

A pes(gs (),

2 _2 9s 1 1 b
(5.) = 52)—01/(2b3) ,~1/(2bog?) _ T S
#el0:) = (o) ‘ e"p{ / ‘“” (ﬁ(w) " Bpa? ngﬂ ’

(320)

where §(gs) = ,uaggil(f) is the full renormalization group function in the scheme which de-

fines g5, and by and by are the first two scheme-independent coefficients of the perturbative
expansion

B(x) ~ bz — bya® + ..., (321)

with

1 2 1 38
o= e (13%) 0= e (102 ) 322

Thus the A parameter is renormalization-scheme-dependent but in an exactly computable
way, and lattice gauge theory is an ideal method to relate it to the low-energy properties
of QCD. In the MS scheme presently b,, up to n; = 4 are known [203, 685-688].
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The change in the coupling from one scheme S to another (taken here to be the MS
scheme) is perturbative,

gars() = g3 () (1 + Vg () +...) (323)
where ng‘)’ 1 > 1 are finite renormalization coefficients. The scale p must be taken high
enough for the error in keeping only the first few terms in the expansion to be small. On
the other hand, the conversion to the A parameter in the MS scheme is given exactly by

Asis = As exp[ (1) /(QbO)] . (324)
The fact that Ay can be obtained exactly from Ag in any scheme S where cg,l) is
known together with the high-order knowledge (5-loop by now) of fyg means that the
errors in ayg(mz) are dominantly due to the errors of Ag. We will therefore mostly
discuss them in that way. Starting from Eq. (320), we have to consider (i) the error of
g% (1) (denoted as (%)Aas ) and (ii) the truncation error in Bg (denoted as (%)trunc).
Concerning (ii), note that knowledge of cgnl) for the scheme S means that 8¢ is known to
n; + 1 loop order; by, is known. We thus see that in the region where perturbation theory
can be applied, the following errors of Ag (or consequently Ayrg) have to be considered

% _ AOés( ) N
( A )Aas T 8mhoad(n) x [+ Olas(w)] (325)
<A1\A)tmnc = kalg () + O(al™ (). (326)

where k depends on b, 41 and in typical good schemes such as MS it is numerically of
order one. Statistical and systematic errors such as discretization effects contribute to
Aag(p). In the above we dropped a scheme subscript for the A-parameters because of
Eq. (324).

By convention agg is usually quoted at a scale i = Mz where the appropriate effective
coupling is the one in the 5-flavour theory: al(\;li)(M 7). In order to obtain it from a result
with fewer flavours, one connects effective theories with different number of flavours as
discussed by Bernreuther and Wetzel [689]. For example, one considers the MS scheme,
matches the 3-flavour theory to the 4-flavour theory at a scale given by the charm-quark
mass [690-692], runs with the 5-loop S-function [203, 685-688] of the 4-flavour theory
to a scale given by the b-quark mass, and there matches to the 5-flavour theory, after
which one runs up to u = Mz with the 5-loop § function. For the matching relation at
a given quark threshold we use the mass m, which satisfies m, = Mgg(m.), where m is
the running mass (analogous to the running coupling). Then

g?\ff*l(m*) = gfz\ff (m*) [1 + 0 x ng m* + Ztn ng m*)] (327>
n>2

with [690, 692, 693]
111

ty = —— - 328

2 (47T2)2 79 ) ( )
1 82043 . 564731 2633

ty = - - Ny—1 2

° (472)3 27618 + 124116~ 31102 )} ’ (829)
1

b= [5.170347 — 1.009932(N; — 1) — 0.021978 (N; — 1)2],  (330)
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(where (3 is the Riemann zeta-function) provides the matching at the thresholds in the
MS scheme. Often the package RunDec is used for quark-threshold matching and running
in the MS-scheme [694, 695].

While to, ts, t4 are numerically small coefficients, the charm-threshold scale is also
relatively low and so there are nonperturbative uncertainties in the matching procedure,
which are difficult to estimate but which we assume here to be negligible. Obviously
there is no perturbative matching formula across the strange “threshold”; here matching
is entirely nonperturbative. Model dependent extrapolations of g3, from Ny = 0,2 to
Ny = 3 were done in the early days of lattice gauge theory. We will include these in
our listings of results but not in our estimates, since such extrapolations are based on
untestable assumptions.

9.1.2 Overview of the review of a;

We begin by explaining lattice-specific difficulties in Sec. 9.2.1 and the FLAG criteria
designed to assess whether the associated systematic uncertainties can be controlled and
estimated in a reasonable manner. These criteria are taken over unchanged from the
FLAG 19 report, as there has not yet been sufficiently broad progress to make these
criteria more stringent. We would also like to point to a recent review [696] of lattice
methodology and systematic uncertainties for «s. There, a systematic scale variation is
advocated to assess systematic errors due to the truncation of the perturbative series and
such a procedure may indeed be incorporated into future FLAG criteria, as it can be
applied without change to most lattice approaches.

We then discuss, in Sec. 9.3 — Sec. 9.9, the various lattice approaches and results from
calculations with Ny =0, 2, 241, and 2+1+41 flavours.

Besides new results and upgrades of previous works, a new strategy of nonperturbative
renormalization by decoupling has been proposed by the ALPHA collaboration [697],
which shifts the perspective on results with unphysical flavour numbers, in particular for
N; = 0. As these can be nonperturbatively related to Ny > 0 results by a nonperturbative
matching calculation, it becomes very important to obtain precise and controlled Ny = 0
results, with obvious implications for this and future FLAG reports. A short account of
the decoupling strategy is given in Sec. 9.4.

In Sec. 9.11, we present averages together with our best estimates for a%. These are
currently determined from 3- and 4-flavour QCD simulations only, however, in the near
future the decoupling strategy is expected to link e.g. 3-flavour simulations with the pure
gauge theory simulations. Therefore, for the A parameter, we also give results for other
numbers of flavours, including Ny = 0 and Ny = 2.

9.1.3 Additions with respect to the FLAG 19 report
The additional papers since the FLAG 19 report are:

Dalla Brida 19 [698] and Nada 20 [699] from step-scaling methods (Sec. 9.3).
ALPHA 19A [697] from the decoupling method (Sec. 9.4).

TUMQCD 19 [79] and Ayala 20 [78] and Husung 20 [700] from the static quark
potential (Sec. 9.5).

Cali 20 [80] from (light-quark) vacuum polarization in position space (Sec. 9.6).

Petreczky 20 [701], Petreczky 19 [28], and Boito 20 [702, 703] from heavy-quark
current two-point functions (Sec. 9.8).

Zafeiropoulos 19 [704] from QCD vertices (Sec. 9.9).
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9.2 General issues

9.2.1 Discussion of criteria for computations entering the averages

As in the PDG review, we only use calculations of as published in peer-reviewed journals,
and that use NNLO or higher-order perturbative expansions, to obtain our final range in
Sec. 9.11. We also, however, introduce further criteria designed to assess the ability to
control important systematics, which we describe here. Some of these criteria, e.g., that
for the continuum extrapolation, are associated with lattice-specific systematics and have
no continuum analogue. Other criteria, e.g., that for the renormalization scale, could in
principle be applied to nonlattice determinations. Expecting that lattice calculations will
continue to improve significantly in the near future, our goal in reviewing the state-of-
the-art here is to be conservative and avoid prematurely choosing an overly small range.

In lattice calculations, we generally take Q to be some combination of physical ampli-
tudes or Euclidean correlation functions which are free from UV and IR divergences and
have a well-defined continuum limit. Examples include the force between static quarks
and two-point functions of quark-bilinear currents.

In comparison to values of observables Q determined experimentally, those from lattice
calculations require two more steps. The first step concerns setting the scale p in GeV,
where one needs to use some experimentally measurable low-energy scale as input. Ideally
one employs a hadron mass. Alternatively convenient intermediate scales such as /tg, wo,
ro, 71, [118, 319, 705, 706] can be used if their relation to an experimental dimensionful
observable is established. The low-energy scale needs to be computed at the same bare
parameters where Q is determined, at least as long as one does not use the step-scaling
method (see below). This induces a practical difficulty given present computing resources.
In the determination of the low-energy reference scale the volume needs to be large enough
to avoid finite-size effects. On the other hand, in order for the perturbative expansion of
Eq. (318) to be reliable, one has to reach sufficiently high values of u, i.e., short enough
distances. To avoid uncontrollable discretization effects the lattice spacing a has to be
accordingly small. This means

L >> hadron size ~ AééD and 1/a > p, (331)
(where L is the box size) and therefore
L/a > M/AQCD . (332)

The currently available computer power, however, limits L/a, typically to L/a = 32 — 96.
Unless one accepts compromises in controlling discretization errors or finite-size effects,
this means one needs to set the scale p according to

1 << Ljax Agep  ~ 10— 30GeV . (333)

(Here <« or >> means at least one order of magnitude smaller or larger.) Therefore, u
can be 1 — 3GeV at most. This raises the concern whether the asymptotic perturbative
expansion truncated at 1-loop, 2-loop, or 3-loop in Eq. (318) is sufficiently accurate.
There is a finite-size scaling method, usually called step-scaling method, which solves this
problem by identifying x4 = 1/L in the definition of Q(u), see Sec. 9.3.

For the second step after setting the scale p in physical units (GeV), one should
compute Q on the lattice, Qlat(a, ) for several lattice spacings and take the continuum
limit to obtain the left hand side of Eq. (318) as

Q) = lin}J Qlat(a, p) with p fixed. (334)
a—

This is necessary to remove the discretization error.
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Here it is assumed that the quantity Q has a continuum limit, which is regularization-
independent. The method discussed in Sec. 9.7, which is based on the perturbative expan-
sion of a lattice-regulated, divergent short-distance quantity Wi, (a) differs in this respect
and must be treated separately.

In summary, a controlled determination of « needs to satisfy the following;:

1. The determination of a; is based on a comparison of a short-distance quantity Q
at scale p with a well-defined continuum limit without UV and IR divergences to a
perturbative expansion formula in Eq. (318).

2. The scale p is large enough so that the perturbative expansion in Eq. (318) is precise
to the order at which it is truncated, i.e., it has good asymptotic convergence.

3. If Q is defined by physical quantities in infinite volume, one needs to satisfy Eq. (332).

Nonuniversal quantities need a separate discussion, see Sec. 9.7.

Conditions 2. and 3. give approximate lower and upper bounds for u respectively. It
is important to see whether there is a window to satisfy 2. and 3. at the same time. If
it exists, it remains to examine whether a particular lattice calculation is done inside the
window or not.

Obviously, an important issue for the reliability of a calculation is whether the scale
w that can be reached lies in a regime where perturbation theory can be applied with
confidence. However, the value of p does not provide an unambiguous criterion. For
instance, the Schrédinger Functional, or SF-coupling (Sec. 9.3) is conventionally taken at
the scale u = 1/L, but one could also choose p = 2/L. Instead of p we therefore define
an effective aeg. For schemes such as SF (see Sec. 9.3) or ¢qq (see Sec. 9.5) this is directly
the coupling of the scheme. For other schemes such as the vacuum polarization we use
the perturbative expansion Eq. (318) for the observable Q to define

et = Qfcy . (335)

If there is an a-independent term it should first be subtracted. Note that this is nothing
but defining an effective, regularization-independent coupling, a physical renormalization
scheme.

Let us now comment further on the use of the perturbative series. Since it is only an
asymptotic expansion, the remainder R, (Q) = Q—>",_, c;al of a truncated perturbative
expression Q ~ >, c;a’ cannot just be estimated as a perturbative error ka”**. The
error is nonperturbative. Often one speaks of “nonperturbative contributions”, but non-
perturbative and perturbative cannot be strictly separated due to the asymptotic nature
of the series (see, e.g., Ref. [707]).

Still, we do have some general ideas concerning the size of nonperturbative effects.
The known ones such as instantons or renormalons decay for large p like inverse powers
of p and are thus roughly of the form

exp(—v/as) (336)
with some positive constant «v. Thus we have, loosely speaking,
Q =cras + 20’ + ..+ + 0> + Ofexp(—v/as)) . (337)

For small ay, the exp(—y/as) is negligible. Similarly the perturbative estimate for the
magnitude of relative errors in Eq. (337) is small; as an illustration for n = 3 and as = 0.2
the relative error is ~ 0.8% (assuming coefficients |c,+1/c1| ~ 1).

For larger values of a5 nonperturbative effects can become significant in Eq. (337). An
instructive example comes from the values obtained from 7 decays, for which a; =~ 0.3.
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Here, different applications of perturbation theory (fixed order and contour improved)
each look reasonably asymptotically convergent ® but the difference does not seem to
decrease much with the order (see, e.g., the contribution of Pich in Ref. [709]). In addi-
tion nonperturbative terms in the spectral function may be nonnegligible even after the
integration up to m, (see, e.g., Refs. [710], [711]). All of this is because a; is not really
small.

Since the size of the nonperturbative effects is very hard to estimate one should try
to avoid such regions of the coupling. In a fully controlled computation one would like
to verify the perturbative behaviour by changing «, over a significant range instead of
estimating the errors as ~ a”*! . Some computations try to take nonperturbative power
‘corrections’ to the perturbative series into account by including such terms in a fit to the
p-dependence. We note that this is a delicate procedure, both because the separation of
nonperturbative and perturbative is theoretically not well defined and because in practice
a term like, e.g., a,(u)® is hard to distinguish from a 1/u? term when the p-range is
restricted and statistical and systematic errors are present. We consider it safer to restrict
the fit range to the region where the power corrections are negligible compared to the
estimated perturbative error.

The above considerations lead us to the following special criteria for the determination
of a:

e Renormalization scale

all points relevant in the analysis have aeg < 0.2
all points have a.g < 0.4 and at least one aeg < 0.25
m otherwise
e Perturbative behaviour
verified over a range of a factor 4 change in o} without power corrections or
alternatively ol < 3Aaer/(8mhoaZ;) is reached
agreement with perturbation theory over a range of a factor (3/2)? in al}

possibly fitting with power corrections or alternatively aly < Aaes/(8mboa’s)
is reached

m otherwise
Here Aa.g is the accuracy cited for the dc;termination of aeg and my is the loop order
to which the connection of aeg to the MS scheme is known. Recall the discussion
around Eqs. (325,326); the S-function of aeg is then known to nj + 1 loop order.%°
e Continuum extrapolation
At a reference point of aer = 0.3 (or less) we require
three lattice spacings with pa < 1/2 and full O(a) improvement,
or three lattice spacings with pa < 1/4 and 2-loop O(a) improvement,
or pa < 1/8 and 1-loop O(a) improvement
three lattice spacings with pa < 3/2 reaching down to pa = 1 and full O(a)

improvement,
or three lattice spacings with pa < 1/4 and 1-loop O(a) improvement

m otherwise

9See, however, the recent discussion in [708].

500nce one is in the perturbative region with ceg, the error in extracting the A parameter due to the

ny

truncation of perturbation theory scales like o, as discussed around Eq. (326). In order to detect/control
such corrections properly, one needs to change the correction term significantly; we require a factor of four for

and a factor (3/2)% for a O. An exception to the above is the situation where the correction terms are
small anyway, i.e., alt & (AA/A)prunc < (AA/A)aa = Aces/(8TboaZs) is reached.
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We also need to specify what is meant by u. Here are our choices:

step-scaling : pu=1/L,
heavy quark-antiquark potential : pu=2/r,

observables in position space : pu=1/|z],
observables in momentum space : u=4gq,
moments of heavy-quark currents : p= 2m.,
eigenvalues of the Dirac operator : p = Ajg (338)

where |z] is the Euclidean norm of the 4-vector x, ¢ is the magnitude of the momentum, m,
is the heavy-quark mass (in the MS scheme) and usually taken around the charm-quark
mass and Aypg is the eigenvalue of the Dirac operator, see Sec. 9.10. We note again that
the above criteria cannot be applied when regularization dependent quantities Wi, (a) are
used instead of Q(u). These cases are specifically discussed in Sec. 9.7.

In principle one should also account for electro-weak radiative corrections. However,
both in the determination of a5 at intermediate scales p and in the running to high scales,
we expect electro-weak effects to be much smaller than the presently reached precision.
Such effects are therefore not further discussed.

The attentive reader will have noticed that bounds such as pa < 3/2 or at least
one value of aeg < 0.25 which we require for a are not very stringent. There is a
considerable difference between O and . We have chosen the above bounds, unchanged
as compared to FLAG 16 and FLAG 19, since not too many computations would satisfy
more stringent ones at present. Nevertheless, we believe that the O criteria already give
reasonable bases for estimates of systematic errors. An exception may be Cali 20, which
is discussed in detail in Sec. 9.6. In the future, we expect that we will be able to tighten
our criteria for inclusion in the average, and that many more computations will reach the
present s rating in one or more categories.

In addition to our explicit criteria, the following effects may influence the precision of
results:

Topology sampling: In principle a good way to improve the quality of determinations
of ay is to push to very small lattice spacings thus enabling large p. It is known that
the sampling of field space becomes very difficult for the HMC algorithm when the lattice
spacing is small and one has the standard periodic boundary conditions. In practice, for
all known discretizations the topological charge slows down dramatically for a ~ 0.05fm
and smaller [120, 129, 132-136]. Open boundary conditions solve the problem [137] but
are not frequently used. Since the effect of the freezing on short distance observables is
not known, we also do need to pay attention to this issue. Remarks are added in the text
when appropriate.

Quark-mass effects: We assume that effects of the finite masses of the light quarks
(including strange) are negligible in the effective coupling itself where large, perturbative,
1 is considered.

Scale setting: The scale does not need to be very precise, since using the lowest-order
B-function shows that a 3% error in the scale determination corresponds to a ~ 0.5%
error in as(Myz). As long as systematic errors from chiral extrapolation and finite-volume
effects are well below 3% we do not need to be concerned about those at the present level
of precision in as(Myz). This may change in the future.

9.2.2 Physical scale

Since FLAG 19, a new FLAG working group on scale setting has been established. We
refer to Sec. 11 for definitions and the current status. Note that the error from scale
setting is sub-dominant for current oy determinations.
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A popular scale choice has been the intermediate rg scale, and its variant ri, which
both derive from the force between static quarks, see Eq.(358). One should bear in mind
that their determination from physical observables also has to be taken into account. The
phenomenological value of rg was originally determined as rg = 0.49 fm through potential
models describing quarkonia [705]. Of course the quantity is precisely defined, indepen-
dently of such model considerations. But a lattice computation with the correct sea-quark
content is needed to determine a completely sharp value. When the quark content is not
quite realistic, the value of ry may depend to some extent on which experimental input is
used to determine (actually define) it.

The latest determinations from two-flavour QCD are rg = 0.420(14)-0.450(14) fm
by the ETM collaboration [49, 91], using as input f, and fx and carrying out various
continuum extrapolations. On the other hand, the ALPHA collaboration [712] deter-
mined ro = 0.503(10) fm with input from fg, and the QCDSF collaboration [111] cites
0.501(10)(11) fm from the mass of the nucleon (no continuum limit). Recent determina-
tions from three-flavour QCD are consistent with r = 0.313(3) fm and ro = 0.472(5) fm
[45, 124, 713]. Due to the uncertainty in these estimates, and as many results are based
directly on 7o to set the scale, we shall often give both the dimensionless number 79 Az,
as well as Ay In the cases where no physical rg scale is given in the original papers or
we convert to the rg scale, we use the value ro = 0.472 fm. In case r; Ayg is given in the
publications, we use r¢/r; = 1.508 [713], to convert, which remains well consistent with
the update [120] neglecting the error on this ratio. In some, mostly early, computations
the string tension, /o was used. We convert to ry using r3c = 1.65 — 7/12, which has
been shown to be an excellent approximation in the relevant pure gauge theory [714, 715].

The new scales tg, wy based on the gradient flow are very attractive alternatives to rg
but their discretization errors are still under discussion [116, 716-718] and their values at
the physical point are not yet determined with great precision. We remain with ry as our
main reference scale for now. A general discussion of the various scales is given in [719]
and in the scale-setting section of this FLAG report, cf. Sec. 11.

9.2.3 Studies of truncation errors of perturbation theory

As discussed previously, we have to determine «, in a region where the perturbative
expansion for the S-function, Eq. (321) in the integral Eq. (320), is reliable. In principle
this must be checked, however, this is difficult to achieve as we need to reach up to a
sufficiently high scale. A frequently used recipe to estimate the size of truncation errors
of the perturbative series is to vary the renormalization-scale dependence around the
chosen ‘optimal’ scale p., of an observable evaluated at a fixed order in the coupling from
1= 1+/2 to 2p,. For examples, see Ref. [696].

Alternatively, or in addition, the renormalization scheme chosen can be varied, which
investigates the perturbative conversion of the chosen scheme to the perturbatively defined
MS scheme and in particular ‘fastest apparent convergence’ when the ‘optimal’ scale is
chosen so that the O(a?) coefficient vanishes.

The ALPHA collaboration in Ref. [720] and ALPHA 17 [721], within the SF approach
defined a set of v-schemes for which the 3-loop (scheme-dependent) coefficient of the -
function for Ny = 2+1 flavours was computed to be b5 = —(0.064(27)+1.259(1)v)/(4m)3.

The standard SF scheme has v = 0. For comparison, b}'> = 0.324/(47)3. A range of scales
from about 4 GeV to 128 GeV was investigated. It was found that while the procedure
of varying the scale by a factor 2 up and down gave a correct estimate of the residual
perturbative error for v = 0...0.3, for negative values, e.g., v = —0.5, the estimated
perturbative error is much too small to account for the mismatch in the A-parameter
of ~ 8% at a, = 0.15. This mismatch, however, did, as expected, still scale with a2
with n; = 2. In the schemes with negative v, the coupling ay has to be quite small for
scale-variations of a factor 2 to correctly signal the perturbative errors.
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For a systematic study of renormalization scale variations as a measure of perturbative
truncation errors in various lattice determinations of s we refer to the recent review by
Del Debbio and Ramos [696].

9.3 «, from Step-Scaling Methods

9.3.1 General considerations

The method of step-scaling functions avoids the scale problem, Eq. (331). It is in principle
independent of the particular boundary conditions used and was first developed with
periodic boundary conditions in a two-dimensional model [722].

The essential idea of the step-scaling strategy is to split the determination of the
running coupling at large p and of a hadronic scale into two lattice calculations and
connect them by ‘step-scaling’. In the former part, we determine the running coupling
constant in a finite-volume scheme in which the renormalization scale is set by the inverse
lattice size 4 = 1/L. In this calculation, one takes a high renormalization scale while
keeping the lattice spacing sufficiently small as

p=1/L~10...100GeV, a/L<1. (339)

In the latter part, one chooses a certain g2, = §(1/Lmax), typically such that L.y is
around 0.5-1 fm. With a common discretization, one then determines L,.x/a and (in a
large volume L > 2-3 fm) a hadronic scale such as a hadron mass, \/fp/a or ro/a at the
same bare parameters. In this way one gets numbers for, e.g., Liax/r0 and by changing
the lattice spacing a carries out a continuum limit extrapolation of that ratio.

In order to connect §*(1/Lpax) to g2(u) at high p, one determines the change of the
coupling in the continuum limit when the scale changes from L to L/s, starting from
L = Lyay and arriving at p = s*/Lyay. This part of the strategy is called step-scaling.
Combining these results yields g%(u) at u = s* (rg/Limax) Ty L where ry stands for the
particular chosen hadronic scale. Most applications use a scale factor s = 2.

At present most applications in QCD use Schrodinger functional boundary condi-
tions [423, 723] and we discuss this below in a little more detail. (However, other bound-
ary conditions are also possible, such as twisted boundary conditions and the discussion
also applies to them.) An important reason is that these boundary conditions avoid zero
modes for the quark fields and quartic modes [724] in the perturbative expansion in the
gauge fields. Furthermore the corresponding renormalization scheme is well studied in
perturbation theory [725-727] with the 3-loop S-function and 2-loop cutoff effects (for the
standard Wilson regularization) known.

In order to have a perturbatively well-defined scheme, the SF scheme uses Dirichlet
boundary conditions at time ¢ = 0 and ¢ = 7. These break translation invariance and
permit O(a) counter terms at the boundary through quantum corrections. Therefore, the
leading discretization error is O(a). Improving the lattice action is achieved by adding
counter terms at the boundaries whose coefficients are denoted as ¢, ¢;. In practice, these
coefficients are computed with 1-loop or 2-loop perturbative accuracy. A better precision
in this step yields a better control over discretization errors, which is important, as can
be seen, e.g., in Refs. [714, 728].

Also computations with Dirichlet boundary conditions do in principle suffer from the
insufficient change of topology in the HMC algorithm at small lattice spacing. However,
in a small volume the weight of nonzero charge sectors in the path integral is exponentially
suppressed [729] 6 and in a Monte Carlo run of typical length very few configurations
with nontrivial topology should appear. Considering the issue quantitatively Ref. [730]

51'We simplify here and assume that the classical solution associated with the used boundary conditions has
charge zero. In practice this is the case.
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finds a strong suppression below L ~ 0.8 fm. Therefore the lack of topology change of the
HMC is not a serious issue for the high energy regime in step-scaling studies. However, the
matching to hadronic observables requires volumes where the problem cannot be ignored.
Therefore, Ref. [731] includes a projection to zero topology into the definition of the
coupling. We note also that a mix of Dirichlet and open boundary conditions is expected
to remove the topology issue entirely [732] and may be considered in the future.

Apart from the boundary conditions, the very definition of the coupling needs to
be chosen. We briefly discuss in turn, the two schemes used at present, namely, the
‘Schrédinger Functional’ (SF) and ‘Gradient Flow’ (GF) schemes.

The SF scheme is the first one, which was used in step-scaling studies in gauge theories
[423]. Inhomogeneous Dirichlet boundary conditions are imposed in time,

Ap(7)|zg=0 = Ck,  Ap()|zo=1 = Cy, (340)

for k = 1,2,3. Periodic boundary conditions (up to a phase for the fermion fields) with
period L are imposed in space. The matrices

LCy, = idiag(r] —7/3,-n/2,—-n/2+ 71'/3) ,
LCy, = idiag( —(n+m),n/2+7/3,n/2+ 271'/3) ,

just depend on the dimensionless parameter 7. The coupling gsr is obtained from the
n-derivative of the effective action,

(OnSln=0) = 1—QT7T (341)
9SF
For this scheme, the finite cﬁf), Eq. (323), are known for ¢ = 1,2 [726, 727].
More recently, gradient-flow couplings have been used frequently because of their small
statistical errors at large couplings (in contrast to gsg, which has small statistical errors
at small couplings). The gradient flow is introduced as follows [319, 733]. Consider the
flow gauge field B, (t,«) with the flow time ¢, which is a one parameter deformation of
the bare gauge field A, (x), where B, (t,z) is the solution to the gradient-flow equation

0:B,(t,x) = D,G,u(t x),
G, = 0,B,—0,B,+[B, B, (342)
with initial condition B,,(0,z) = A,(x). The renormalized coupling is defined by [319]
gér () = Ne(B(t2))| ,_y 5 » (343)

with ' = 1672/3 + O((a/L)?) and where E(t, ) is the action density given by

1
E(t,z) = Zsz(t’ z)Gy, (L, ). (344)
In a finite volume, one needs to specify additional conditions. In order not to introduce
two independent scales one sets

V8t =cL, (345)

for some fixed number ¢ [734]. Schrédinger functional boundary conditions [735] or twisted
boundary conditions [736, 737] have been employed. Matching of the GF coupling to the
MS-scheme coupling is known to 1-loop for twisted boundary conditions with zero quark
flavours and SU(3) group [737] and to 2-loop with SF boundary conditions with zero
quark flavours [738]. The former is based on a MC evaluation at small couplings®® and
the latter on numerical stochastic perturbation theory.

52For a variant of the twisted periodic finite volume scheme the 1-loop matching has been computed analyt-
ically [739].
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9.3.2 Discussion of computations

In Tab. 60 we give results from various determinations of the A parameter. For a clear

)
S
> S
¥ g8
S 5 5
¥y & F g
. C‘F & s S

Collaboration Ref. Ny QQ £ Q‘,b & scale roAsrg
ALPHA 10A [740] 4 A only running of «, in Fig. 4
Perez 10 [741] 4 C only step-scaling function in Fig. 4
ALPHA 17 [81] 241 A VBto = 0.415 fm 0.816(29)
PACS-CS 09A [82] 241 A m, 371(13)(8)(F5,)#  0.888(30)(18)(*3,)1

A m, 0.824(141)"
ALPHA 12° [712] 2 A fx 0.789(52)
ALPHA 04  [742] 2 A =m ro = 0.5 fm? 245(16)(16)% 0.62(2)(2)"
ALPHA 01A [743] 2 A only running of a; in Fig. 5
Nada 20 [699] O A consistency checks for [698], same gauge configurations
Dalla Brida 19[698] 0 A ro = 0.5fm 0.660(11)
Ishikawa 17 [737] 0 A 0, [v/7] 0.606(9) (31T
CP-PACS 04%[728] 0 A only tables of g2p
ALPHA 98'" [744] 0 A ro = 0.5fm 0.602(48)
Liischer 93 [725] 0 A ro = 0.5fm 0.590(60)%%

#

* Supersedes ALPHA 04.

Result with a constant (in a) continuum extrapolation of the combination Lmaxm,.
In conversion from Agrg to roAyg and vice versa, ro is taken to be 0.472 fm.
Result with a linear continuum extrapolation in @ of the combination Lyaxm,.

The Ny = 2 results were based on values for ro/a which have later been found to be too small by [712].

The effect will be of the order of 10-15%, presumably an increase in Arg. We have taken this into

account by a m in the renormalization scale.

as the scale setting of ALPHA 98.
Tt

8 Converted from agps(37r ") = 0.1108(25).
* Also Ags/v/@ = 0.532(8)(F27) is quoted.

Uses data of Liischer 93 and therefore supersedes it.

This investigation was a precursor for PACS-CS 09A and confirmed two step-scaling functions as well

Table 60: Results for the A parameter from computations using step-scaling of the SF-
coupling. Entries without values for A computed the running and established perturbative

behaviour at large p.

assessment of the Ny-dependence, the last column also shows results that refer to a com-
mon hadronic scale, ry. As discussed above, the renormalization scale can be chosen large
enough such that a; < 0.2 and the perturbative behaviour can be verified. Consequently
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only ¥ is present for these criteria except for early work where the n; = 2 loop correction
to MS was not yet known and we assigned a ®m concerning the renormalization scale.
With dynamical fermions, results for the step-scaling functions are always available for at
least a/L = pa =1/4,1/6,1/8. All calculations have a nonperturbatively O(a) improved
action in the bulk. For the discussed boundary O(a) terms this is not so. In most recent
calculations 2-loop O(a) improvement is employed together with at least three lattice
spacings.? This means a for the continuum extrapolation. In other computations
only 1-loop ¢; was available and we arrive at ©. We note that the discretization errors
in the step-scaling functions of the SF coupling are usually found to be very small, at the
percent level or below. However, the overall desired precision is very high as well, and
the results in CP-PACS 04 [728] show that discretization errors at the below percent level
cannot be taken for granted. In particular with staggered fermions (unimproved except
for boundary terms) few percent effects are seen in Perez 10 [741].

In the work by PACS-CS 09A [82], the continuum extrapolation in the scale setting
is performed using a constant function in a and with a linear function. Potentially the
former leaves a considerable residual discretization error. We here use, as discussed with
the collaboration, the continuum extrapolation linear in a, as given in the second line of
PACS-CS 09A [82] results in Tab. 60. After perturbative conversion from a three-flavour
result to five flavours (see Sec. 9.2.1), they obtain

ol (Mz) = 0.118(3). (346)

In Ref. [81], the ALPHA collaboration determined A% combining step-scaling in

géF in the lower scale region pihaq < p < o, and step-scaling in g%F for higher scales
o < pu < ppr. Both schemes are defined with SF boundary conditions. For géF a
projection to the sector of zero topological charge is included, Eq. (344) is restricted to
the magnetic components, and ¢ = 0.3. The scales pnaq, po, and pupr are defined by
Gép (Bhaa) = 11.3, g3p(p0) = 2.012, and ppr = 1610 which are roughly estimated as

1/Liax = phaa = 0.2 GeV, pg~4 GeV, pupr ~ 70 GeV. (347)

Step-scaling is carried out with an O(a)-improved Wilson quark action [745] and Liischer-
Weisz gauge action [746] in the low-scale region and an O(a)-improved Wilson quark
action [747] and Wilson gauge action in the high-energy part. For the step-scaling using
steps of L/a — 2L/a, three lattice sizes L/a = 8,12, 16 were simulated for g4 and four
lattice sizes L/a = (4,)6,8,12 for gip. The final results do not use the small lattices

given in parenthesis. The parameter A% is then obtained via

(3) A HpT Hhad

AB) = —MS X . X frKk ;o (348

MS HPT Hhad Jrk ~~ (348)
~—— ~—— N~ experimental data

perturbation theory step—scaling large volume simulation

where the hadronic scale frx is frx = %(2]”;( + fr) = 147.6(5) MeV. The first factor on
the right hand side of Eq. (348) is obtained from agp(ppr) which is the output from SF
step-scaling using Eq. (320) with asr(pupr) 22 0.1 and the 3-loop S-function and the exact
conversion to the MS-scheme. The second factor is essentially obtained from step-scaling
in the GF scheme and the measurement of g2x(p0) (except for the trivial scaling factor of
16 in the SF running). The third factor is obtained from a measurement of the hadronic
quantity at large volume.

A large-volume simulation is done for three lattice spacings with sufficiently large
volume and reasonable control over the chiral extrapolation so that the scale determination

53With 2-loop O(a) improvement we here mean c¢; including the go term and & with the g2 term. For gluonic
observables such as the running coupling this is sufficient for cutoff effects being suppressed to O(g%a).
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is precise enough. The step-scaling results in both schemes satisfy renormalization criteria,
perturbation theory criteria, and continuum limit criteria just as previous studies using
step-scaling. So we assign green stars for these criteria.

The dependence of A, Eq. (320) with 3-loop S-function, on «g and on the chosen
scheme is discussed in [720]. This investigation provides a warning on estimating the
truncation error of perturbative series. Details are explained in Sec. 9.2.3.

The result for the A parameter is A% = 341(12) MeV, where the dominant error
comes from the error of agr(upr) after step-scaling in the SF scheme. Using 4-loop
matching at the charm and bottom thresholds and 5-loop running one finally obtains

ol (M) = 0.11852(84) . (349)

Several other results do not have a sufficient number of quark flavours or do not yet
contain the conversion of the scale to physical units (ALPHA 10A [740], Perez 10 [741]).
Thus no value for a%(M 7) is quoted.

The computation of Ishikawa et al. [737] is based on the gradient flow coupling with
twisted boundary conditions [736] (TGF coupling) in the pure gauge theory. Again they
use ¢ = 0.3. Step-scaling with a scale factor s = 3/2 is employed, covering a large
range of couplings from ag =~ 0.5 to ay =~ 0.1 and taking the continuum limit through
global fits to the step-scaling function on L/a = 12,16, 18 lattices with between 6 and 8
parameters. Systematic errors due to variations of the fit functions are estimated. Two
physical scales are considered: ro/a is taken from [714] and oa? from [198] and [748].
As the ratio Argr/Agg has not yet been computed analytically, Ref. [737] determines
the 1-loop relation between gsrp and grgr from MC simulations performed in the weak
coupling region and then uses the known Agr/Agg. Systematic errors due to variations
of the fit functions dominate the overall uncertainty.

Since FLAG 19 two new and quite extensive Ny = 0 step-scaling studies have been
carried out in Dalla Brida 19 [698] and by Nada and Ramos [699]. They use different
strategies for the running from mid to high energies, but use the same gauge configurations
and share the running at low energies and matching to the hadronic scales. These results
are therefore correlated. However, given the comparatively high value for roAgmg, it is
re-assuring that these conceptually different approaches yield perfectly compatible results
within errors of similar size of around 1.5% for /8tgAgg = 0.6227(98), or, alternatively
roAgrg = 0.660(11).

In Dalla Brida 19 [698] two GF-coupling definitions with SF-boundary conditions are
considered, corresponding to (colour-) magnetic and electric components of the action
density respectively. The coupling definitions include the projection to @ = 0, as was also
done in [81]. The flow time parameter is set to ¢ = 0.3, and both Zeuthen and Wilson flow
are measured. Lattice sizes range from L/a = 8 to L/a = 48, covering up to a factor of
3 in lattice spacings for the step-scaling function, where both L/a and 2L/a are needed.
Lattice effects in the step-scaling function are visible but can be extrapolated using global
fits with a? errors. Some remnant O(a) effects from the boundaries are expected, as
their perturbative cancellation is incomplete. These O(a) contaminations are treated as
a systematic error on the data, following [81] and are found to be subdominant. An
intermediate reference scale por is defined where o = 0.2, and the scales above and
below are analyzed separately. Again this is similar to [81], except that here GF coupling
data is available also at high energy scales. The GF S-functions are then obtained by
fitting to the continuum extrapolated data for the step-scaling functions. In addition,
a nonperturbative matching to the standard SF coupling is performed above ps for a
range of couplings covering a factor 2. The nonperturbative S-function for the SF scheme
can thus be inferred from the GF p-function. It turns out that GF schemes are very
slow to reach the perturbative regime. Particularly the A-parameter for the magnetic GF
coupling shows a large slope in o2, which is the parametric uncertainty with known 3-loop
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B-function. Also, convincing contact with the 3-loop S-function is barely seen down to
« = 0.08. This is likely to be related to the rather large 3-loop S-function coefficients,
especially for the magnetic GF scheme [738]. In contrast, once the GF couplings are
matched nonperturbatively to the SF scheme the contact to perturbative running can
be safely made. It is also re-assuring that in all cases the extrapolations (linear in o?)
to a = 0 for the A-parameters agree very well, and the authors argue in favour of such
extrapolations. Their data confirms that this procedure yields consistent results with the
SF scheme for v = 0, where such an extrapolation is not required.

The low energy regime between o and a hadronic scale pp,q is covered again using
the nonperturbative step-scaling function and the derived S-function. Finally, contact
between un.q and hadronic scales £y and rq is established using 5 lattice spacings covering
a factor up to 2.7. The multitude of cross checks of both continuum limit and perturbative
truncation errors make this a study which passes all current FLAG criteria by some
margin. The comparatively high value for r9Agg found in this study must therefore be
taken very seriously.

In Nada 20 [699], Nada and Ramos provide further consistency checks of [698] for
scales larger than p.ef. The step scaling function for ¢ = 0.2 is constructed in 2 steps, by
determining first the relation between couplings for ¢ = 0.2 and ¢ = 0.4 at the same L and
then increasing L to 2L keeping the flow time fixed (in units of the lattice spacing), so that
one arrives again at ¢ = 0.2 on the 2L volume. The authors demonstrate that the direct
construction of the step-scaling function for ¢ = 0.2 would require much larger lattices in
order to control the continuum limit at the same level of precision. The consistency with
[698] for the A-parameter is therefore a highly non-trivial check on the systematic effects
of the continuum extrapolations. The study obtains results for the A-parameter (again
extrapolating to @ = 0) with a similar error as in [698]. using the low-energy running
and matching to the hadronic scale from that reference. For this reason and since gauge
configurations are shared between both papers, these results are not independent of [698],
so Dalla Brida 19 will be taken as representative for both works.

9.4 The decoupling method

The ALPHA collaboration has proposed a new strategy to compute the A parameter in
QCD with Ny > 3 flavours based on simultaneous decoupling of Ny > 3 heavy quarks
with RGI mass M [697]. We refer to [749] for a pedagogical introduction and to [750]
for recent results. Generically, a running coupling in a mass-dependent renormalization
scheme

7 (u, M) = g ()= - O (M) (350)

can be represented by the corresponding Ny = 0 coupling, up to power corrections in 1/M.
The leading power is usually & = 2, however renormalization schemes in finite volume may
have k = 1, depending on the set-up. For example, this is the case with standard SF or
open boundary conditions in combination with a standard mass term. In practice one may
try to render such boundary contributions numerically small by a careful choice of the
scheme’s parameters. In principle, power corrections can be either (u/M)* or (A/M)F.
Fixing pt = ptgec, €-g. by prescribing a value for the mass-independent coupling, such that
tdec/A = O(1) thus helps to reduce the need for very large M. Defining g2 (jtdee, M) = uns
at fixed §%(ptdec, M = 0), Eq. (350) translates to a relation between A-parameters, which
can be cast in the form,

AW) M A0
MS Hdec _ MS , (Ny=0) —k
P = Vs (\/UM) Jr@(l% )
e o AVF) (0) ’
Hd Hd Alst As

(351)
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with the function ¢y as defined in Eq. (320), for scheme s and Ny = 0. A crucial
observation is that the function P, which gives the ratios of A-parameters A%/ Al(\TAg),
can be evaluated perturbatively to a very good approximation [162, 164]. Eq. (350) also
implies a relation between the couplings in mass-independent schemes, in the theories

with Ny and zero flavours, respectively. In the MS scheme this relation is analogous to
Eq. (327),

() M=) = ge(m) M) x € (gggg(ma) ™) (352)

and the function C(g) is also known up to to 4-loop order [690-693, 751]. The function
P(y), with y = M/ A%) can therefore be evaluated perturbatively in the MS scheme, as

the ratio
(Ny=0) *
7S W)/ C(g*(y))
Ply) = 8 ((if)y W), o) = 8 (m.). (353)
e (9%(y)

Hence, perturbation theory is only required at the scale set by the heavy-quark mass,
which works the better the larger M can be chosen. Once P is known, the LHS of (351)
can be inferred from a Ny = 0 computation of the RHS in the scheme s, assuming the
ratio Agrg/As is known from a 1-loop calculation.

To put the decoupling strategy into practice, the ALPHA collaboration uses Ny = 3,
so that information from [81] can be used. Using the massless GF coupling in finite
volume from this project, pdec is defined through g&p(ftaec) = 3.95, and thus known
in physical units, pgec = 789(15)MeV. Varying L/a between 12 and 32 (five lattice
spacings) defines a range of values for the bare coupling along a line of constant pge. and
for vanishing quark mass. Next, a mass-dependent GF coupling is defined at constant
Idec, using the available information on nonperturbative mass renormalization [207] and
O(a) improvement. In order to obtain a larger suppression of the leading 1/M boundary
correction term, the time extent T is here set to 2L, so as to maximize the distance to
the time boundaries. Choosing 4 values of z = M/ iqec within the range from 2 to 8, with
up to 5 lattice spacings® and using precision results for N; = 0 from [698] then leads

to the result for A%:s), up to power corrections in 1/z, expected to be predominantly
of order 1/z2. Figure 40, taken from [697] shows the continuum extrapolated results
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Figure 40: Illustration of the decoupling method, taken from ref. [697].

obtained for A%/ Idec at different values of z, together with the FLAG 19 average for
three-flavour QCD. While the authors of [697] stopped short of quoting an extrapolated
value for the three-flavour A-parameter, the result A% = 332(10)(2) MeV is now given

64 At the largest mass, z = 8, only the 2-3 finest lattice spacings are useful in a linear extrapolation in a?.
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in the 2021 lattice conference proceedings [750], compatible with ALPHA 17 albeit with
a somewhat smaller error. Despite some common elements with ALPHA 17, the authors
emphasize that the decoupling method is largely independent, with the overlap in squared
error amounting to ca. 40 percent. This is due to the fact that the error in ALPHA 17 is
dominated by the Ny = 3 step scaling procedure at high energy, and this part is completely
replaced by the Ny = 0 result by Dalla Brida 19 [698]. The decoupling method thus seems
to offer scope for a further error reduction, the major challenges being the continuum
extrapolation for the GF coupling at fixed and large RGI masses, followed by the large
M limit.

It is important to note that this new method relies on new precision results for Ny = 0
which have appeared in the last two years [698, 699]. Therefore, the pure gauge theory
acquires new relevance for ay results, beyond its traditional role as a test bed for the
study of systematic errors. FLAG will take account of this development by continuing
to carefully monitor Ny = 0 results. It is hoped that this will encourage more groups to
undertake precision studies with Ny = 0.

9.5 «a, from the potential at short distances

9.5.1 General considerations

The basic method was introduced in Ref. [752] and developed in Ref. [753]. The force
or potential between an infinitely massive quark and antiquark pair defines an effective
coupling constant via

dv(r) rgq(T)
Fr)=—==Cr= 5~ (354)
The coupling can be evaluated nonperturbatively from the potential through a numerical
differentiation, see below. In perturbation theory one also defines couplings in different
schemes oy, ay via

av(Q)
Q*
where one fixes the unphysical constant in the potential by lim,_,, V(r) = 0 and V(Q)
is the Fourier transform of V(r). Nonperturbatively, the subtraction of a constant in
the potential introduces an additional renormalization constant, the value of V(r.f) at
some distance r.t. Perturbatively, it is believed to entail a renormalon ambiguity. In
perturbation theory, the different definitions are all simply related to each other, and their
perturbative expansions are known including the a?, a?loga, and o log s, a(log as)?
terms [754-761].
The potential V (r) is determined from ratios of Wilson loops, W (r,t), which behave

V(r):—C’FaVT(T), or V(Q)=—-Cp (355)

as

(W(r,t)) = [eole™V 43" e, [2e= VMt (356)
n#0
where t is taken as the temporal extension of the loop, r is the spatial one and V,, are
excited-state potentials. To improve the overlap with the ground state, and to suppress
the effects of excited states, t is taken large. Also various additional techniques are used,
such as a variational basis of operators (spatial paths) to help in projecting out the ground
state. Furthermore some lattice-discretization effects can be reduced by averaging over
Wilson loops related by rotational symmetry in the continuum.
In order to reduce discretization errors it is of advantage to define the numerical
derivative giving the force as

F(r)) = ——+—~, (357)



where 77 is chosen so that at tree level the force is the continuum force. F(rp) is then
a ‘tree-level improved’ quantity and similarly the tree-level improved potential can be
defined [762].

Lattice potential results are in position space, while perturbation theory is naturally
computed in momentum space at large momentum. Usually, the Fourier transform of the
perturbative expansion is then matched to lattice data.

Finally, as was noted in Sec. 9.2.1, a determination of the force can also be used to
determine the scales rg, 71, by defining them from the static force by

reF(ro) = 1.65, 7riF(r)) =1. (358)

9.5.2 Discussion of computations

In Tab. 61, we list results of determinations of 7oAy (together with Agjg using the scale
determination of the authors).

Since the last review, FLAG 19, there have been three new publications, namely,
TUMQCD 19 [79], Ayala 20 [78] and Husung 20 [700].

The first determinations in the three-colour Yang Mills theory are by UKQCD 92 [753]
and Bali 92 [772] who used aqq as explained above, but not in the tree-level improved
form. Rather a phenomenologically determined lattice-artifact correction was subtracted
from the lattice potentials. The comparison with perturbation theory was on a more
qualitative level on the basis of a 2-loop S-function (n; = 1) and a continuum extrapolation
could not be performed as yet. A much more precise computation of aqq with continuum
extrapolation was performed in Refs. [714, 762]. Satisfactory agreement with perturbation
theory was found [762] but the stability of the perturbative prediction was not considered
sufficient to be able to extract a A parameter.

In Brambilla 10 [771] the same quenched lattice results of Ref. [762] were used and a
fit was performed to the continuum potential, instead of the force. Perturbation theory to
n; = 3 loop was used including a resummation of terms a2 (asIn o)™ and ot (agInag)™.
Close agreement with perturbation theory was found when a renormalon subtraction was
performed. Note that the renormalon subtraction introduces a second scale into the
perturbative formula which is absent when the force is considered.

Bazavov 14 [765] updates Bazavov 12 [766] and modifies this procedure somewhat.
They consider the perturbative expansion for the force. They set 4 = 1/r to eliminate
logarithms and then integrate the force to obtain an expression for the potential. The
resulting integration constant is fixed by requiring the perturbative potential to be equal
to the nonperturbative one exactly at a reference distance rf and the two are then
compared at other values of r. As a further check, the force is also used directly.

For the quenched calculation of Brambilla 10 [771] very small lattice spacings, a ~
0.025 fm, were available from Ref. [762]. For ETM 11C [769], Bazavov 12 [766], Karbstein
14 [768] and Bazavov 14 [765] using dynamical fermions such small lattice spacings are
not yet realized (Bazavov 14 reaches down to a ~ 0.041fm). They all use the tree-level
improved potential as described above. We note that the value of Ajrg in physical units
by ETM 11C [769] is based on a value of ro = 0.42 fm. This is at least 10% smaller than
the large majority of other values of rg. Also the values of ro/a on the finest lattices
in ETM 11C [769] and 71 /a for Bazavov 14 [765] come from rather small lattices with
myL = 2.4, 2.2 respectively.

Instead of the procedure discussed previously, Karbstein 14 [768] reanalyzes the data
of ETM 11C [769] by first estimating the Fourier transform V(p) of V (r) and then fitting
the perturbative expansion of V(p) in terms of ayis(p). Of course, the Fourier transform
requires some modelling of the r-dependence of V(r) at short and at large distances.
The authors fit a linearly rising potential at large distances together with string-like
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Collaboration Ref. Ny g @& g & scale Ayis[MeV]  roAyg
Ayala 20 [78] 241 A r1 = 0.3106(17) fm® 338(13) 0.802(31)
TUMQCD 19 [79] 2+1 A r1 = 0.3106(17) fm® 31473° 0.745(738)
Takaura 18 [763, 764] 2+1 A = Vo = 0.1465(25)fm® 334(10)(*32)% 0.799(51) "
Bazavov 14 [765] 24+1 A r1 = 0.3106(17) fm® 315(F1%)¢ 0. 746(+42)
Bazavov 12 [766] 2+1 A t #  ro = 0.468 fm 295(30) * 0.70(7)**
Karbstein 18 [767] 2 A ro = 0.420(14) fm®  302(16) 0.643(34)
Karbstein 14 [768] 2 A ro = 0.42 fm 331(21) 0.692(31)
ETM 11C [769] A ro = 0.42fm 315(30)° 0.658(55)
Husung 20 [700] O C no quoted value for Ayg
Husung 17 [770] 0 C ro = 0.50 fm 232(6) 0.590(16)
Brambilla 10 [771] 0 A tt 266(13)™ 0.637(F 32y
UKQCD 92 [753] 0 A tHoom Vo =0.44 GeV 256(20) 0.686(54)
Bali 92 [772] 0 A T+ om Vo =0.44 GeV 247(10) 0.661(27)

o

[SUR o}

)

* K

Tt

++

Scale determined from to in Ref. [118].
all(Myz) = 0.1179(7)(F13).
Determination on lattices with m~L = 2.2 —2.6. Scale from r; [120] as determined from f in Ref. [45].
alL(1.5GeV) = 0.336(F1?), all(Mz) = 0.1166(*4).
Scale determined from fr, see [91].
Since values of aes within our designated range are used, we assign a despite values of aeg up to
et = 0.5 being used.
Since values of 2a/r within our designated range are used, we assign a although only values of
2a/r > 1.14 are used at e = 0.3.
Using results from Ref. [713].
aL(1.5GeV) = 0.326(19), all(Mz) = 0.1156(*23).
Both potential and 7¢/a are determined on a small (L = 3.2r¢) lattice.
Uses lattice results of Ref. [714], some of which have very small lattice spacings where according to
more recent investigations a bias due to the freezing of topology may be present.
Our conversion using ro = 0.472 fm.
We give a O because only a NLO formula is used and the error bars are very large; our criterion does
not apply well to these very early calculations.

Table 61: Short-distance potential results.

corrections of order r~™ and define the potential at large distances by this fit.> Recall
that for observables in momentum space we take the renormalization scale entering our
criteria as p = ¢, Eq. (338). The analysis (as in ETM 11C [769]) is dominated by the data
at the smallest lattice spacing, where a controlled determination of the overall scale is

55Note that at large distances, where string breaking is known to occur, this is not any more the ground
state potential defined by Eq. (356).
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difficult due to possible finite-size effects. Karbstein 18 [767] is a reanalysis of Karbstein
14 and supersedes it. Some data with a different discretization of the static quark is
added (on the same configurations) and the discrete lattice results for the static potential
in position space are first parameterized by a continuous function, which then allows for
an analytical Fourier transformation to momentum space.

Similarly also for Takaura 18 [763, 764] the momentum space potential f/(Q) is the
central object. Namely, they assume that renormalon/power-law effects are absent in
V(Q) and only come in through the Fourier transformation. They provide evidence that
renormalon effects (both v = 1/2 and u = 3/2) can be subtracted and arrive at a nonper-
turbative term k A3_r2. Two different analyses are carried out with the final result taken
from “Analysis II”. Our numbers including the evaluation of the criteria refer to it. To-
gether with the perturbative 3-loop (including the o log s term) expression, this term is
fitted to the nonperturbative results for the potential in the region 0.04fm < r < 0.35fm,
where 0.04fm is r = a on the finest lattice. The nonperturbative potential data origi-
nates from JLQCD ensembles (Symanzik-improved gauge action and Mobius domain-wall
quarks) at three lattice spacings with a pion mass around 300 MeV. Since at the maximal
distance in the analysis we find agg(2/7) = 0.43, the renormalization scale criterion yields
a m. The perturbative behaviour is © because of the high orders in perturbation theory
known. The continuum-limit criterion yields a

One of the main issues for all these computations is whether the perturbative running
of the coupling constant has been reached. While for Ny = 0 fermions Brambilla 10
[771] reports agreement with perturbative behaviour at the smallest distances, Husung 17
(which goes to shorter distances) finds relatively large corrections beyond the 3-loop aqq-
For dynamical fermions, Bazavov 12 [766] and Bazavov 14 [765] report good agreement
with perturbation theory after the renormalon is subtracted or eliminated.

A second issue is the coverage of configuration space in some of the simulations, which
use very small lattice spacings with periodic boundary conditions. Affected are the small-
est two lattice spacings of Bazavov 14 [765] where very few tunnelings of the topological
charge occur [120]. With present knowledge, it also seems possible that the older data by
Refs. [714, 762] used by Brambilla 10 [771] are partially obtained with (close to) frozen
topology.

The computation in Husung 17 [770], for Ny = 0 flavours, first determines the coupling
gflq(r, a) from the force and then performs a continuum extrapolation on lattices down
to a ~ 0.015 fm, using a step-scaling method at short distances, r/rg S 0.5. Using the
4-loop B9¢ function this allows rgAqq to be estimated, which is then converted to the MS
scheme. o = 0qq ranges from ~ 0.17 to large values; we give for renormalization
scale and for perturbative behaviour. The range ap = 2a/r &~ 0.37-0.14 leads to a

in the continuum extrapolation. Recently these calculations have been extended in
Husung 20 [700]. A finer lattice spacing of ¢ = 0.01 fm (scale from ro = 0.5 fm) is reached
and lattice volumes up to L/a = 192 are simulated (in Ref. [770] the smallest lattice
spacing is 0.015 fm). The Wilson action is used despite its significantly larger cutoff effects
compared to Symanzik-improved actions; this avoids unitarity violations, thus allowing
for a clean ground state extraction via a generalized eigenvalue problem. Open boundary
conditions are used to avoid the topology-freezing problem. Furthermore, new results
for the continuum approach are employed, which determine the cutoff dependence at
O(a?) including the exact coupling-dependent terms, in the asymptotic region where the
Symanzik effective theory is applicable [773]. An ansatz for the remaining higher order
cutoff effects at O(a?) is propagated as a systematic error to the data, which effectively
discards data for r/a < 3.5. The large volume step-scaling function with step factor 3/4
is computed and compared to perturbation theory. For g, > 0.2 there is a noticeable
difference between the 2-loop and 3-loop results. Furthermore, the ultra-soft contributions
at 4-loop level give a significant contribution to the static QQ force. While this study
is for Ny = 0 flavours it does raise the question whether the weak coupling expansion

217



for the range of r-values used in present analyses of « is sufficiently reliable. Around
0qq ~ 0.21 the differences get smaller but the error increases significantly, mainly due

to the propagated lattice artifacts. The dependence of A"MLS:O\/% on agq is very similar
to the one observed in the previous study but no value for its ag, — 0 limit is quoted.
Husung 20 [700] is more pessimistic about the error on the A parameter stating the relative
error has to be 5% or larger, while Husung 17 quotes a relative error of 3%.

In 2+1-flavor QCD two new papers appeared on the determination of the strong
coupling constant from the static quark anti-quark potential after the FLAG 19 report
[78, 79]. In TUMQCD 19 [79]% the 2014 analysis of Bazavov 14 [765] has been extended by
including three finer lattices with lattice spacing a = 0.035, 0.030 and 0.025 fm as well as
lattice results on the free energy of static quark anti-quark pair at non-zero temperature.
On the new fine lattices the effect of freezing topology has been observed, however, it
was verified that this does not affect the potential within the estimated errors [774, 775].
The comparison of the lattice result on the static potential has been performed in the
interval ¥ = [Fmin, "max], With rmax = 0.131, 0.121, 0.098, 0.073 and 0.055 fm. The main
result quoted in the paper is based on the analysis with rmax = 0.073 fm [79]. Since the
new study employs a much wider range in r than the previous one [765] we give it a
for the perturbative behaviour. Since aeg = gq varies in the range 0.2-0.4 for the r
values used in the main analysis we give O for the renormalization scale. Several values
of Tmin have been used in the analysis, the largest being ruyin/a = V8 ~ 2.82, which
corresponds to au =~ 0.71. Therefore, we give a for continuum extrapolation in this
case. An important difference compared to the previous study [765] is the variation of
the renormalization scale. In Ref. [765] the renormalization scale was varied by a factor
of v/2 around the nominal value of g = 1/r, in order to exclude very low scales, for
which the running of the strong coupling constant is no longer perturbative. In the new
analysis the renormalization scale was varied by a factor of two. As the result, despite the
extended data set and shorter distances used in the new study the perturbative error did
not decrease [79]. We also note that the scale dependence turned out to be non-monotonic
in the range p = 1/(2r)-2/r [79]. The final result reads (“us” stands for “ultra-soft”),

A%:g = 314.0 + 5.8(stat) + 3.0(lat) + 1.7(scale) t1%* (pert) & 4.0(pert. us) MeV
= 314705 MeV, (359)

where all errors were combined in quadrature. This is in very good agreement with the
previous determination [765].

The analysis was also applied to the singlet static quark anti-quark free energy at
short distances. At short distances the free energy is expected to be the same as the
static potential. This is verified numerically in the lattice calculations TUMQCD 19 [79]
for ¥T < 1/4 with T being the temperature. Furthermore, this is confirmed by the
perturbative calculations at T' > 0 at NLO [776]. The advantage of using the free energy
is that it gives access to much shorter distances. On the other hand, one has fewer data
points because the condition 77" < 1/4 has to be satisfied. The analysis based on the free
energy gives

AN.f:3

sis = 310.9+11.3(stat) £ 3.0(lat) + 1.7(scale) 755 (pert) 4 2.1(pert. us) MeV

= 311(13) MeV, (360)

in good agreement with the above result and thus, providing additional confirmation of
it.

The analysis of Ayala 20 [78] uses a subset of data presented in TUMQCD 19 [79] with
the same correction of the lattice effects. For this reason the continuum extrapolation

86The majority of authors are the same as in [765].
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gets O, too. They match to perturbation theory for 1/r > 2 GeV, which corresponds to
Ot = 0gq = 0.2-0.4. Therefore, we give for the renormalization scale. They verify
the perturbative behaviour in the region 1 GeV < 1/r < 2.9 GeV, which corresponds
to variation of a4 by a factor of 3.34. However the relative error on the final result
has dA/A ~ 0. 035 which is larger than a2; = 0.011. Therefore, we give a for the
perturbative behaviour in this case. The final result for the A-parameter reads:

A%:g = 338 & 2(stat) £ 8(matching) £+ 10(pert) MeV = 338(13) MeV . (361)

This is quite different from the above result. This difference is mostly due to the organi-
zation of the perturbative series. The authors use ultra-soft (log) resummation, i.e. they
resum the terms a2t In™ o, to all orders instead of using fixed-order perturbation theory.
They also include what is called the terminant of the perturbative series associated to the
leading renormalon of the force [78]. When they use fixed order perturbation theory they
obtain very similar results to Refs. [79, 765]. It has been argued that log resummation
cannot be justified since for the distance range available in the lattice studies a; is not
small enough and the logarithmic and non-logarithmic higher-order terms are of a similar
size [765]. On the other hand, the resummation of ultra-soft logs does not lead to any
anomalous behaviour of the perturbative expansion like large scale dependence or bad
convergence [78].

To obtain the value of A%ﬂ from the static potential we combine the results in
Egs. (359) and (361) using the weighted average with the weight given by the perturbative
error and using the difference in the central value as the error estimate. This leads to

ATET? =330(24) MeV, (362)

from the static potential determination. In the case of TUMQCD 19, where the pertur-
bative error is very asymmetric we used the larger upper error for the calculation of the
corresponding weight.

9.6 «, from the light-quark vacuum polarization in momentum /po-
sition space

9.6.1 General considerations

Except for the new calculation Cali 20 [80], where position space is used (see below), the
light-flavour-current 2-point function is usually evaluated in momentum space, in terms
of the vacuum-polarization function. For the flavour-nonsinglet currents Jg (a = 1,2,3)
in the momentum representation this is parametrized as

(il = 8(6Q° ~ QuQIY(Q) - QuQIIT Q)] (363)
where @, is a space-like momentum and J, = V), for a vector current and J, = A,

for an axial-vector current. Defining I1;(Q) = (0) Q) + Hf,l)(Q), the operator product
expansion (OPE) of IIy/4(Q) is given by

Iy alope(Q”, o)

= et ol @) )™ Q2 )4 S oot <m5ffq>

q=u,d,s
(asGG)
Q4
for large Q?. The perturbative coefficient functions C (QQ) for the operators X (X =1,
i)
dq, GG) are given as OX/A(QZ) = Zizo (C’;/A) a’(Q?) and m is the running mass of

V/A

+Cac (Q%) +0(Q7°), (364)
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the mass-degenerate up and down quarks. CY /4 is known including o in a continuum
renormalization scheme such as the MS scheme [777-780]. Nonperturbatively, there are
terms in C’;(// 4 that do not have a series expansion in «,. For an example for the unit
operator see Ref. [781]. The term c is Q-independent and divergent in the limit of infinite
ultraviolet cutoff. However the Adler function defined as

S ()

D(Q) = Q"5 (365)
is a scheme-independent finite quantity. Therefore one can determine the running-coupling
constant in the MS scheme from the vacuum-polarization function computed by a lattice-
QCD simulation. Of course, there is the choice whether to use the vector or the axial
vector channel, or both, the canonical choice being IIy 4 4 = IIyy +114. While perturbation
theory does not distinguish between these channels, the nonperturbative contributions are
different, and the quality of lattice data may differ, too. For a given choice, the lattice
data of the vacuum polarization is fitted with the perturbative formula Eq. (364) with fit
parameter Ay parameterizing the running coupling aM—S(Qz).

While there is no problem in discussing the OPE at the nonperturbative level, the
‘condensates’ such as (a;GG) are ambiguous, since they mix with lower-dimensional op-
erators including the unity operator. Therefore one should work in the high-Q? regime
where power corrections are negligible within the given accuracy. Thus setting the renor-
malization scale as pu = \/@ , one should seek, as always, the window Aqep < u < a™t.

9.6.2 Definitions in position space

The 2-point current correlation functions in position space contain the same physical
information as in momentum space, but the technical details are sufficiently different to
warrant a separate discussion. The (Euclidean) current-current correlation function for
J J’f % (with flavour indices f, f’) is taken to be either the flavour non-diagonal vector or
axial vector current, with the Lorentz indices contracted,

Cante) = =2 (Tipav(@)Tfpanl0) = s (14 2 +0) . (369

©w

In the chiral limit, the perturbative expansion is known to a? [782], and is identical
for vector and axial vector correlators. The only scale is set by the Euclidean distance
1= 1/]z| and the effective coupling can thus be defined as

ae(p = 1/]a]) = 7 [(2*)* (7 /6)Ca v (2) — 1] . (367)

As communicated to us by the authors of [80], there is a typo in Eq. (35) of [782]. For
future reference, the numerical coefficients for the 3-loop conversion

aer(i) = aggs (k) + crajg(p) + c203(1) + caafs(n), (368)

should read
c1 = —1.4346, co = 0.16979, c3 = 3.21120. (369)

9.6.3 Discussion of computations

Results using this method in momentum space are, to date, only available using overlap
fermions or domain-wall fermions. Since the last review, FLAG 19, there has been one
new computation, Cali 20 [80], which uses the vacuum polarization in position space,
using O(a) improved Wilson fermions. The results are collected in Tab. 62 for Ny = 2,
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Collaboration Ref. Ny § ¢ & & scale Ayis[MeV]  roAjs
Cali 20 80] 2+1 A my? 342(17) 0.818(41)"
Hudspith 18 [785] 2+1 P E omot 337(40) 0.806(96)"
Hudspith 15 [786] 2+1 C E omot 300(24)* 0.717(58)
JLQCD 10 [784] 241 A = B 1o =0472fm  247(5) 0.591(12)
JLQCD/TWQCD 08C[783] 2 A B oro=049fm  234(9)(TL°)  0.581(22)(*80)

§ via to/az7 still unpublished. We use ro = 0.472 fm
* Determined in [10].

a 5
Evaluates to oL (M) = 0.11864(114)

In conversion to 7oA we used rg = 0.472 fm.

b oe%(MZ) =0.1181(27)(*5,). Agrs determined by us from oz%(? GeV) = 0.2961(185). In conversion to roA

we used rg = 0.472 fm.
* Determined by us from a%@ GeV) = 0.279(11). Evaluates to a%(Mz) = 0.1155(18).

T ol (Myz) = 0.1118(3)(*19).
Table 62: Results from the vaccum polarization in both momentum and position space

JLQCD/TWQCD 08C [783] and for Ny = 241, JLQCD 10 [784], Hudspith 18 [785] and
Cali 20 [80].

We first discuss the results of JLQCD/TWQCD 08C [783] and JLQCD 10 [784]. The
fit to Eq. (364) is done with the 4-loop relation between the running coupling and Ayzg. It
is found that without introducing condensate contributions, the momentum scale where
the perturbative formula gives good agreement with the lattice results is very narrow,
a@ ~ 0.8-1.0. When a condensate contribution is included the perturbative formula gives
good agreement with the lattice results for the extended range a@) =~ 0.6-1.0. Since there
is only a single lattice spacing a =~ 0.11 fm there is a m for the continuum limit. The
renormalization scale y is in the range of @ = 1.6-2 GeV. Approximating aeg ~ ag5(Q),
we estimate that aeg = 0.25-0.30 for Ny = 2 and aeg = 0.29-0.33 for Ny = 2+ 1. Thus
we give a O and m for Ny = 2 and Ny = 2+ 1, respectively, for the renormalization scale
and a m for the perturbative behaviour.

A further investigation of this method was initiated in Hudspith 15 [786] and com-
pleted by Hudspith 18 [785] (see also [787]) based on domain-wall fermion configurations
at three lattice spacings, a=! = 1.78, 2.38, 3.15 GeV, with three different light-quark
masses on the two coarser lattices and one on the fine lattice. An extensive discussion
of condensates, using continuum finite-energy sum rules was employed to estimate where
their contributions might be negligible. It was found that even up to terms of O((1/Q?)®)
(a higher order than depicted in Eq. (364) but with constant coefficients) no single con-
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densate dominates and apparent convergence was poor for low Q2 due to cancellations
between contributions of similar size with alternating signs. (See, e.g., the list given by
Hudspith 15 [786].) Choosing Q? to be at least ~ 3.8 GeV? mitigated the problem, but
then the coarsest lattice had to be discarded, due to large lattice artefacts. So this gives
a m for continuum extrapolation. With the higher Q2 the quark-mass dependence of the
results was negligible, so ensembles with different quark masses were averaged over. A
range of Q? from 3.8-16 GeV? gives aeg = 0.31-0.22, so there is a O for the renormaliza-
tion scale. The value of a2y reaches Aaesr/(8mboaesr) and thus gives a o for perturbative
behaviour. In Hudspith 15 [786] (superseded by Hudspith 18 [785]) about a 20% difference
in Iy (Q?) was seen between the two lattice spacings and a result is quoted only for the
smaller a.

9.6.4 Vacuum polarization in position space

Cali 20 [80] evaluate the light-current 2-point function in position space. The 2-point
functions for the nonperturbatively renormalized (non-singlet) flavour currents is com-
puted for distances |z| between 0.1 and 0.25 fm and extrapolated to the chiral limit. The
available CLS configurations are used for this work, with lattice spacings between 0.039
and 0.086 fm. Despite fully nonperturbative renormalization and O(a) improvement, the
remaining O(a?) effects, as measured by O(4) symmetry violations, are very large, even
after subtraction of tree-level lattice effects. Therefore the authors performed a numer-
ical stochastic perturbation theory (NSPT) simulation in order to determine the lattice
artifacts at O(g?). Only after subtraction of these effects the constrained continuum
extrapolations from 3 different lattice directions to the same continuum limit are charac-
terized by reasonable y2-values, so the feasibility of the study crucially depends on this
step. Interestingly, there is no subtraction performed of nonperturbative effects. For in-
stance, chiral-symmetry breaking would manifest itself in a difference between the vector
and the axial vector 2-point functions, and is invisible to perturbation theory, where these
2-point functions are known to a? [782]. According to the authors, phenomenological es-
timates suggest that a difference of 1.5% between the continuum correlators would occur
around 0.3 fm and this difference would not be resolvable by their lattice data. Equality
within their errors is confirmed for shorter distances. We note, however, that chiral sym-
metry breaking effects are but one class of nonperturbative effects, and their smallness
does not allow for the conclusion that such effects are generally small. In fact, the need
for explicit subtractions in momentum space analyses may lead one to suspect that such
effects are not negligible at the available distance scales. For the determination of A%:S
the authors limit the range of distances to 0.13-0.19 fm, where aeg € [0.2354,0.3075]
(private communication by the authors). These effective couplings are converted to MS
couplings at the same scales = 1/|z| by solving Eq. (368) numerically. Central values
for the A-parameter thus obtained are in the range 325-370 MeV (using the S-function
at 5-loop order) and a weighted average yields the quoted result 342(17) MeV, where the
average emphasizes the data around |z| = 0.16 fm, or p = 1.3 GeV.

Applying the FLAG criteria the range of lattice spacings yields for the contin-
uum extrapolation. However, the FLAG criterion implicitly assumes that the remain-
ing cutoff effects after non-perturbative O(a) improvement are small, which is not the
case here. Some hypercubic lattice artefacts are still rather large even after 1-loop sub-
traction, but these are not used for the analysis. As for the renormalization scale, the
lowest effective coupling entering the analysis is 0.235 < 0.25, so we give o. As for
perturbative behaviour, for the range of couplings in the above interval o2y changes by
(0.308/0.235)3 a2 2.2, marginally reaching (3/2)? = 2.25. The errors Aceg after contin-
uum and chiral extrapolations are 4-6% (private communication by the authors) and the
induced uncertainty in A is comfortably above 2a2;, which gives a % according to FLAG
criteria.
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Although the current FLAG criteria are formally passed by this result, the quoted
error of 5% for A seems very optimistic. We have performed a simple test, converting to
the MS scheme by inverting Eq. (368) perturbatively (instead of solving the fixed-order
equation numerically). The differences between the couplings are of order o and thus
indicative of the sensitivity to perturbative truncation errors. The resulting A-parameter
estimates are now in the range 409-468 MeV, i.e. ca. 15-30% larger than before. While
the difference between both estimates decreases proportionally to the expected a2g, an
extraction of the A-parameter in this energy range is a priori affected by systematic
uncertainties corresponding to such differences. The FLAG criterion might fail to capture
this e.g. if the assumption of an O(1) coefficient for the asymptotic a2y behaviour is not
correct. Some indication for a problematic behaviour is indeed seen when perturbatively
inverting Eq. (368) to order a. The resulting MS couplings are then closer to the values
used in Cali 20, although the difference is formally O(a?) rather than O(a?).

S

9.7 «, from observables at the lattice spacing scale
9.7.1 General considerations

The general method is to evaluate a short-distance quantity Q at the scale of the lattice
spacing ~ 1/a and then determine its relationship to agg via a perturbative expansion.

This is epitomized by the strategy of the HPQCD collaboration [788, 789], discussed
here for illustration, which computes and then fits to a variety of short-distance quantities

Mmax

Y= caalt(q). (370)
n=1

The quantity Y is taken as the logarithm of small Wilson loops (including some nonpla-
nar ones), Creutz ratios, ‘tadpole-improved’ Wilson loops and the tadpole-improved or
‘boosted’ bare coupling (O(20) quantities in total). The perturbative coefficients ¢, (each
depending on the choice of V') are known to n = 3 with additional coefficients up to nmax
being fitted numerically. The running coupling ary/ is related to vy from the static-quark
potential (see Sec. 9.5).57

The coupling constant is fixed at a scale ¢* = d/a. The latter is chosen as the mean
value of In ¢ with the one-gluon loop as measure [790, 791]. (Thus a different result for d
is found for every short-distance quantity.) A rough estimate yields d ~ 7, and in general
the renormalization scale is always found to lie in this region.

For example, for the Wilson loop W,,,,, = (W (ma, na)) we have

W, y . i}
In <M> = crav/(q7) + 203 (") + cs0 (q7) + -+, (371)
0
for the tadpole-improved version, where c1, co, ... are the appropriate perturbative coeffi-

cients and ug = Wlll/ % Substituting the nonperturbative simulation value in the left hand
side, we can determine ay-(g*), at the scale ¢*. Note that one finds empirically that per-
turbation theory for these tadpole-improved quantities have smaller ¢, coefficients and
so the series has a faster apparent convergence compared to the case without tadpole
improvement.

Using the S-function in the V' scheme, results can be run to a reference value, chosen
as ap = av/(qo), go = 7.5GeV. This is then converted perturbatively to the continuum
MS scheme

ags(g0) = o + diaf + daay + -+ (372)

67w is defined by Ay = Ay and b)Y = bY for i = 0,1,2 but by =0 for i > 3.
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where dy, ds are known 1-and 2-loop coefficients.

Other collaborations have focused more on the bare ‘boosted’ coupling constant and
directly determined its relationship to agg. Specifically, the boosted coupling is defined
by

1 g5
ap(l/a) = — s (373)
again determined at a scale ~ 1/a. As discussed previously, since the plaquette expec-
tation value in the boosted coupling contains the tadpole-diagram contributions to all
orders, which are dominant contributions in perturbation theory, there is an expecta-
tion that the perturbation theory using the boosted coupling has smaller perturbative
coefficients [790], and hence smaller perturbative errors.

9.7.2 Continuum limit

Lattice results always come along with discretization errors, which one needs to remove by
a continuum extrapolation. As mentioned previously, in this respect the present method
differs in principle from those in which a; is determined from physical observables. In the
general case, the numerical results of the lattice simulations at a value of y fixed in physical
units can be extrapolated to the continuum limit, and the result can be analyzed as to
whether it shows perturbative running as a function of x4 in the continuum. For observables
at the cutoff-scale (¢* = d/a), discretization effects cannot easily be separated out from
perturbation theory, as the scale for the coupling comes from the lattice spacing. Therefore
the restriction ap < 1 (the ‘continuum-extrapolation’ criterion) is not applicable here.
Discretization errors of order a? are, however, present. Since a ~ exp(—1/(2bogd)) ~
exp(—1/(8mbocr(q*)), these errors now appear as power corrections to the perturbative
running, and have to be taken into account in the study of the perturbative behaviour,
which is to be verified by changing a. One thus usually fits with power corrections in this
method.

In order to keep a symmetry with the ‘continuum-extrapolation’ criterion for physical
observables and to remember that discretization errors are, of course, relevant, we replace
it here by one for the lattice spacings used:

e Lattice spacings
3 or more lattice spacings, at least 2 points below a = 0.1fm
2 lattice spacings, at least 1 point below a = 0.1 fm
m otherwise

9.7.3 Discussion of computations

Note that due to u ~ 1/a being relatively large the results easily have a % or o in the
rating on renormalization scale.

The work of El-Khadra 92 [799] employs a 1-loop formula to relate a%(w/ a) to the
boosted coupling for three lattice spacings a=! = 1.15, 1.78, 2.43 GeV. (The lattice spac-
ing is determined from the charmonium 1S-1P splitting.) They obtain A% = 234 MeV,

corresponding to aeg = a%(w/a) ~ 0.15-0.2. The work of Aoki 94 [796] calculates ag)

and o2 for a single lattice spacing a=' ~ 2GeV, again determined from charmonium

1S-1P splitting in two-flavour QCD. Using 1-loop perturbation theory with boosted cou-
pling, they obtain 045/2) = 0.169 and a% = 0.142. Davies 94 [795] gives a determination
of ary from the expansion

AT (N,
—InWy = gai,Nf)(?)Al/a) % [1— (1.185 + 0.070N)a\ M) | (374)
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Collaboration Ref. Ny ¥ & ] ¥ scale Ayis[MeV]  roAyg
HPQCD 10°% [13] 241 A r1 = 0.3133(23) fm  340(9) 0.812(22)
HPQCD 08A® [789] 2+1 A r = 0.321(5) fmfT  338(12)* 0.809(29)
Maltman 08* 83 241 A r1 = 0.318fm 352(17)f 0.841(40)
HPQCD 05A° [788] 2+1 A it 319(17)™  0.763(42)
QCDSF/UKQCD 05[792] 2 A " ro = 0.467(33) fm  261(17)(26) 0.617(40)(21)"
SESAM 99° [793] 2 A = = cE(1S-1P)
Wingate 95¢ [794] 2 A m = c¢(1S-1P)
Davies 94° [795] 2 A E = 7T
Aoki 947 [796] 2 A m ®  c(1S-1P)
Kitazawa 16 [797) O A wo 260(5)’ 0.621(11)
FlowQCD 15 [798] 0 P wo.4" 258(6)° 0.618(11)"
QCDSF/UKQCD 05[792] 0 A ro = 0.467(33)fm  259(1)(20)  0.614(2)(5)°
SESAM 99° [793] 0 A m = cE(1S-1P)
Wingate 95¢ [794] 0O A B m  cE(1S-1P)
Davies 94° [795] O A [
El-Khadra 929 [799] 0 A " ce(18-1P) 234(10) 0.560(24)"

Tt

KK

The numbers for A have been converted from the values for a§5)(M Z).

a%(’é GeV) = 0.2034(21), a%(MZ) = 0.1184(6), only update of intermediate scale and c-, b-quark

masses, supersedes HPQCD 08A.

all(Mz) = 0.1192(11).

(P (7.5 GeV) = 0.2120(28), o{>L(Mz) = 0.1183(8), supersedes HPQCD 05.
Scale is originally determined from Y mass splitting. r1 is used as an intermediate scale. In conversion
to 7o Agrs, To is taken to be 0.472fm.

ol (7.5 GeV) = 0.2082(40), ol>L(Mz) = 0.1170(12).
5)

This supersedes Refs. [800-802]. 1(\TS(MZ) = 0.112(1)(2). The N;y = 2 results were based on values
for r9/a which have later been found to be too small [712]. The effect will be of the order of 10-15%,
presumably an increase in Arg.

all(Mz) = 0.1118(17).

ag)(6,48 GeV) = 0.194(7) extrapolated from Ny =0, 2. a%(Mz) = 0.107(5).

ag)(8.2 GeV) = 0.1959(34) extrapolated from Ny =0, 2. a%(MZ) = 0.115(2).

Estimated aioL (M) = 0.108(5)(4).

This early computation violates our requirement that scheme conversions are done at the 2-loop level.

A% = 160(T37)MeV, a%@GeV) = 0.174(12). We converted this number to give a%(Mz) = 0.106(4).
We used ro = 0.472fm to convert to roAyg.

Reference scale wo.4 where w; is defined by td[t>(E(t))] |t:
positive flow time ¢ [798]. Our conversion to ro scale using [798] ro/wo.4 = 2.587(45) and 7o = 0.472 fm.

w2 = T in terms of the action density E(t) at

Our conversion from woAgrg = 0.2154(12) to ro scale using ro/wo = (ro/wo.4) - (wo.4/wo) = 2.885(50)
with the factors cited by the collaboration [798] and with 7o = 0.472 fm.

Table 63: Wilson loop results. Some early results for Ny = 0,2 did not determine Agg.
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neglecting higher-order terms. They compute the T spectrum in Ny = 0, 2 QCD for
single lattice spacings at a=! = 2.57, 2.47GeV and obtain ay(3.41/a) ~ 0.15, 0.18,
respectively. Extrapolating the inverse coupling linearly in Ny, a value of a$ ) (8.3GeV) =
0.196(3) is obtained. SESAM 99 [793] follows a similar strategy, again for a single lattice

spacing. They linearly extrapolated results for 1/ ag) ), 1/ 04&/2 ) at a fixed scale of 9GeV to
give ag ), which is then perturbatively converted to a%. This finally gave oz%(M z) =
0.1118(17). Wingate 95 [794] also follows this method. With the scale determined from the
charmonium 1S-1P splitting for single lattice spacings in Ny = 0, 2 giving a ! ~ 1.80 GeV
for Ny = 0 and a~! ~ 1.66GeV for Ny = 2, they obtain ol (3.41/a) ~ 0.15 and
aﬁ/z )~ 0.18, respectively. Extrapolating the inverse coupling linearly in Ny, they obtain
¥ (6.48 GeV) = 0.194(17).
The QCDSF/UKQCD collaboration, QCDSF/UKQCD 05 [792], [800-802], use the
2-loop relation (re-written here in terms of «)
o1 4 (20 Inap — 1) + (47)%(2b1 Inap — t5)ap(1/a) (375)
p— g ap(l/a)+7f olnap —1t; 1nap —1isy )ap )

where ¢} and ¢} are known. (A 2-loop relation corresponds to a 3-loop lattice 3-function.)
This was used to directly compute ogpg, and the scale was chosen so that the O(ad) term
vanishes, i.e.,

L1 b [ 263/a Ny=0
w = L/~ { 300 V2 (376)

The method is to first compute ap(1/a) and from this, using Eq. (375) to find agg(p*).
The RG equation, Eq. (320), then determines p*/Agg and hence using Eq. (376) leads to
the result for rgAgg. This avoids giving the scale in MeV until the end. In the Ny =0
case seven lattice spacings were used [714], giving a range p*/Agg =~ 24-72 (or a™' ~
2-7 GeV) and ae = ayg(p”) = 0.15-0.10. Neglecting higher-order perturbative terms
(see discussion after Eq. (377) below) in Eq. (375) this is sufficient to allow a continuum
extrapolation of roAgg. A similar computation for Ny = 2 by QCDSF/UKQCD 05 [792]
gave p* /Agps ~ 12-17 (or roughly a™! ~ 2-3 GeV) and e = agg(p*) ~ 0.20-0.18. The
Ny = 2 results of QCDSF/UKQCD 05 [792] are affected by an uncertainty which was not
known at the time of publication: It has been realized that the values of 79/a of Ref. [792]
were significantly too low [712]. As this effect is expected to depend on a, it influences
the perturbative behaviour leading us to assign a m for that criterion.

Since FLAG 13, there has been one new result for Ny = 0 by FlowQCD 15 [798], later
updated and published in Kitazawa 16 [797]. They also use the techniques as described in
Egs. (375), (376), but together with the gradient flow scale wy (rather than the r¢ scale)
leading to a determination of wyAgg. The continuum limit is estimated by extrapolating
the data at 6 lattice spacings linearly in a?. The data range used is w*/Agrs =~ 50-120 (or
a™! & 5-11 GeV) and agz(p*) ~ 0.12-0.095. Since a very small value of agrg is reached,
there is a % in the perturbative behaviour. Note that our conversion to the common rq
scale unfortunately leads to a significant increase of the error of the A parameter compared
to using wy directly [719]. Again we note that the results of QCDSF/UKQCD 05 [792]
(Ny = 0) and Kitazawa 16 [797] may be affected by frozen topology as they have lattice
spacings significantly below a = 0.05fm. Kitazawa 16 [797] investigate this by evaluating
wo/a in a fixed topology and estimate any effect at about ~ 1%.

The work of HPQCD 05A [788] (which supersedes the original work [803]) uses three
lattice spacings a~! =~ 1.2, 1.6, 2.3 GeV for 2 + 1 flavour QCD. Typically the renormal-
ization scale ¢ ~ 7/a & 3.50-7.10 GeV, corresponding to ay: & 0.22-0.28.

In the later update HPQCD 08A [789] twelve data sets (with six lattice spacings) are
now used reaching up to a~! ~ 4.4 GeV, corresponding to ay =~ 0.18. The values used
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for the scale 1 were further updated in HPQCD 10 [13]. Maltman 08 [83] uses most of
the same lattice ensembles as HPQCD 08A [789], but not the one at the smallest lattice
spacing, a /= 0.045 fm. Maltman 08 [83] also considers a much smaller set of quantities
(three versus 22) that are less sensitive to condensates. They also use different strategies
for evaluating the condensates and for the perturbative expansion, and a slightly different
value for the scale ;. The central values of the final results from Maltman 08 [83] and
HPQCD 08A [789] differ by 0.0009 (which would be decreased to 0.0007 taking into
account a reduction of 0.0002 in the value of the 71 scale used by Maltman 08 [83]).

As mentioned before, the perturbative coefficients are computed through 3-loop or-
der [804], while the higher-order perturbative coefficients ¢,, with np.x > n > 3 (with
Nmax = 10) are numerically fitted using the lattice-simulation data for the lattice spacings
with the help of Bayesian methods. It turns out that corrections in Eq. (371) are of order
lei/e1]at = 5-15% and 3-10% for i = 2, 3, respectively. The inclusion of a fourth-order
term is necessary to obtain a good fit to the data, and leads to a shift of the result by
1 — 2 sigma. For all but one of the 22 quantities, central values of |cs/c1| = 2—4 were
found, with errors from the fits of ~ 2. It should be pointed out that the description
of lattice results for the short distance quantities does not require Bayesian priors, once
the term proportional to ¢4 is included [83]. We also stress that different short distance
quantities have quite different nonperturbative contributions [805]. Hence the fact that
different observables lead to consistent «, values is a nontrivial check of the approach.

An important source of uncertainty is the truncation of perturbation theory. In
HPQCD 08A [789], 10 [13] it is estimated to be about 0.4% of agg(Mz). In FLAG
13 we included a rather detailed discussion of the issue with the result that we prefer for
the time being a more conservative error based on the above estimate |c4/c1| = 2. From
Eq. (370) this gives an estimate of the uncertainty in aeg of

ae(pi) (377)

C.
A1) = \

at the scale py where aeg is computed from the Wilson loops. This can be used with a
variation in A at lowest order of perturbation theory and also applied to ay evolved to a
different scale pg,%8

AA 1 Aag Aags(pz) ()

A Smboas s Aag(pr) - a2(py) (378)

With pe = Mz and as(p1) = 0.2 (a typical value extracted from Wilson loops in HPQCD
10 [13], HPQCD 08A [789] at u = 5 GeV) we have

Aagg(mz) = 0.0012, (379)

which we shall later use as the typical perturbative uncertainty of the method with 2 + 1
fermions.

Tab. 63 summarizes the results. Within the errors of 3-5% N; = 3 determinations of
ro/A nicely agree.

9.8 «a; from heavy-quark current two-point functions

9.8.1 General considerations

The method has been introduced in HPQCD 08, Ref. [206], and updated in HPQCD 10,
Ref. [13], see also Ref. [806]. In addition there is a 2+1+1-flavour result, HPQCD 14A
[16].

58From Eq. (327) we see that at low order in PT the coupling s is continuous and differentiable across the
mass thresholds (at the same scale). Therefore to leading order as and A, are independent of Ny.

227



The basic observable is constructed from a current,

J(2) = iamet (x) 50 (2) (380)

of two mass-degenerate heavy-valence quarks, ¢, ¢/, usually taken to be at or around the
charm-quark mass. The pre-factor m. denotes the bare mass of the quark. When the
lattice discretization respects chiral symmetry, J(z) is a renormalization group invari-
ant local field, i.e., it requires no renormalization. Staggered fermions and twisted-mass
fermions have such a residual chiral symmetry. The (Euclidean) time-slice correlation
function

G(z) = a® ) (JT(2)J(0)), (381)

(JT(2) = iameib, (x)y51.(x)) has a ~ x5 ° singularity at short distances and moments

T/2—a

G,=a Z xg G(xo) (382)

zo=—(T/2—a)

are nonvanishing for even n and furthermore finite for n > 4. Here T is the time extent of
the lattice. The moments are dominated by contributions at xo of order 1/m.. For large
mass m. these are short distances and the moments become increasingly perturbative
for decreasing n. Denoting the lowest-order perturbation theory moments by G%O), one
defines the normalized moments

G4 /G forn=4,
R, = 1/(n—4) (383)
;;nn’;i (G?ng ) forn > 6,

of even order n. Note that Eq. (380) contains the variable (bare) heavy-quark mass m..

The normalization GSLO) is introduced to help in reducing lattice artifacts. In addition,
one can also define moments with different normalizations,

R, = 2R, /my, forn>6. (384)

While R, also remains renormalization-group invariant, it now also has a scale which
might introduce an additional ambiguity [27].
The normalized moments can then be parameterized in terms of functions

ra(as(p)) forn =4,
R, = . (385)
mrn(as(u)) forn > 6,

with M. () being the renormalized heavy-quark mass. The scale p.,, at which the heavy-
quark mass is defined could be different from the scale p at which s is defined [807]. The
HPQCD collaboration, however, used the choice p = ,,, = 3m.(1t). This ensures that the
renormalization scale is never too small. The reduced moments r, have a perturbative
expansion

rn=14+ry105+ rn’gag + rn}gai’ + .., (386)

where the written terms ry, ;(u/mc(p)), @ < 3 are known for low n from Refs. [808-812]. In
practice, the expansion is performed in the MS scheme. Matching nonperturbative lattice
results for the moments to the perturbative expansion, one determines an approximation
to agg(p) as well as m.(p). With the lattice spacing (scale) determined from some extra
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physical input, this calibrates u. As usual suitable pseudoscalar masses determine the
bare-quark masses, here in particular the charm mass, and then through Eq. (385) the
renormalized charm-quark mass.

A difficulty with this approach is that large masses are needed to enter the perturbative
domain. Lattice artifacts can then be sizeable and have a complicated form. The ratios
in Eq. (383) use the tree-level lattice results in the usual way for normalization. This
results in unity as the leading term in Eq. (386), suppressing some of the kinematical
lattice artifacts. We note that in contrast to, e.g., the definition of aqq, here the cutoff
effects are of order a® o, while there the tree-level term defines s and therefore the cutoff
effects after tree-level improvement are of order a®a2. To obtain the continuum results
for the moments it is important to perform fits with high powers of a. This implies many
fit parameters. To deal with this problem the HPQCD collaboration used Bayesian fits
of their lattice results. More recent analyses of the moments, however, did not rely on
Bayesian fits [27, 28, 193, 701].

Finite-size effects (FSE) due to the omission of |z¢| > T'/2 in Eq. (382) grow with n
as (my,T/2)" exp (—my,,T/2). In practice, however, since the (lower) moments are short-
distance dominated, the FSE are expected to be small at the present level of precision.
Possible exception could be the ratio Rg/Rjg, where the finite-volume effects could be
significant as discussed below.

Moments of correlation functions of the quark’s electromagnetic current can also be ob-
tained from experimental data for ete™ annihilation [813, 814]. This enables a nonlattice
determination of «, using a similar analysis method. In particular, the same contin-
uum perturbation-theory computation enters both the lattice and the phenomenological
determinations.

9.8.2 Discussion of computations

The determination of the strong-coupling constant from the moments of quarkonium
correlators by HPQCD collaboration have been discussed in detail in the FLAG 2016 and
2019 reports. Therefore, we only give the summary of these determinations in Table 64.

Two additional computations have appeared between the FLAG 16 and the FLAG
19 reports. We re-discuss them here (see also the summary section), as the assess-
ment in FLAG 19 was partially based on an inconsistent use of the FLAG criteria and
has now been changed. Maezawa and Petreczky, [193] computed the two-point func-
tions of the c¢ pseudoscalar operator and obtained Ry, Rg/Rg and Rs/Rio based on the
HotQCD collaboration HISQ staggered ensembles, [120]. The scale is set by measuring
r1 = 0.3106(18) fm. Continuum limits are taken fitting the lattice-spacing dependence
with a? 4+ a* form as the best fit. For Ry, they also employ other forms for fit functions
such as a2, aPoostedq? + gt etc., the results agreeing within errors. Matching Ry with
the 3-loop formula Eq. (386) through order O‘I%Ts [808], where p is fixed to m., they ob-

tain a%(u = m,) = 0.3697(54)(64)(15). The first error is statistical, the second is the
uncertainty in the continuum extrapolation, and the third is the truncation error in the
perturbative approximation of r4. This last error is estimated by the “typical size” of the

missing 4-loop contribution, which they assume to be a2 () multiplied by 2 times the

MS
3-loop coefficient 2 x 74,3 x O‘;\LTS(”) = 0.2364 x aﬁTS(u). The result is converted to
ol (M) = 0.11622(34) . (387)

Since aeg = 0.38 we assign m for the criterion of the renormalization scale. As AA/A <
aZs, we assign m for the criterion of perturbative behaviour. The lattice cutoff ranges
as a~! = 1.42-4.89 GeV with p = 2m, ~ 2.6 GeV so that we assign o for continuum
extrapolation.
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Collaboration Ref. Ny T I E scale Axis[MeV] roAgg
HPQCD 14A [16]  2+1+1 A wo = 0.1715(9) fm® 294(11)"  0.703(26)
Petreczky 20 [701]  2+1 P r1 = 0.3106(18) fm 332(17)"  0.792(41)9
Boito 20 [703) 241 A m = me(me) = 1.28(2) GeV  328(30)"  0.785(72)
Petrezcky 19, my=m. [28] 241 A ®m m r1 = 0.3106(18) fm? 314(10)  0.751(24)7
Petrezcky 19, Zh=15 [28]  2+1 A m = r1:O.3106(18)fmg 310(10) 0.742(24)
Maezawa 16 (193] 241 A = = 71 = 0.3106(18) fm? 309(10)°  0.739(24)°
JLQCD 16 27] 241 A = Vo = 0.1465(25) fm 331(38)F  0.792(89)F
HPQCD 10 [13]  2+1 A r1 = 0.3133(23) fm| 338(10)*  0.809(25)
HPQCD 08B [206) 241 A m ®m ®m 7 =0.321(5)fm! 325(18)T  0.777(42)

Scale determined in [40] using fx.
all(5GeV) = 0. 2128(25) ) (Mz) = 0.11822(74).

We evaluated Af from a(i We also used ro = 0.472 fm.

Scale is determlned from f,r .

A (me = 1.267 GeV) = 0.3697(85), al’L (M) = 0.11622(84). Our conversion with ro = 0.472 fm.

I We evaluated A( ) from the given ozf)M(Zi GeV) = 0.2528(127). a@(MZ) = 0.1177(26). We also used
ro = 0.472fm to convert.

9 We used rg = 0.472 fm to convert.

" We back-engineered from al>. ( Mz) =0.1177(20). We used ro = 0.472fm to convert.

ol (5GeV) = 0.2034(21), %( Mz) = 0.1183(7).

Scale is determined from Y mass splitting.
* We evaluated A% from the given a%(?; GeV) = 0.251(6). « (5) ris(Mz) = 0.1174(12).

ISP Y o

o

Table 64: Heavy-quark current two-point function results. Note that all analysis using 2 + 1
flavour simulations perturbatively add a dynamical charm quark. Partially they then quote
results in Ny = 4-flavour QCD, which we converted back to Ny = 3, corresponding to the
nonperturbative sea quark content.

JLQCD 16 [27] also computed the two-point functions of the c¢¢ pseudoscalar opera-
tor and obtained Rg, Rg, R1o and their ratios based on 2+1-flavour QCD with M6bius
domain-wall quark for three lattice cutoff a=' = 2.5, 3.6, 4.5 GeV. The scale is set by
Vo = 0.1465(21)(13) fm. The continuum limit is taken assuming linear dependence on
a?. They find a sizeable lattice-spacing dependence of Ry, which is therefore not used in
their analysis, but for Rg, Rs, R19 the dependence is mild giving reasonable control over
the continuum limit. They use the perturbative formulae for the vacuum polarization in
the pseudoscalar channel IIpg through order O‘i/Ts in the MS scheme [810, 811] to obtain

a@. Combining the matching of lattice results with continuum perturbation theory for

RG, Rs/Rg and Ry, they obtain o) )(p = 3 GeV) = 0.2528(127), where the error is
dominated by the perturbative truncatlon error. To estimate the truncation error they
study the dependence of the final result on the choice of the renormalization scales i, i,
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which are used as renormalization scales for a; and the quark mass. Independently [807]
the two scales are varied in the range of 2 GeV to 4 GeV. The above result is converted

to a%(MZ) as

o (Mz) = 0.1177(26) (388)
Since aefr ~ 0.37, they have m for the renormalization scale criterion. Since AA/A ~ agff,
we also assign O for the criterion of perturbative behaviour. The lattice cutoff ranges over
a~! =2.5-4.5 GeV with ;1 = 3 GeV so we also give them a © for continuum extrapolation.
We note, however, that the x?/dof of the a? extrapolation was quite bad, namely between
2.1 and 5.1 [27]. Please note that the 2019 FLAG review mistakenly took agg(2m.) for
Qegr. This resulted in a rating for the renormalization scale for both Maezawa 16 and
JLQCD 16. With the consistent definition of aeg both determinations now have m for
the renormalization scale.

Three new determinations of o from the moments of quarkonium correlators appeared
since the 2019 FLAG review [28, 701, 703]. Petreczky 19 [28] extended the calculation
of [193] by considering heavy-quark masses larger than the charm-quark mass, namely,
myp = 1.5m,, 2m, and 3m,.. Also three additional lattice spacings, a = 0.025, 0.03 and
0.035 fm have been added to the analysis. Another improvement compared to Maezawa 16
was the use of random-colour wall sources which greatly reduced the statistical errors. In
fact, the statistical errors on the moments were completely negligible compared to other
sources of errors. The lattices corresponding to the three smallest lattice spacings have
been generated for the calculations of the QCD equation of state at high temperature [774]
at light sea-quark masses corresponding to the pion mass of 300 MeV in the continuum
limit, instead of the pion mass of 160 MeV as in the previous calculations. However,
it has been checked that the effect of the larger light sea-quark masses is very small,
about the size of the statistical errors [28]. Therefore, the calculations at the two light
sea-quark masses have been combined into a single analysis [28]. For each value of the
heavy-quark mass the continuum extrapolations have been performed using various fit
ansatze, some of which included high powers of a. Due to availability of many lattice
spacing it was possible to perform such fits without using Bayesian priors. The variation
of the continuum-extrapolated values with the variation of the fit range in a? and the fit
forms has been investigated and included as the systematic error of the continuum results.

The renormalization scale p was fixed to the heavy-quark mass, and a(u = my,) and the
corresponding Aj\\%: ® has been determined for each value of my, using continuum results
for Ry, Rg/Rs and Rg/R1o. The perturbative error was estimated as in Maezawa 16 but
with the Coeﬂici?\jrfl‘g ??f the 4-loop term being 1.6 times the coefficient of the 3-loop term.

The values of Am obtained for m; = m. and m; = 1.5m. were consistent with each

other, A%g = 314(10) MeV for my, = m,. and A%;:a = 310(10) MeV for my, = 1.5m..
However, the Aj\VJL: % Values turned out to be significantly lower for mj, = 2m. and 3m..
In Petreczky 20 [701], it has been argued that reliable continuum extrapolations of Ry,
Rs/Rs and Rg/Rjp are not possible for my, > 2m.. Therefore, we only review the results
obtained for m; = m. and my = 1.5m,.. There are many lattice spacings available for
analysis, including three lattice spacings a < 0.035 fm, implying that ap < 0.5. Therefore,
we assign for the continuum extrapolatiom. The value of aeg is 0.38 and 0.31 for
mp = me and myp = 1.5m,, respectively. So we assign m for the renormalization scale.
Since (AA/A)aa < a?; we assign m for the perturbative behaviour.

Petreczky 20 [701] used the same raw lattice data as Petreczky 19 but a different strat-
egy for continuum extrapolation and o extraction. The lattice spacing dependence of the
results of Ry at different quark masses was fitted simultaneously in a similar manner as in
the HPQCD 10 and HPQCD 14 analyses, but without using Bayesian priors. In extract-
ing « several choices of the renormalization scale u in the range 2/3my,—3m;, have been
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considered. The perturbative error was estimated as in Petreczky 19 but the variation of
the results due to the scale variation was larger than the estimated perturbative error.
The final error of the result A%; P = 331(17) MeV comes mostly from the scale variation
[701]. Since there are three lattice spacing available with au < 0.5 we give % for contin-
uum extrapolation. Because ae.g = 0.22 — 0.38 we give for the renormalization scale.
Finally, since (AA/A)aq > o2y for the smallest aeg value we give o for the perturbative
behaviour. In addition to R4 Petreczky 20 also considered using Rg/Rg and Rg/R; for
the o determination. It was pointed out that the lattice spacing dependence of Rg/Rg is
quite subtle and therefore reliable continuum extrapolations for this ratio are not possible
for my, > 2m, [701]. For mj, = m. and 1.5m, the ratio Rg/Rsg leads to a; values that are
consistent with the ones from R,4. Furthermore, it was argued that finite-volume effects
in the case of Rg/Ryo are large for m;, = m,. and therefore the corresponding data are
not suitable for extracting as. This observation may explain why the central values of s
extracted from Rg/R1o in some previous studies were systematically lower [28, 193, 206].
On the other hand for mj > 1.5m, the finite-volume effects are sufficiently small in the
continuum extrapolated results if some small-volume lattice data are excluded from the
analysis [701]. The a; obtained from Rg/R1p with m; > 1.5m,. were consistent with the
ones obtained from Ry4.

Boito 20 [703] use published continuum extrapolated lattice results on R4, Rg/Rs and
Rs/Ryo from various groups combined with experimental results on ete™ annihilation.
They quote a separate result for each lattice determinations of Ry, Rg/Rs and Rg/R1q for
myp = m, from different lattice groups. They vary the scale p and p,,, independently in the
region between m. and 4 GeV. As the typical value they quote as(Mz) = 0.1177(20). The
error is dominated by the perturbative uncertainty. Since the effective coupling is around
0.38 we give m for the renormalization scale. Because (AA/A)aq < aZ; we give this
determination m for perturbative behaviour. The continuum results used in the analysis
were rated as with the exception of HPQCD 08B, which however, does not affect
the quoted oy value. Therefore we give them for the continuum extrapolation. An
interesting point of the Boito 20 analysis is that the a; values extracted from Rg/R;o are
systematically lower than the ones extracted from Ry. This confirms the above assertion
that finite volume effects are significant for Rg/Ryg at mp = me.

Aside from the final results for as(mz) obtained by matching with perturbation theory,
it is interesting to make a comparison of the short distance quantities in the continuum
limit R,, which are available from HPQCD 08 [206], JLQCD 16 [27], Maezawa 16 [193],
Petreczky 19 [28] and Petreczky 20 [701] (all using 2 + 1 flavours). This comparison is
shown in Tab. 65. The results are in quite good agreement with each other. For future

HPQCD 08 HPQCD 10 Maezawa 16 JLQCD 16 Petreczky 19 Petreczky 20
Ry 1.272(5) 1.282(4) 1.265(7) - 1.279(4) 1.278(2)
Rg 1.528(11) 1.527(4) 1.520(4) 1.509(7) 1.521(3) 1.522(2)
Rs 1.370(10) 1.373(3) 1.367(8) 1.359(4) 1.369(3) 1.368(3)
Ry 1.304(9) 1.304(2) 1.302(8) 1.297(4) 1.311(7) 1.301(3)
Rs/Rs 1.113(2) - 1.114(2) 1.111(2) 1.1092(6) 1.10895(32)
Rg/Rqo 1.049(2) - 1.0495(7) 1.0481(9) 1.0485(8) -

Table 65: Moments and the ratios of the moments from N; = 3 simulations at the charm
mass.

studies it is of course interesting to check agreement of these numbers before turning to
the more involved determination of as.
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9.9 «, from QCD vertices

9.9.1 General considerations

The most intuitive and in principle direct way to determine the coupling constant in
QCD is to compute the appropriate three- or four-point gluon vertices or alternatively
the quark-quark-gluon vertex or ghost-ghost-gluon vertex (i.e., ggA or ¢cA vertex, respec-
tively). A suitable combination of renormalization constants then leads to the relation
between the bare (lattice) and renormalized coupling constant. This procedure requires
the implementation of a nonperturbative renormalization condition and the fixing of the
gauge. For the study of nonperturbative gauge fixing and the associated Gribov ambigu-
ity, we refer to Refs. [815-817] and references therein. In practice the Landau gauge is
used and the renormalization constants are defined by requiring that the vertex is equal to
the tree-level value at a certain momentum configuration. The resulting renor/rp\z_iﬁzation
schemes are called ‘MOM’ scheme (symmetric momentum configuration) or ‘MOM’ (one
momentum vanishes), which are then converted perturbatively to the MS scheme.

A pioneering work to determine the three-gluon vertex in the Ny = 0 theory is
Alles 96 [818] (which was followed by Ref. [819] for two flavour QCD); a more recent
Ny = 0 computation was Ref. [820] in which the three-gluon vertex as well as the ghost-
ghost-gluon vertex was considered. (This requires a computation of the propagator of
the Faddeev—Popov ghost on the lattice.) The latter paper concluded that the resulting
Agzs depended strongly on the scheme used, the order of perturbation theory used in the
matching and also on nonperturbative corrections [821].

Subsequently in Refs. [822, 823] a specific MOM scheme with zero ghost momentum
for the ghost-ghost-gluon vertex was used. In this scheme, dubbed the ‘MM’ (Minimal
MOM) or ‘Taylor’ (T) scheme, the vertex is not renormalized, and so the renormalized
coupling reduces to

2
uon 0Ss g
ar(n) = DE (1, @) DR (. 0)” 2 (389)

where DEX*" and DE™" are the (bare lattice) dressed ghost and gluon ‘form factors’ of

these propagator functions in the Landau gauge,

» D ghost (p)

Dgluon (p)
, Dal; —_ 5ab <5 = pupv)
P2 w () i P2

p?

Dab(p) N (390)

and we have written the formula in the continuum with Dghost/sluon () — Di}f“/ gluon 1, 0).
Thus there is now no need to compute the ghost-ghost-gluon vertex, just the ghost and
gluon propagators.

9.9.2 Discussion of computations

For the calculations considered here, to match to perturbative scaling, it was first necessary
to reduce lattice artifacts by an H(4) extrapolation procedure (addressing O(4) rotational
invariance), e.g., ETM 10F [829] or by lattice perturbation theory, e.g., Sternbeck 12
[827]. To match to perturbation theory, collaborations vary in their approach. In ETM
10F [829], it was necessary to include the operator A2 in the OPE of the ghost and gluon
propagators, while in Sternbeck 12 [827] very large momenta are used and a?p? and a’p?
terms are included in their fit to the momentum dependence. A further later refinement
was the introduction of higher nonperturbative OPE power corrections in ETM 11D [826]
and ETM 12C [825]. Although the expected leading power correction, 1/p*, was tried,
ETM finds good agreement with their data only when they fit with the next-to-leading-
order term, 1/pS. The update ETM 13D [824] investigates this point in more detail, using
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Collaboration ~ Ref. Ny TELE scale Axis[ MeV] roAyig
ETM 13D [824]  2+1+1 A " . 314(7)(14)(10)*  0.752(18)(34)(81)*
ETM 12C [825] 24141 A . 324(17)" 0.775(41)"
ETM 11D [826] 2+1+1 A B fe 316(13)(8)(F5)*  0.756(31)(19)(F9,)"
Zafeiropoulos 19[704] 2+1 A m m ® mg 320(4)(12)° 0.766(10)(29)1
Sternbeck 12 [827]  2+1 C only running of a; in Fig. 4
Sternbeck 12 [827] 2 C Agreement with roAgg value of [712]
Sternbeck 10 [828] 2 C . 251(15)# 0.60(3)(2)
ETM 10F [829] 2 A fx 330(23)(22)(T9;) 0.72(5)T
Boucaud 01B  [819] 2 A n K- K 264(27)** 0.669(69)
Sternbeck 12 [827] 0 C Agreement with roAgg value of [771]
Sternbeck 10 [828] 0 C m 259(4)# 0.62(1)
Ilgenfritz 10 [830] O A ®  only running of as in Fig. 13
Boucaud 08 [823] 0 A B Jo=445MeV  224(3)(%) 0.59(1)(2)
Boucaud 05 [820] 0 Am &k m Jo=445MeV  320(32) 0.85(9)
Soto 01 [831] 0 A Vo =445MeV  260(18) 0.69(5)
Boucaud 01A  [832] 0 A Vo = 445 MeV 233(28) MeV 0.62(7)
Boucaud 00B  [833] 0 A only running of a,
Boucaud 00A  [834] 0 A V& = 445 MeV 237(3)(1?{2) 0.63(1)(t§)
Becirevic 9B [835] 0 A m Jo=445MeV  319(14)(139) 0.84(4)(2)
Becirevic 99A  [836] 0 A B Jo=445MeV < 353(2)(F3) <0.93(*7)
Boucaud 98B [837] 0 A m /o =445MeV 295(5)(15) 0.78(4)
Boucaud 98A  [838] 0 Am O m Jo=445MeV  300(5) 0.79(1)
Alles 96 [818] 0 Am m m Jo=440MeVTT 340(50) 0.91(13)

© all(Mz) = 0.1196(4)(8)(6).

T We use the 2+1 value ro = 0.472 fm.

¥ all(My) = 0.1200(14).

*

++

First error is statistical; second is due to the lattice spacing and third is due to the chiral extrapolation.
o) (Mz) = 0.1198(9)(5)(*9).

aﬁiZ(Mz) = 0.1172(3)(9)(5). The first error is the uncertainty in the determination of ar, the second
due to the condensate while the third is due to higher order nonperturbative corrections.

In the paper only roAgg is given, we converted to MeV with ro = 0.472 fm.

The determination of ro from the fr scale is found in Ref. [91].

alL(Myz) = 0.113(3)(4).

The scale is taken from the string tension computation of Ref. [772].

Table 66: Results for the gluon—ghost vertex.

better data with reduced statistical errors. They find that after again including the 1/p°
term they can describe their data over a large momentum range from about 1.75 GeV to
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7 GeV.

In all calculations except for Sternbeck 10 [828], Sternbeck 12 [827], the matching with
the perturbative formula is performed including power corrections in the form of conden-
sates, in particular (A2?). Three lattice spacings are present in almost all calculations
with Ny = 0, 2, but the scales ap are rather large. This mostly results in a m on the
continuum extrapolation (Sternbeck 10 [828], Boucaud 01B [819] for Ny = 2. Ilgenfritz
10 [830], Boucaud 08 [823], Boucaud 05 [820], Becirevic 99B [835], Becirevic 99A [836],
Boucaud 98B [837], Boucaud 98A [838], Alles 96 [818] for Ny = 0). A © is reached in
the Ny = 0 computations Boucaud 00A [834], 00B [833], 01A [832], Soto 01 [831] due to
a rather small lattice spacing, but this is done on a lattice of a small physical size. The
Ny = 2+1+41 calculation, fitting with condensates, is carried out for two lattice spacings
and with ap > 1.5, giving m for the continuum extrapolation as well. In ETM 10F [829]
we have 0.25 < aeg < 0.4, while in ETM 11D [826], ETM 12C [825] (and ETM 13 [84])
we find 0.24 < aeg < 0.38, which gives a O in these cases for the renormalization scale.
In ETM 10F [829] the values of ap violate our criterion for a continuum limit only slightly,
and we give a

In Sternbeck 10 [828], the coupling ranges over 0.07 < aeg < 0.32 for Ny = 0 and
0.19 < aeg < 0.38 for Ny = 2 giving % and O for the renormalization scale, respectively.
The fit with the perturbative formula is carried out without condensates, giving a sat-
isfactory description of the data. In Boucaud 01A [832], depending on a, a large range
of aweg is used which goes down to 0.2 giving a O for the renormalization scale and per-
turbative behaviour, and several lattice spacings are used leading to © in the continuum
extrapolation. The Ny = 2 computation Boucaud 01B [832], fails the continuum limit
criterion because both apu is too large and an unimproved Wilson fermion action is used.
Finally in the conference proceedings Sternbeck 12 [827], the Ny = 0, 2, 3 coupling ar is
studied. Subtracting 1-loop lattice artifacts and subsequently fitting with a?p? and a*p*
additional lattice artifacts, agreement with the perturbative running is found for large
momenta (r3p? > 600) without the need for power corrections. In these comparisons, the
values of roAyg from other collaborations are used. As no numbers are given, we have
not introduced ratings for this study.

Since the previous FLAG review, there has been one new result, Zafeiropoulos 19 [704],
again based on the method described in ETM 10F, [829] but now for Ny = 3 flavours
rather than two. Again an (A?) condensate is included, but cannot be determined; an
estimate is used from ETM 10F (N; = 2) and ETM12C (N; = 4). The scale A is
determined from the largest momenta available (when a plateau appears), and the error
is estimated from the larger range p ~ 3.0-3.7 GeV. This is used to determine ag;5. In this
work there is also some emphasis on being close to the physical-quark masses, using three
domain-wall fermion data sets and careful consideration of discretization effects following
[839]. The disadvantage is that a lower upper bound on the momenta is now reached.

The range of effective couplings is 0.35 S aeg S 0.42, and over this range we have
(e (3.0 GeV) /e (3.7 GeV))3 ~ 1.7, which leads to a m for perturbative behaviour.
With no aeg at or below 0.3 and only two lattice spacings, we also obtain a m for both
the renormalization scale and the continuum extrapolation.

In Tab. 66 we summarize the results. Presently there are no Ny > 3 calculations of
as from QCD vertices that satisfy the FLAG criteria to be included in the range.
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9.10 «, from the eigenvalue spectrum of the Dirac operator

9.10.1 General considerations

Consider the spectral density of the continuum Dirac operator

p(\) = % <Z(6()\ —iXg) + 0N+ m))> ; (391)

k

where V' is the volume and A\, are the eigenvalues of the Dirac operator in a gauge
background.
Its perturbative expansion

p(A) = % N (1= p1g® = pag" — p3g® + O(5%)) (392)
is known including p3 in the MS scheme [840, 841]. In renormalization group improved
form one sets the renormalization scale p to p = sA with s = O(1) and the p; are pure
numbers. Nakayama 18 [842] initiated a study of p(A) in the perturbative regime. They
prefer to consider p independent from A. Then p; are polynomials in log(A/p) of degree
i. One may consider

dlog(p(N)) —2 —4 =6 =8 ~10
F\) = ——"—-—>=3-Fi§°— Fbg" — IF35° — F. o 393
(A) Blog(\) 19 29 39 19"+ 0(37), (393)
where the coefficients, F;, which are known for i« = 1,...,4, are again polynomials of

degree i in log(A/p). Choosing the alternate renormalization-group-improved form with
u= s\ in Eq. (392), Eq. (393) would instead lead to

F(X) =3 - Fyg'(N) = F33°(\) = Fag®(\) + 0(3"), (394)

with pure numbers F; and F; = 0. Determinations of a; can be carried out by a compu-
tation and continuum extrapolation of p(\) and/or F(\) at large A. Such computations
are made possible by the techniques of [89, 364, 842].

We note that according to our general discussions in terms of an effective coupling,
we have n; = 2; the 3-loop S function of a coupling defined from Eq. (392) or Eq. (394)
is known. %

9.10.2 Discussion of computations

There is one pioneering result to date using this method by Nakayama 18 [842]. They
computed the eigenmode distributions of the Hermitian operator aQD:f)vDOV where D, =
Doy (my = 0,ampy) is the overlap operator and mpy is the Pauli-Villars regulator on
ensembles with 241 flavours using Mdébius domain-wall quarks for three lattice cutoffs
a~! =25,3.6,4.5 GeV, where ampy = 3 or co. The bare eigenvalues are converted to the
MS scheme at g = 2GeV by multiplying with the renormalization constant Z,,(2GeV),
which is then transformed to those renormalized at p = 6 GeV using the renormalization-
group equation. The scale is set by /tg = 0.1465(21)(13) fm. The continuum limit is
taken assuming a linear dependence in a2, while the volume size is kept about constant:
2.6-2.8 fm. Choosing the renormalization scale ;1 = 6 GeV, Nakayama 18 [842] extracted

the strong coupling constant a%(ﬁ GeV) = 0.204(10). The result is converted to

o2 (Mz) = 0.1226(36) (395)

%7Tn the present situation, Nakayama 18 [842], the effective coupling is defined by g3 (1) = F‘;l/z (3—F(\)
with 2 = A. The alternative definition, Eq. (394), would give g3 (u) = F5 /% (3 — F(\))"/>.
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Three lattice spacings in the range o' = 2.5-4.5 GeV with p = A = 0.8-1.25 GeV yield
quite small values ap. However, our continuum-limit criterion does not apply as it requires
us to consider oy = 0.3. We thus deviate from the general rule and give a © which would
result at the smallest value agg(p) = 0.4 considered by Nakayama 18 [842]. The values
of agg lead to a m for the renormalization scale, while perturbative behaviour is rated

In Tab. 67 we list this result.

Q
.8 8
g o5 & 8
& S ~ o
@ = @ &
S § &5 §
;S § F 8
y & & 8
5§ & §
Collaboration  Ref. Ny ] & ] 3y scale Asis[ MeV] roAyrs
Nakayama 18  [842] 241 A n Vio 409(60) * 0.978(144)

* a5l (M) = 0.1226(36). Agrg determined by us using aloL(6 GeV) = 0.204(10). Uses ro = 0.472fm

Table 67: Dirac eigenvalue result.

9.11 Summary

After reviewing the individual computations, we are now in a position to discuss the
overall result. We first present the current status and for that briefly consider rgA with
its flavour dependence from Ny = 0 to 4 flavours. Then we discuss the central agg(Mz)
results, which just use Ny > 3, give ranges for each sub-group discussed previously, and
give final FLAG average as well as an overall average together with the current PDG
nonlattice numbers. Finally we return to rgA, presenting our estimates for the various
Ny

9.11.1 The present situation

We first summarize the status of lattice-QCD calculations of the QCD scale Ayg. Fig. 41
shows all the results for 7oAy discussed in the previous sections.

Many of the numbers are the ones given directly in the papers. However, when only
Agfs in physical units (MeV) is available, we have converted them by multiplying with the
value of rq in physical units. The notation used is full green squares for results used in our
final average, while a lightly shaded green square indicates that there are no red squares in
the previous colour coding but the computation does not enter the ranges because either
it has been superseded by an update or it is not published. Red open squares mean that
there is at least one red square in the colour coding.

For Ny = 0 there is now some tension: the value of the new result, Dalla Brida 19 [698]
is rather high compared to the previous FLAG average and yet it passes the FLAG 19
criteria by some margin.

When two flavours of quarks are included, the numbers extracted by the various groups
show a considerable spread, as in particular older computations did not yet control the
systematics sufficiently. This illustrates the difficulty of the problem and emphasizes the
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Figure 41: roAyg estimates for Ny = 0, 2, 3, 4 flavours. Full green squares are used in our
final ranges, pale green squares also indicate that there are no red squares in the colour coding

but the computations were superseded by later more complete ones or not published, while
red open squares mean that there is at least one red square in the colour coding.
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need for strict criteria. The agreement among the more modern calculations with three
or more flavours, however, is quite good.
(5)

We now turn to the status of the essential result for phenomenology, ag;c(Mz). In

Tab. 68 and the upper plot in Fig. 42 we show all the results for a%(MZ) (i.e., ogg at
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Collaboration Ref. Ny D) & N o ayig(Mz) Remark Tab.
ALPHA 17 [81] 241 A 0.11852( 84) step-scaling 60
PACS-CS 09A [82] 2+1 A 0.11800(300) step-scaling 60
pre-range (average) 0.11848( 81)
Ayala 20 [78] 2+1 A 0.11836(88) Q-Q potential 61
TUMQCD 19 [79] 2+1 A 0.11671(T119) Q-Q potential (and free energy) 61
Takaura 18 [763, 764] 241 A ® 0.11790(70)(+159) Q-Q potential 61
Bazavov 14 [765] 241 A 0.11660(100) Q-Q potential 61
Bazavov 12 [766] 241 A 0.11560(1339) Q-Q potential 61
pre-range with estimated pert. error 0.11782(165)
Cali 20 [80] 2+1 A 0.11863(114) vacuum pol. (position space) 62
Hudspith 18 [785] 241 P B 0.11810(270)(_H30) vacuum polarization 62
JLQCD 10 [784] 241 A ® B 0.11180(30)(T1%9) vacuum polarization 62
pre-range with estimated pert. error 0.11863(360)
HPQCD 10 [13] 241 A 0.11840( 60) Wilson loops 63
Maltman 08 [83] 2+1 A 0.11920(110) Wilson loops 63
pre-range with estimated pert. error 0.11871(128)
Petreczky 20 [701] 241 P 0.11773(119). heavy current two points 64
Boito 20 [702, 703] 2+1 A | | 0.1177(20) use published lattice data 64
Petreczky 19 [28] 2+1 A | ] 0.1159(12). heavy current two points 64
JLQCD 16 [27] 241 A | 0.11770(260) heavy current two points 64
Maezawa 16 [193] 2+1 A ] 0.11622( 84) heavy current two points 64
HPQCD 14A [16] 24141 A 0.11822( 74) heavy current two points 64
HPQCD 10 [13] 241 A 0.11830( 70) heavy current two points 64
HPQCD 08B [206] 241 A | | | 0.11740(120) heavy current two points 64
pre-range with estimated pert. error 0.11826(200)
Zafeiropoulos 19 [704] 2+1 A ] | ] 0.1172(11) gluon-ghost vertex 66
ETM 13D [824] 24141 A ] 0.11960(40)(80)(60) gluon-ghost vertex 66
ETM 12C [825] 24141 A B 0.12000(140) gluon-ghost vertex 66
ETM 11D [826] 24141 A B 0.11980(90)(50)(_t0)  gluon-ghost vertex 66
Nakayama 18 [842] 241 A | 0.12260(360) Dirac eigenvalues 67

Table 68: Results for agg(Mz). Different methods are listed separately and they are combined
to a pre-range when computations are available without any m . A weighted average of the pre-
ranges gives 0.11843(60), using the smallest pre-range uncertainty gives 0.11843(81) while the
average uncertainty of the ranges used as an error gives 0.11843(187). Note that TUMQCD
19 supersedes Bazavov 14/12.

the Z mass) obtained from Ny =2+ 1 and Ny = 2+ 1 + 1 simulations. The conversion
from Ny = 3 or Ny = 4 to Ny = 5 is made by matching the coupling constant at the
charm and bottom quark thresholds and using the scale as determined or used by the

authors.
As can be seen from the tables and figures, at present there are several computations
satisfying the crite(rr)ia to be included in the FLAG average. Since FLAG 19 four new
5

computations of am(M 7) pass all our criteria with at least a

well within the stated uncertainties, which vary significantly.

. The results agree quite
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(5)
9.11.2 Our range for s

We now explain the determination of our range. We only include those results without a
red tag and that are published in a refereed journal. We also do not include any numbers
that were obtained by extrapolating from theories with less than three flavours. They are
not controlled and can be looked up in the previous FLAG reviews.

A general issue with most determinations of agg, both lattice and nonlattice, is that
they are dominated by perturbative truncation errors, which are difficult to estimate.
Further, all results discussed here except for those of Secs. 9.3, 9.7 are based on extractions
of ogpg that are largely influenced by data with ceg > 0.3. At smaller a; the momentum
scale u quickly gets at or above a~!. We have included computations using ay up to 1.5
and aeg up to 0.4, but one would ideally like to be significantly below that. Accordingly
we choose to not simply perform weighted averages with the individual errors estimated
by each group. Rather, we use our own more conservative estimates of the perturbative
truncation errors in the weighted average.

In the following we repeat aspects of the methods and calculations that inform our
estimates of the perturbative truncation errors. We also provide separate estimates for as
obtained from step-scaling, the heavy-quark potential, Wilson loops, heavy-quark current
two-point functions and vacuum polarization to enable a comparison of the different lattice
approaches; these are summarized in Tab. 68.

o Step-scaling
The step-scaling computations of PACS-CS 09A [82] and ALPHA 17 [81] reach
energies around the Z-mass where perturbative uncertainties in the three-flavour
theory are negligible. Perturbative errors do enter in the conversion of the A-
parameters from three to five flavours, but successive order contributions decrease
rapidly and can be neglected. We form a weighted average of the two results and
obtain agg = 0.11848(81).

e Static-quark potential computations

Brambilla 10 [771], ETM 11C [769] and Bazavov 12 [766] give evidence that they have
reached distances where perturbation theory can be used. However, in addition to A,
a scale is introduced into the perturbative prediction by the process of subtracting
the renormalon contribution. This subtraction is avoided in Bazavov 14 [765] by
using the force and again agreement with perturbative running is reported. Husung
17 [770] (unpublished) studies the reliability of perturbation theory in the pure gauge
theory with lattice spacings down to 0.015 fm and finds that at weak coupling there
is a downwards trend in the A-parameter with a slope AA/A ~ 9a2. The downward
trend is broadly confirmed in Husung 20 [700] albeit with larger errors.

Bazavov 14 [765] satisfies all of the criteria to enter the FLAG average for a; but
has been superseded by TUMQCD 19 [79]. Moreover, there is another study, Ayala
20 [78] who use the very same data as TUMQCD 19, but treat perturbation theory
differently, resulting in a rather different central value. This shows that perturbative
truncation errors are the main source of errors. We combine the results for Al\l%:g
from both groups as a weighted average (with the larger upward error of TUMQCD
19) and take the difference of the central values as the uncertainty of the average.

We obtain A%:g = 330(24) MeV, which translates to as(myz) = 0.11782(165).

e Small Wilson loops
Here the situation is unchanged as compared to FLAG 16. In the determination
of a; from observables at the lattice spacing scale, there is an interplay of higher-
order perturbative terms and lattice artifacts. In HPQCD 05A [788], HPQCD 08A
[789] and Maltman 08 [83] both lattice artifacts (which are power corrections in this
approach) and higher-order perturbative terms are fitted. We note that Maltman
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08 [83] and HPQCD 08A [789] analyze largely the same data set but use different
versions of the perturbative expansion and treatments of nonperturbative terms.
After adjusting for the slightly different lattice scales used, the values of agg(Mz)
differ by 0.0004 to 0.0008 for the three quantities considered. In fact the largest of
these differences (0.0008) comes from a tadpole-improved loop, which is expected to
be best behaved perturbatively. We therefore replace the perturbative-truncation
errors from [83] and [13] with our estimate of the perturbative uncertainty Eq. (379).
Taking the perturbative errors to be 100% correlated between the results, we obtain
for the weighted average agg = 0.11871(128).

e Heavy quark current two-point functions

Other computations with small errors are HPQCD 10 [13] and HPQCD 14A [16],
where correlation functions of heavy valence quarks are used to construct short-
distance quantities. Due to the large quark masses needed to reach the region of
small coupling, considerable discretization errors are present, see Fig. 30 of FLAG 16.
These are treated by fits to the perturbative running (a 5-loop running agg with a
fitted 5-loop coefficient in the S-function is used) with high-order terms in a double
expansion in a?A% and a?m? supplemented by priors which limit the size of the
coefficients. The priors play an especially important role in these fits given the much
larger number of fit parameters than data points. We note, however, that the size
of the coefficients does not prevent high-order terms from contributing significantly,
since the data includes values of am,. that are rather close to 1.

We note that the result of JLQCD 16 was classified in FLAG 19 as having passed
all FLAG criteria, although the scale is set by the charm-quark mass, implying
aer =~ 0.38. We now assign a red flag for renormalization scale, as we do for Pe-
treczky 19 and Boito 20 (see below). Since FLAG 19, there have been three new
studies, Petreczky 19 [28], Petreczky 20 [701] and Boito 20 [703] (Petreczky 19/Pe-
treczky 20 supersede Maezawa 16 [193]). While Petreczky 19/Petreczky 20 share
the same lattice data for heavy quark masses in the range m; = m.—4m. they use a
different strategy for continuum extrapolations and a different treatment of pertur-
bative uncertainties. Petreczky 19 [28] perform continuum extrapolation separately
for each value of the valence-quark mass, while Petreczky 20 rely on joint contin-
uum extrapolations of the lattice data at different heavy-quark masses, similar to
the analysis of HPQCD, but without Bayesian priors. It is concluded that reliable
continuum extrapolations for m; > 2m, require a joint fit to the data. This limits
the eligible o5 determinations in Petreczky 19 [28] to m;, = m. and 1.5m,., for which,
however, the FLAG criteria are not satisfied. There is also a difference in the choice
of renormalization scale between both analyses: Petreczky 19 [28] uses y = my,, while
Petreczky 20 [701] considers several choices of p in the range u = 2/3mp—3my,, which
leads to larger perturbative uncertainties in the determination of as [701]. Boito 20
[703] use published continuum extrapolated lattice results for mj;, = m. and performs
its own extraction of a;. Limiting the choice of my, to the charm-quark mass means
that the FLAG criteria are not met (ae.g ~ 0.38). However, their analysis gives
valuable insight into the perturbative error. In addition to the renormalization scale
1, Boito 20 also vary the renormalization scale p,, at which the charm quark mass
is defined. The corresponding result o (Mz) = 0.1177(20) agrees well with previous
lattice determination but has a larger error, which is dominated by the perturbative
uncertainty due to the variation of both scales. This increased uncertainty suggests
that the perturbative error estimated by HPQCD using a fixed scale y = 3mj, may
be too small. Therefore, we take the average of the HPQCD 10 and HPQCD 14A
determinations and assign an error of 0.0020, based on the analysis of Boito 20 [703].
This results in the range as(Mz) = 0.11826(200).

o Light quark vacuum polarization
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Since FLAG 19 a new study, Cali 20 [80] appeared, which uses the light current
two-point functions in position space, evaluated on a subset of CLS configurations
for lattice spacings in the range 0.038-0.076 fm, and for Euclidean distances 0.13-
0.19 fm, corresponding to renormalization scales p = 1-1.5 GeV. Both flavour non-
singlet vector and axial vector currents are considered and their difference is shown
to vanish within errors. After continuum and chiral limits are taken, the effective
coupling from the axial vector two-point function is converted at 3-loop order to
ays(p). The authors do this by numerical solution for agg and then perform a
Welghted average of the A-parameter estimates for the available energy range, which
yields A f == = 342(17) MeV. Note that this is the first calculation in the vacuum
polarlzatlon category that passes the current FLAG criteria. Yet the renormalization
scales are rather low and one might suspect that other nonperturbative (i.e., non
chiral-symmetry breaking) effects may still be sizeable. Our main issue is a rather
optimistic estimate of perturbative truncation errors, based only on the variation of
the A-parameter from the range of effective couplings considered. If the solution for
the MS coupling is done by series expansion in g, the differences in oyrg, formally
of order g, are still large at the scales considered. Hence, as a measure of the sys-

tematic uncertainty we take the difference 409 — 355 MeV between A%:g estimates

at p = 1.5 GeV as a proxy for the total error, i.e. A%:S = 342(54) MeV, which
translates to our pre-range, as(mz) = 0.11863(360), from vacuuum polarization.

e Other methods
Computations using other methods do not qualify for an average yet, predominantly
due to a lacking © in the continuum extrapolation.

We obtain the central value for our range of o from the weighted average of the five
pre-ranges listed in Tab. 68. The error of this weighted average is 0.0006, which is quite
a bit smaller than the most precise entry. Because, however, the errors on almost all
of the a calculations that enter the average are dominated by perturbative truncation
errors, which are especially difficult to estimate, we choose instead to take a larger range
for as of 0.0008. This is the error on the pre-range for a, from step-scaling, because
perturbative-truncation errors are sub-dominant in this method. Our final range is then
given by

a2 (M) = 0.1184(8) . (396)

moving up by 2 in the last given digit compared to FLAG 19 and with the same uncer-
tainty. Of the eleven calculations that are included most are within 1o of this range, an
exception being TUMQCD 19 (which supersedes Bazavov 14 and Bazavov 12). Further,
the range for a( ) (M 7) presented here is based on results with rather different systematics
(apart from the matchlng across the charm threshold). We therefore believe that the true
value is very likely to lie within this range.

All computations which enter this range, with the exception of HPQCD 14A [16], rely
on a perturbative inclusion of the charm and bottom quarks. Perturbation theory for
the matching of g]%,f and g]%,f_l looks very well behaved even at the mass of the charm.
Worries that still there may be purely nonperturbative effects at this rather low scale have
been removed by nonperturbative studies of the accuracy of perturbation theory. While
the original study in Ref. [162] was not precise enough, the extended one in Ref. [164]
estimates effects in the A-parameter to be significantly below 1% and thus negligible for
the present and near future accuracy.
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9.11.3 Ranges for [r)A]™¥") and Ay

In the present situation, we give ranges for [rOA](Nf) and Agypg, discussing their deter-
mination case by case. We include results with Ny < 3 because it is interesting to see
the N¢-dependence of the connection of low- and high-energy QCD. This aids our un-
derstanding of the field theory and helps in finding possible ways to tackle it beyond the
lattice approach. It is also of interest in providing an impression on the size of the vacuum-
polarization effects of quarks, in particular with an eye on the still difficult-to-treat heavier
charm and bottom quarks. Most importantly, however, the decoupling strategy described
in subsection 9.4 means that A-parameters at different Ny can be connected by a non-
perturbative matching computation. Thus, even results at unphysical flavour numbers,
in particular Ny = 0, may enter results for the physically interesting case. Rather than
phasing out results for “unphysical flavour numbers”, continued scrutiny by FLAG will
be necessary. Having said this, we emphasize that results for [rgA](®) and [roA]®) are not
meant to be used directly for phenomenology.
For the ranges we obtain:

roAss]® = 0.70(3), (397)
roAss]® = 0.808(29), (398)
[roAgs]® = 0.79(F13), (399)
roAss] @ = 0.624(36). (400)

No change has occurred since FLAG 19 for Ny = 2,4, so we take over the respective
discussion from FLAG 19.

For Ny = 2+ 1+ 1, we presently do not quote a range as there is a single result:
HPQCD 14A [16] found [roA]™) = 0.70(3).

For Ny = 24 1, we take as a central value the weighted average of Cali 20 [80],
Ayala 20 [78], TUMQCD 19[79], ALPHA 17 [81] HPQCD 10 [13] (Wilson loops and
current two-point correlators), PACS-CS 09A [82] (with linear continuum extrapolation)
and Maltman 08 [83]. Since the uncertainty in r¢ is small compared to that of A, we
can directly propagate the error from the analog of Eq. (396) with the 2+1+1 number
removed and arrive at

[roAss)® = 0.808(29) . (401)

(The error of the straight weighted average is 0.012.) It is in good agreement with all 2+1
results without red tags. In physical units, using ro = 0.472 fm and neglecting its error,
this means™

3) _
ALY = 338(12) MeV, (402)

where the error of the straight weighted average is less than 5 MeV.

For Ny = 2, at present there is one computation with a rating for all criteria,
ALPHA 12 [712]. We adopt it as our central value and enlarge the error to cover the central
values of the other three results with filled green boxes. This results in an asymmetric
error. Our range is unchanged as compared to FLAG 13,

[roAys)® = 0.79(%,3) (403)
and in physical units, using g = 0.472 fm,

ALL = 330(2) MeV . (404)

™In the FLAG 19 report [4], an inaccurate conversion of [roAgrg]® in Eq. (345) to physical units (using
ro = 0.472 fm) led to 343 MeV in Egs. (346,353). However, using fmxMeV=1/197.3 gives 337 MeV (Egs. (351)
and (352) are however correct). Note: Equation references in this footnote are from FLAG 19 [4].
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A weighted average of the four eligible numbers would yield [roAszs]®) = 0.689(23), not
covering the best result and in particular leading to a smaller error than we feel is justified,
given the issues discussed previously in Sec. 9.5.2 (Karbstein 18 [767], ETM 11C [769])
and Sec. 9.9.2 (ETM 10F [829]). Thus we believe that our estimate is a conservative
choice; the low values of ETM 11C [769] and Karbstein 18 [767] lead to a large downward
error. We note that this can largely be explained by different values of rg between ETM
11C [769] and ALPHA 12 [712]. We still hope that future work will improve the situation.

For Ny = 0, the new result DallaBrida 19 [698], is quite large compared to the FLAG
19 average. We combine it with those results which entered the FLAG 19 report, namely
ALPHA 98 [744], QCDSF/UKQCD 05 [792], Brambilla 10 [771], Kitazawa 16 [797] and
Ishikawa 17 [737] for forming a range.”! Taking a weighted average of the six numbers,
we obtain [roAzrg](® = 0.624(5), up from 0.615(5) for FLAG 19.

Clearly the errors are dominantly systematic, mostly due to perturbative truncation
errors. Since we do not change the FLAG 19 criteria for this edition, we give a range
which encompasses all central values. Unfortunately, this requires to double the error of
the FLAG 19 result (which was given by 0.615(18)), due to the large central value of 0.660
by DallaBrida 19. We arrive at our range for Ny = 0,

[roAss) @ = 0.624(36) . (405)

This is clearly not very satisfactory, and, despite this large error, this still means that the
high quality, and statistics dominated new step-scaling result Dalla Brida 19 is more than
3 sigma away from the central value of the new FLAG average.

Converting to physical units, again using ro = 0.472 fm yields

© _
ALY = 261(15) MeV (406)

While the conversion of the A parameter to physical units is quite unambiguous for Ny =
2 + 1, our choice of rg = 0.472 fm also for smaller numbers of flavour amounts to a
convention, in particular for Ny = 0. Indeed, in the Tabs. 60-66 somewhat different
numbers in MeV are found.

9.11.4 Conclusions
With the present results our range for the strong coupling is

(repeating Eq. (396))

ol (Mz) = 0.1184(8)  Refs. [13, 16, 78-83],

and the associated A parameters

A®L = 214(10) MeV Refs. [13, 16, 78-83], (407)
AY. = 297(12) MeV Refs. [13, 16, 78-83], (408)
A% = 339(12) MeV Refs. [13, 16, 78-83] . (409)

Compared with FLAG 19, the central values have moved slightly, with the errors remaining
the same.

'We have assigned a O for the continuum limit, in Boucaud 00A [834], 00B [833], 01A [832], Soto 01
[831] but these results are from lattices of a very small physical size with finite-size effects that are not easily
quantified.
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It is interesting to compare with the Particle Data Group average of nonlattice deter-
minations of recent years,

aye(Mz) = 0.1176(11), PDG 20, nonlattice [169], also appeared as Eq. (319),

o2 (Mz) = 0.1174(16), PDG 18, nonlattice [433], (410)
o2 (Mz) = 0.1174(16), PDG 16, nonlattice [235], (411)
o2 (Mz) = 01175(17), PDG 14, nonlattice [205], (412)
a%( M;) = 0.1183(12), PDG 12, nonlattice [843]. (413)

(there was no update in [433]). There is good agreement with Eq. (396). Despite our very
conservative error estimate, the FLAG lattice average has an error that is 30% smaller
than the PDG 20 nonlattice-world average and a weighted average of the two [Eq. (396)
and Eq. (319)] yields

o2 (Mz) = 01181(7), FLAG 21 + PDG 20. (414)

In the lower plot in Fig. 42 we show as blue circles the various PDG pre-averages which
lead to the PDG 20 nonlattice average. They are on a similar level as our pre-ranges
(green squares) : each one corresponds to an estimate (by the PDG) of o determined
from one set of input quantities. Within each pre-average multiple groups did the analysis
and published their results as displayed in Ref. [169].

The fact that our range for the lattice determination of agg(Mz) in Eq. (396) is in
excellent agreement with the PDG 20 nonlattice average Eq. (319) is an excellent check
for the subtle interplay of theory, phenomenology and experiments in the nonlattice deter-
minations. The work done on the lattice provides an entirely independent determination,
with negligible experimental uncertainty, which reaches a better precision even with our
quite conservative estimate of its uncertainty.

We finish by commenting on perspectives for the future. The step-scaling methods
have been shown to yield a very precise result and to satisfy all criteria easily. A down-
side is that dedicated simulations have to be done and the method is thus hardly used. It
would be desirable to have at least one more such computation by an independent collab-
oration, as also requested in the review [684]. While this FLAG review does not report an
error reduction compared to FLAG 19, the understanding of some systematic errors has
improved. With the exception of the step-scaling result, all determinations of «,, appear
to be limited by systematic uncertainties due to perturbative truncation errors. Similar
conclusions have been drawn in the recent review article [696]. In order to improve control
of systematics it would be necessary to reach higher energy scales without incurring large
cutoff effects. This could be achieved by applying step-scaling methods in large (infinite)
volume, provided that finite volume effects are carefully controlled. Even a relatively
modest increase by a scale factor 2-3 could significantly enhance the scope for some of
the current approaches to determine «;. Another hope for improvement are decoupling
strategies, following the recent proposal by the ALPHA collaboration, cf. Sec. 9.4. This in
turn motivates further state-of-the-art studies in the pure gauge theory (N;y = 0), where
it would be important to resolve the current tension between results in the literature.
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10 Nucleon matrix elements (NME)

Authors: S. Collins, R. Gupta, A. Nicholson, H. Wittig

A large number of experiments testing the Standard Model (SM) and searching for
physics Beyond the Standard Model (BSM) involve either free nucleons (proton and neu-
tron beams) or the scattering of electrons, muons, neutrinos and dark matter off nuclear
targets. Necessary ingredients in the analysis of the experimental results are the matrix
elements of various probes (fundamental currents or operators in a low energy effective
theory) between nucleon or nuclear states. The goal of lattice-QCD calculations in this
context is to provide high precision predictions of these matrix elements, the simplest
of which give the nucleon charges and form factors. Determinations of the charges are
the most mature and in this review we summarize the results for twelve quantities, the
isovector and flavour diagonal axial vector, scalar and tensor charges. Other quantities
that are not being reviewed but for which significant progress has been made in the last
five years are the nucleon axial vector and electromagnetic form factors [844-858] and
parton distribution functions [859-863]. The more challenging calculations of nuclear ma-
trix elements, that are needed, for example, to calculate the cross-sections of neutrinos
or dark matter scattering off nuclear targets, are proceeding along three paths. First is
direct evaluation of matrix elements calculated with initial and final states consisting of
multiple nucleons [864, 865]. Second, convoluting nucleon matrix elements with nuclear
effects [866], and third, determining two and higher body terms in the nuclear potential
via the direct or the HAL QCD methods [867, 868]. We expect future FLAG reviews to
include results on these quantities once a sufficient level of control over all the systematics
is reached.

10.1 Isovector and flavour diagonal charges of the nucleon

The simplest nucleon matrix elements are composed of local quark bilinear operators,
Gil'oq;, where I'y, can be any of the sixteen Dirac matrices. In this report, we consider
two types of flavour structures: (a) when ¢ = u and j = d. These ul'nd operators
arise in W* mediated weak interactions such as in neutron or pion decay. We restrict
the discussion to the matrix elements of the axial vector (A), scalar (S) and tensor (T')
currents, which give the isovector charges, 9,13,75511-72 (b) When ¢ = j for j € {u,d, s}, there
is no change of flavour, e.g., in processes mediated via the electromagnetic or weak neutral
interaction or dark matter. These v or Z° or possible dark matter mediated processes
couple to all flavours with their corresponding charges. Since these probes interact with
nucleons within nuclear targets, one has to include the effects of QCD (to go from the
couplings defined at the quark and gluon level to those for nucleons) and nuclear forces
in order to make contact with experiments. The isovector and flavour diagonal charges,
given by the matrix elements of the corresponding operators calculated between nucleon
states, are these nucleon level couplings. Here we review results for the light and strange
flavours, 94A.s1 gffL s,r» and g} ¢ and the isovector charges gjfl)_SCfT.

The isovector and flavour diagonal operators also arise in BSM theories due to the
exchange of novel force carriers or as effective interactions due to loop effects. The as-
sociated couplings are defined at the energy scale Aggni, while lattice-QCD calculations
of matrix elements are carried out at a hadronic scale, u, of a few GeV. The tool for
connecting the couplings at the two scales is the renormalization group. Since the opera-
tors of interest are composed of quark fields (and more generally also of gluon fields), the
predominant change in the corresponding couplings under a scale transformation is due to

"In the isospin symmetric limit (p|ald|n) = (p|al'u — dU'd|p) = (n|dl'd — @l'u|n) for nucleon and proton
states |p) and |n), respectively. The latter two (equivalent) isovector matrix elements are computed on the
lattice.
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Figure 43: The two- and three-point correlation functions (illustrated by Feynman diagrams)
that need to be calculated to extract the ground state nucleon matrix elements. (Left) the
nucleon two-point function. (Middle) the connected three-point function with source-sink
separation 7 and operator insertion time slice ¢. (Right) the disconnected three-point function
with operator insertion at ¢.

QCD. To define the operators and their couplings at the hadronic scale i, one constructs
renormalized operators, whose matrix elements are finite in the continuum limit. This
requires calculating both multiplicative renormalization factors, including the anomalous
dimensions and finite terms, and the mixing with other operators. We discuss the details
of the renormalization factors needed for each of the six operators reviewed in this report
in Sec. 10.1.3.

Once renormalized operators are defined, the matrix elements of interest are extracted
using expectation values of two-point and three-point correlation functions illustrated in
Fig. 43, where the latter can have both quark-line connected and disconnected contribu-
tions. In order to isolate the ground-state matrix element, these correlation functions are
analyzed using their spectral decomposition. The current practice is to fit the n-point
correlation functions (or ratios involving three- and two-point functions) including contri-
butions from one or two excited states. In some cases, such as axial and vector operators,
Ward identities provide relations between correlation functions, or ground state matrix el-
ements, or facilitate the calculation of renormalization constants. It is important to ensure
that all such Ward identities are satisfied in lattice calculations, especially as in the case of
axial form factors where they provide checks of whether excited state contamination has
been removed in obtaining matrix elements within ground state nucleons [105, 855, 869].

The ideal situation occurs if the time separation 7 between the nucleon source and
sink positions, and the distance of the operator insertion time from the source and the
sink, ¢t and 7 — ¢, respectively, are large enough such that the contribution of all excited
states is negligible. In the limit of large 7, the ratio of noise to signal in the nucleon
two- and three-point correlation functions grows exponentially as e(M~ —§Mx)T [870, 871],
where My and M, are the masses of the nucleon and the pion, respectively. Therefore, in
particular at small pion masses, maintaining reasonable errors for large 7 is challenging,
with current calculations limited to 7 < 1.5 fm. In addition, the mass gap between the
ground and excited (including multi-particle) states is smaller than in the meson sector
and at these separations, excited-state effects can be significant. The approach commonly
taken is to first obtain results with high statistics at multiple values of 7, using the
methods described in Sec. 10.1.1. Then, as mentioned above, excited-state contamination
is removed by fitting the data using a fit form involving one or two excited states. The
different strategies that have been employed to minimize excited-state contamination are
discussed in Sec. 10.1.2.

Usually, the quark-connected part of the three-point function (corresponding to the
plot in the centre of Fig. 43) is computed via the so-called “sequential propagator method”,
which uses the product of two quark propagators between the positions of the initial and
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the final nucleons as a source term for another inversion of the lattice Dirac operator. This
implies that the position of the sink timeslice is fixed at some chosen value. Varying the
value of the source-sink separation 7 then requires the calculation of another sequential
propagator.

The evaluation of quark-disconnected contributions is computationally more challeng-
ing as the disconnected loop (which contains the operator insertion, as illustrated in
Fig. 43 right) is needed at all points on a particular timeslice or, in general, over the
whole lattice. The quark loop is computed stochastically and then correlated with the
nucleon two-point function before averaging this three-point function over the ensemble
of gauge configurations. The associated statistical error, therefore, is a combination of
that due to the stochastic evaluation (on each configuration) and that from the gauge
average. The number of stochastic sources employed on each configuration is, typically,
optimized to reduce the overall error for a given computational cost. The statistical errors
of the connected contributions, in contrast, usually come only from the ensemble average
since they are often evaluated exactly on each configuration, for a small number of source
positions. If these positions are well-separated in space and time, then each measure-
ment is statistically independent. The methodology applied for these calculations and the
variance reduction techniques are summarized in Sec. 10.1.1. By construction, arbitrary
values of 7 across the entire temporal extent of the lattice can be realized when comput-
ing the quark-disconnected contribution, since the source-sink separation is determined
by the part of the diagram that corresponds to the two-point nucleon correlator. However,
in practice statistical fluctuations of both the connected and disconnected contributions
increase sharply, so that the signal is lost in the statistical noise for 7 2 1.5 fm.

The lattice calculation is performed for a given number of quark flavours and at a
number of values of the lattice spacing a, the pion mass M, and the lattice size, rep-
resented by M, L. The results need to be extrapolated to the physical point defined by
a =0, M; =135 MeV and ML — oo. This is done by fitting the data simultaneously
in these three variables using a theoretically motivated ansatz. The ansédtze used and the
fitting strategy are described in Sec. 10.1.4.

The procedure for rating the various calculations and the criteria specific to this chap-
ter are discussed in Sec. 10.2, which also includes a brief description of how the final
averages are constructed. The physics motivation for computing the isovector charges,
gZTS‘fT, and the review of the lattice results are presented in Sec. 10.3. This is followed by

a discussion of the relevance of the flavour diagonal charges, g’/‘l"é’sT, and a presentation of

the lattice results in Sec. 10.4.

10.1.1 Technical aspects of the calculations of nucleon matrix elements

The calculation of n-point functions needed to extract nucleon matrix elements requires
making four essential choices. The first involves choosing between the suite of background
gauge field ensembles one has access to. The range of lattice parameters should be large
enough to facilitate the extrapolation to the continuum and infinite-volume limits, and,
ideally, the evaluation at the physical pion mass taken to be M, = 135 MeV. Such
ensembles have been generated with a variety of discretization schemes for the gauge
and fermion actions that have different levels of improvement and preservation of contin-
uum symmetries. The actions employed at present include (i) Wilson gauge with non-
perturbatively improved Sheikholeslami-Wohlert fermions (nonperturbatively improved
clover fermions) [111, 371, 872-876], (ii) Iwasaki gauge with nonperturbatively improved
clover fermions [852, 877], (iii) Iwasaki gauge with twisted-mass fermions with a clover
term [878-882], (iv) tadpole Symanzik improved gauge with highly improved staggered
quarks (HISQ) [102, 103, 107, 114, 883-887], (v) Iwasaki gauge with domain-wall fermions
(DW) [105, 110, 888-892] and (vi) Iwasaki gauge with overlap fermions [893-895]. For
details of the lattice actions, see the glossary in the Appendix A.1 of FLAG 19 [4].
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The second choice is of the valence quark action. Here there are two choices, to
maintain a unitary formulation by choosing exactly the same action as is used in the
generation of gauge configurations or to choose a different action and tune the quark
masses to match the pseudoscalar meson spectrum in the two theories. Such mixed
action formulations are nonunitary but are expected to have the same continuum limit as
QCD. The reason for choosing a mixed action approach is expediency. For example, the
generation of 24141 flavour HISQ and 2+1 flavour DW ensembles with physical quark
masses has been possible even at the coarse lattice spacing of ¢ = 0.15 fm and there are
indications that cut-off effects are reasonably small. These ensembles have been analyzed
using clover-improved Wilson fermions, DW and overlap fermions since the construction
of baryon correlation functions with definite spin and parity is much simpler compared to
staggered fermions.

The third choice is the combination of the algorithm for inverting the Dirac matrix and
variance reduction techniques. Efficient inversion and variance reduction techniques are
needed for the calculation of nucleon correlation functions with high precision because the
signal-to-noise ratio degrades exponentially as e(3Mx=MN)T with the source-sink separa-
tion 7. Thus, the number of measurements needed for high precision is much larger than
in the meson sector. Commonly used inversion algorithms include the multigrid [896] and
the deflation-accelerated Krylov solvers [897], which can handle linear systems with large
condition numbers very efficiently, thereby enabling calculations of correlation functions
at the physical pion mass.

The sampling of the path integral is limited by the number N, of gauge configu-
rations generated. One requires sufficiently large Neons such that the phase space (for
example, different topological sectors) has been adequately sampled and all the correla-
tion functions satisfy the expected lattice symmetries such as C, P, T\, momentum and
translation invariance. Thus, one needs gauge field generation algorithms that give decor-
related large volume configurations cost-effectively. On such large lattices, to reduce errors
one can exploit the fact that the volume is large enough to allow multiple measurements
of nucleon correlation functions that are essentially statistically independent. Two other
common variance reduction techniques that reduce the cost of multiple measurements
on each configuration are: the truncated solver with bias correction method [898] and
deflation of the Dirac matrix for the low lying modes followed by sloppy solution with
bias correction for the residual matrix consisting predominately of the high frequency
modes [898, 899].

A number of other variance reduction methods are also being used and developed.
These include deflation with hierarchical probing for disconnected diagrams [900, 901],
the coherent source sequential propagator method [902, 903], low-mode averaging [904,
905], the hopping-parameter expansion [906, 907] and partitioning [908] (also known as
dilution [909]).

The final choice is of the interpolating operator used to create and annihilate the
nucleon state, and of the operator used to calculate the matrix element. Along with the
choice of the interpolating operator (or operators if a variational method is used) one also
chooses a “smearing” of the source used to construct the quark propagator. By tuning the
width of the smearing, one can optimize the spatial extent of the nucleon interpolating
operator to reduce the overlap with the excited states. Two common smearing algorithms
are Gaussian (Wuppertal) [910] and Jacobi [911] smearing.

Having made all the above choices, for which a reasonable recipe exists, one calculates
a statistical sample of correlation functions from which the desired ground state nucleon
matrix element is extracted. Excited states, unfortunately, contribute significantly to nu-
cleon correlation functions in present studies. To remove their contributions, calculations
are performed with multiple source-sink separations 7 and fits are made to the correlation
functions using their spectral decomposition as discussed in the next section.
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10.1.2 Controlling excited-state contamination

Nucleon matrix elements are determined from a combination of two- and three-point
correlation functions. To be more specific, let B*(#,t) denote an interpolating operator
for the nucleon. Placing the initial state at time slice ¢ = 0, the two-point correlation
function of a nucleon with momentum p reads

Cafir) = PN By, (B(7.7) B (7,0)), (415)

z,7

where the projector P selects the polarization, and «, 8 denote Dirac indices. The three-
point function of two nucleons and a quark bilinear operator Or is defined as

CL@t,r) =Y 7 @D FT APy, (BF ) On(E OB (7,0)),  (416)

x,Y,z

where 7, 7’ denote the momenta of the nucleons at the source and sink, respectively, and
¢ = p’ — p is the momentum transfer. The bilinear operator is inserted at time slice t,
and 7 denotes the source-sink separation. Both Cy and C} can be expressed in terms
of the nonperturbative quark propagators, D~*(y, x), where D denotes the lattice Dirac
operator.

The framework for the analysis of excited-state contamination is based on spectral
decomposition. After inserting complete sets of eigenstates of the transfer matrix, the
expressions for the correlators Cy and C}' read

. 1 o —B _E,r
Co(pim) = FZPM (Q[B®[n)(n[B"|Q) e~ ", (417)

- 1 o —=B B, (r—t) —
C3 (gt 1) = ﬁZPBa (QB*|n) (n|Op|m) (m[B"|Q) e #r(7=0 e Fmt - (418)

n,m

where |Q2) denotes the vacuum state, and E,, represents the energy of the n'! eigenstate |n)
in the nucleon channel. Here we restrict the discussion to vanishing momentum transfer,
i.e., the forward limit ¢ = 0, and label the ground state by n = 0. The matrix element
of interest gr = (0|Or|0) can, for instance, be obtained from the asymptotic behaviour of
the ratio

Rp(t,r)= 2= DL T BIZUR0 L O(emAt o= A=t =AT)  (419)

where A = E; — Ey denotes the energy gap between the ground state and the first
excitation. We also assume that the bilinear operator Or is appropriately renormalized
(see Sec. 10.1.3).

Excited states with the same quantum numbers as the nucleon include resonances such
as a Roper-like state with a mass of about 1.5 GeV, or multi-particle states consisting of a
nucleon and one or more pions [912, 913]. The latter can provide significant contributions
to the two- and three-point correlators in Eqgs. (415) and (416) or their ratios (419) as the
pion mass approaches its physical value. Ignoring the interactions between the individual
hadrons, one can easily identify the lowest-lying multi-particle states: they include the
N7r state with all three particles at rest at ~ 1.2 GeV, as well as N« states with both
hadrons having nonzero and opposite momentum. Depending on the spatial box size L in
physical units (with the smallest nonzero momentum equal to 27 /L), there may be a dense
spectrum of N states before the first nucleon resonance is encountered. Corrections to
nucleon correlation functions due to the pion continuum have been studied using chiral
effective theory [912-915] and Liischer’s finite-volume quantization condition [916].
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The well-known noise problem of baryonic correlation functions implies that the long-
distance regime, t, (7 —t) — oo, where the correlators are dominated by the ground
state, is difficult to reach. Current lattice calculations of baryonic three-point functions
are typically confined to source-sink separations of 7 < 1.5fm, despite the availability of
efficient noise reduction methods. In view of the dense excitation spectrum encountered
in the nucleon channel, one has to demonstrate that the contributions from excited states
are sufficiently suppressed to guarantee an unbiased determination of nucleon matrix
elements. There are several strategies to address this problem:

e Multi-state fits to correlator ratios or individual two- and three-point functions;
e Three-point correlation functions summed over the operator insertion time ¢;
e Increasing the projection of the interpolator B¢ onto the ground state.

The first of the above methods includes excited state contributions explicitly when fitting
to the spectral decomposition of the correlation functions, Eqgs. (417, 418) or, alternatively,
their ratio (see Eq. (419)). In its simplest form, the resulting expression for Rr includes
the contributions from the first excited state, i.e.,

A(T—t)

Rr(t,7) = gr + co1 e A4 cpe +epe AT , (420)

where co1, 10,11 and A are treated as additional parameters when fitting Rr(t,7) si-
multaneously over intervals in the source-sink separation 7 and the operator insertion
timeslice t. Multi-exponential fits become more difficult to stabilize for a growing number
of excited states, since an increasing number of free parameters must be sufficiently con-
strained by the data. Therefore, a high level of statistical precision at several source-sink
separations is required. One common way to address this issue is to introduce Bayesian
constraints, as described in [917]. Alternatively, one may try to reduce the number of
free parameters, for instance, by determining the energy gap A from nucleon two-point
function and/or using a common gap for several different nucleon matrix elements [106].

Ignoring the explicit contributions from excited states and fitting Rr (¢, 7) to a constant
in ¢ for fixed 7 amounts to applying what is called the “plateau method”. The name
derives from the ideal situation that sufficiently large source-sink separations 7 can be
realized, which would cause Rp(t,7) to exhibit a plateau in ¢ independent of 7. The
ability to control excited-state contamination is rather limited in this approach, since the
only option is to check for consistency in the estimate of the plateau as 7 is varied. In
view of the exponential degradation of the statistical signal for increasing 7, such stability
checks are difficult to perform reliably.

Summed operator insertions, originally proposed in Ref. [918], have also emerged as a
widely used method to address the problem of excited-state contamination. One way to
implement this method [919, 920] proceeds by summing Rr(t,7) over the insertion time
t, resulting in the correlator ratio Sr(7),

Sr(r) = z_: Rr(t, 7). (421)

The asymptotic behaviour of Sp(7), including sub-leading terms, for large source-sink
separations T can be easily derived from the spectral decomposition of the correlators and
is given by [921]

SF(T) T>>—1/>A Kr + (T — a) gr + (’T — (l) e_ATdF + e_ATfr +..., (422)

where K is a constant, and the coefficients dr and fr contain linear combinations of
transition matrix elements involving the ground and first excited states. Thus, the matrix
element of interest gr is obtained from the linear slope of St (7) with respect to the source-
sink separation 7. While the leading corrections from excited states e ~27 are smaller than
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those of the original ratio Rr(t,7) (see Eq. (419)), extracting the slope from a linear fit to
Sr(7) typically results in relatively large statistical errors. In principle, one could include
the contributions from excited states explicitly in the expression for Sp(7). However, in
practice it is often difficult to constrain an enlarged set of parameters reliably, in particular
if one cannot afford to determine Sr(7) except for a handful of source-sink separations.
The original summed operator insertion technique described in Refs. [910, 918, 922,
923] avoids the explicit summation over the operator insertion time t at every fixed value
of 7. Instead, one replaces one of the quark propagators that appear in the representation
of the two-point correlation function Cy(t) by a “sequential” propagator, according to

D '(y,z) » Di''(y,2) = > _ D (y,2)ID ' (z,z). (423)

In this expression, the position z = (Z,t) of the insertion of the quark bilinear operator
is implicitly summed over, by inverting the lattice Dirac operator D on the source field
I'D~Y(z,2). While this gives access to all source-sink separations 0 < 7 < T, where T is
the temporal extent of the lattice, the resulting correlator also contains contact terms, as
well as contributions from 7 < ¢ < T that must be controlled. This method™ has been
adopted recently by the CalLat collaboration in their calculation of the isovector axial
charge [103, 887].

As in the case of explicitly summing over the operator insertion time, the matrix
element of interest is determined from the slope of the summed correlator. For instance,
in Ref. [103], the axial charge was determined from the summed three-point correlation
function, by fitting to its asymptotic behaviour [924] including sub-leading terms.

In practice, one often uses several methods simultaneously, e.g., multi-state fits and
the summation method based on Eq. (422), in order to check the robustness of the result.
All of the approaches for controlling excited-state contributions proceed by fitting data
obtained in a finite interval in 7 to a function that describes the approach to the asymptotic
behaviour derived from the spectral decomposition. Obviously, the accessible values of 7
must be large enough so that the model function provides a good representation of the
data that enter such a fit. It is then reasonable to impose a lower threshold on 7 above
which the fit model is deemed reliable. We will return to this issue when explaining our
quality criteria in Sec. 10.2.

The third method for controlling excited-state contamination aims at optimizing the
projection onto the ground state in the two-point and three-point correlation functions
[874, 903, 927, 928]. The RQCD collaboration has chosen to optimize the parameters in
the Gaussian smearing procedure, so that the overlap of the nucleon interpolating operator
onto the ground state is maximized [874]. In this way it may be possible to use shorter
source-sink separations without incurring a bias due to excited states.

The variational method, originally designed to provide detailed information on energy
levels of the ground and excited states in a given channel [929-932], has also been adapted
to the determination of hadron-to-hadron transition elements [921]. In the case of nucleon
matrix elements, the authors of Ref. [927] have employed a basis of operators to construct
interpolators that couple to individual eigenstates in the nucleon channel. The method
has produced promising results when applied to calculations of the axial and other forward
matrix elements at a fixed value of the pion mass [903, 927, 928, 933]. However, a more
comprehensive study aimed at providing an estimate at the physical point has, until now,
not been performed.

The investigation of excited-state effects is an active subfield in NME calculations,
and many refinements and extensions have been implemented since the previous edition

"Tn Ref. [924] it is shown that the method can be linked to the Feynman-Hellmann theorem. A direct
implementation of the Feynman-Hellmann theorem by means of a modification of the lattice action is discussed
and applied in Refs. [925, 926].
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of the FLAG report. For instance, it has been shown that the previously observed failure
of the axial and pseudoscalar form factors to satisfy the PCAC relation linking them
could be avoided by including the enhanced contribution of N7 excitations, either by
including additional information on the nucleon excitation spectrum extracted from the
three-point function of the axial current [869], or with guidance from chiral effective field
theory analyses of nucleon three-point functions [855].

The variety of methods that are employed to address the problem of excited-state
contamination (ESC) has greatly improved our understanding of and control over excited-
state effects in NME calculations. However, there is still room for further improvement:
For instance, dedicated calculations of the excitation spectrum using the variational
method could replace the often rudimentary spectral information gained from multi-state
fits to the two- and three-point functions used primarily for the determination of the ma-
trix elements. In general, the development of methods to explicitly include multi-particle
states, such as N7 and Nnm with appropriate momentum configurations, coupled with
the determination of the associated (transition) matrix elements, is needed to significantly
enhance the precision of a variety of nucleon matrix elements. Such approaches would, to
some extent, eliminate the need to extend the source-sink separation 7 into a regime that
is currently inaccessible due to the noise problem.

Since the ongoing efforts to study excited-state contamination are producing deeper
insights, we have decided to follow a more cautious approach in the assessment of available
NME calculations. This is reflected in a modification of the quality criterion for excited-
state contamination that is described and discussed in Sec. 10.2.

10.1.3 Renormalization and Symanzik improvement of local currents

In this section we discuss the matching of the normalization of lattice operators to a
continuum reference scheme such as MS, and the application of Symanzik improvement
to remove O(a) contributions. The relevant operators for this review are the axial (A4,),
tensor (1),,) and scalar (S) local operators of the form Or = ql'q, with I' = 7,75, io,.
and 1, respectively, whose matrix elements are evaluated in the forward limit. The general
form for renormalized operators in the isovector flavour combination, at a scale u, reads

O (1) = 2551 (ua, ¢?) [Or(a) + abomOr () + aco O™ ()] +O(a?),  (424)

where Z(l\g/I S’Latt(ua, g?) denotes the multiplicative renormalization factor determined in

the chiral limit, m — 0, and the second and third terms represent all possible quark-
mass dependent and independent Symanzik improvement terms, respectively, at O(a).™
The chiral properties of overlap, domain-wall fermions (with improvement up to O(mJ,)
where myes is the residual mass) and twisted-mass fermions (at maximal twist [938, 939])
mean that the O(a) improvement terms are absent, while for nonperturbatively improved
Sheikholeslami-Wohlert-Wilson (nonperturbatively-improved clover) fermions all terms
appear in principle. For the operators of interest here there are several mass dependent
terms but at most one dimension-four O1"P; see, e.g., Refs. [940, 941]. However, the latter
involve external derivatives whose corresponding matrix elements vanish in the forward
limit. Note that no mention is made of staggered fermions as they are not, currently,
widely employed as valence quarks in nucleon matrix element calculations.

In order to illustrate the above remarks we consider the renormalization and improve-
ment of the isovector axial current. This current has no anomalous dimension and hence

"Here a(gz) refers to the lattice spacing in the chiral limit, however, lattice simulations are usually carried out
by fixing the value of g*> while varying the quark masses. This means a = a(§*) where §* = g*(1+bgam,) [934,
935] is the improved coupling that varies with the average sea-quark mass mg. The difference between the Z
factors calculated with respect to g2 and §2 can effectively be absorbed into the bo coefficients [936, 937].
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the renormalization factor, Z4 = ZF’LM (¢?), is independent of the scale. The factor

is usually computed nonperturbatively via the axial Ward identity [942] or the Rome-
Southampton method [422] (see Sec. A.3 of FLAG 19 [4] for details). In some studies,
the ratio with the corresponding vector renormalization factor, Z4/Zy, is determined
for which some of the systematics cancel. In this case, one constructs the combination
Zaga/(Zyvgy), where Zygy =1 and g4 and gy are the lattice forward matrix elements,
to arrive at the renormalized axial charge [886]. For domain-wall fermions the ratio is
employed in order to remove O(amyes) terms and achieve leading discretization effects
starting at O(a?) [10]. Thus, as mentioned above, O(a) improvement terms are only
present for nonperturbatively-improved clover fermions. For the axial current, Eq. (424)
takes the explicit form,

AT () = 2351 (g%) [ (1+ abamuar + 3abameea ) Ay(a) + acad, P(a)| +0(a?), (425)

where my, and mge, are the average valence- and sea-quark masses derived from the
vector Ward identity [935, 941, 942], and P is the pseudoscalar operator gysq. The matrix
element of the derivative term is equivalent to g, (N(p')|P|N(p)) and hence vanishes in
the forward limit when the momentum transfer ¢, = 0. The improvement coefficients
ba and by are known perturbatively for a variety of gauge actions [940, 943, 944] and
nonperturbatively for the tree-level Symanzik-improved gauge action for Ny = 2+1 [945].

Turning to operators for individual quark flavours, these can mix under renormal-
ization and the singlet and nonsinglet renormalization factors can differ. For the axial
current, such mixing occurs for all fermion formulations just like in the continuum, where
the singlet combination acquires an anomalous dimension due to the U4 (1) anomaly. The
ratio of singlet to nonsinglet renormalization factors, ro = Z3%/Z%" for O = A differs from
1 at O(a?) in perturbation theory (due to quark loops), suggesting that the mixing is a
small effect. The nonperturbative determinations performed so far find r4 ~ 1 [848, 880],
supporting this. For the tensor current the disconnected diagram vanishes in the contin-
uum due to chirality and consequently on the lattice r = 1 holds for overlap and DW
fermions (assuming my.s = 0 for the latter). For twisted-mass and clover fermions the
mixing is expected to be small with r+ = 1 + O(a?) [946] and this is confirmed by the
nonperturbative studies of Refs. [882, 947].

The scalar operators for the individual quark flavours, gq, are relevant not only for
the corresponding scalar charges, but also for the sigma terms o, = mq(N|gg|N) when
combined with the quark masses m,. For overlap and DW fermions rs = 1, like in
the continuum and all gg renormalize multiplicatively with the isovector Zg. The latter
is equal to the inverse of the mass renormalization and hence m,gq is renormalization
group (RG) invariant. For twisted-mass fermions, through the use of Osterwalder-Seiler
valence fermions, the operators mq(u+ dd) and m,3s are also invariant [948].”° In con-
trast, the lack of good chiral properties leads to significant mixing between quark flavours
for clover fermions. Nonperturbative determinations via the axial Ward identity [712, 875]
have found the ratio 75 to be much larger than the perturbative expectation 1+0(a?) [946]
may suggest. While the sum over the quark flavours which appear in the action Zévf mqqq
is RG invariant, large cancellations between the contributions from individual flavours can
occur when evaluating, e.g., the strange sigma term. Note that for twisted-mass and clover
fermions there is also an additive contribution o< a=31 (or oc ga=21) to the scalar oper-
ator. This contribution is removed from the nucleon scalar matrix elements by working
with the subtracted current, gg — (gq), where (gGq) is the vacuum expectation value of the
current [941].

">Note that for twisted-mass fermions the pseudoscalar renormalization factor is the relevant factor for the
scalar operator. The isovector (isosinglet) scalar current in the physical basis becomes the isosinglet (isovector)
pseudoscalar current in the twisted basis. Perturbatively rp =1+ O(ozg’) and nonperturbative determinations
have found rp ~ 1 [882].
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Symanzik improvement for the singlet currents follows the same pattern as in the
isovector case with O(a) terms only appearing for nonperturbatively-improved clover
fermions. For the axial and tensor operators only mass dependent terms are relevant
in the forward limit while for the scalar there is an additional gluonic operator Og™" =
Tr(F, Fu.,) with a coefficient of O(a,) in perturbation theory. When constructing the
sigma terms from the quark masses and the scalar operator, the improvement terms re-
main and they must be included to remove all O(a) effects for nonperturbatively-improved
clover fermions, see Ref. [941] for a discussion.

10.1.4 Extrapolations in a, M, and M;L

To obtain physical results that can be used to compare to or make predictions for experi-
ment, all quantities must be extrapolated to the continuum and infinite-volume limits. In
general, either a chiral extrapolation or interpolation must also be made to the physical
pion mass. These extrapolations need to be performed simultaneously since discretization
and finite-volume effects are themselves dependent upon the pion mass. Furthermore, in
practice it is not possible to hold the pion mass fixed while the lattice spacing is varied, as
some variation in a occurs when tuning the quark masses at fixed gauge coupling. Thus,
one performs a simultaneous extrapolation in all three variables using a theoretically
motivated formula of the form,

g(Mﬂ'7 a, L) = YGphys + 61\/[,r + 6(1 + 5L ) (426)

where gpnys is the desired extrapolated result, and das, , dq, 6 are the deviations due to
the pion mass, the lattice spacing, and the volume, respectively. Below we outline the
forms for each of these terms.

All observables discussed in this section are dimensionless, therefore the extrapolation
formulae may be parameterized by a set of dimensionless variables:

€x = — , ML, €a = Nga . (427)

Here, Ay, ~ 1 GeV is a chiral symmetry breaking scale, which, for example, can be set to
Ay = 4nF;, where F; = 92.2 MeV is the pion decay constant, and A, is a discretization
scale, e.g., Ay = ﬁ, where wy is a gradient-flow scale [118].

Effective field theory methods may be used to determine the form of each of these
extrapolations. For the single nucleon charges, Heavy-Baryon yPT (HBxPT) is a common
choice [949, 950], however, other variants, such as unitarized [951] or covariant yPT [952,
953], are also employed. Various formulations of HBYPT exist, including those for two-
and three-flavours, as well as with and without explicit A baryon degrees of freedom.
Two-flavour HBYPT is typically used due to issues with convergence of the three-flavour
theory [877, 954-957]. The convergence properties of all known formulations for baryon
xPT, even at the physical pion mass, have not been well-established.

To O(€2), the two-flavour chiral expansion for the nucleon charges is known to be of
the form [958],

9=00+ giex + g2e> + Gocz In (e2) (428)
where g1 = 0 for all charges g except gg’d. The dimensionless coefficients go 1,2, G2 are
assumed to be different for each of the different charges. The coefficients in front of
the logarithms, go, are known functions of the low-energy constants (LECs), and do not
represent new, independent LECs. Mixed action calculations will have further dependence
upon the mixed valence-sea pion mass, M.

Given the potential difficulties with convergence of the chiral expansion, known values
of the go in terms of LECs are not typically used, but are left as free fit parameters.

256



Furthermore, many quantities have been found to display mild pion mass dependence,
such that Taylor expansions, i.e., neglecting logarithms in the above expressions, are also
often employed. The lack of a rigorously established theoretical basis for the extrapolation
in the pion mass thus requires data close to the physical pion mass for obtaining high
precision extrapolated /interpolated results.

Discretization effects depend upon the lattice action used in a particular calculation,
and their form may be determined using the standard Symanzik power counting. In
general, for an unimproved action, the corrections due to discretization effects ¢, include
terms of the form,

0o = C164 + 0263 +oee, (429)

where ¢; 2 are dimensionless coefficients. Additional terms of the form ¢, (ex€,)", where
n is an integer whose lowest value depends on the combined discretization and chiral
properties, will also appear. Improved actions systematically remove correction terms,
e.g., an O(a)-improved action, combined with a similarly improved operator, will contain
terms in the extrapolation ansatz beginning at €2 (see Sec. 10.1.3).

Finite volume corrections d;, may be determined in the usual way from effective field
theory, by replacing loop integrals over continuous momenta with discrete sums. Finite
volume effects therefore introduce no new undetermined parameters to the extrapolation.
For example, at next-to-leading order, and neglecting contributions from intermediate A
baryons, the finite-volume corrections for the axial charge in two-flavour HBYPT take the
form [959],

8
S = gal) - ga(oc) = 5 [8F ML) + goFs OLD) . (430)
where
B Ky (mL|n|)
B Ky (mL|n|)
Fy(mL) = fZ Il (431)

and K, (z) are the modified Bessel functions of the second kind. Some extrapolations are
performed using the form for asymptotically large M, L,

e—Z

\/g ?
and neglecting contributions due to K;. Care must, however, be taken to establish that
these corrections are negligible for all included values of M, L. The numerical coefficients,
for example, 8/3 in Eq. (430), are often taken to be additional free fit parameters, due to
the question of convergence of the theory discussed above.

Given the lack of knowledge about the convergence of the expansions and the resulting
plethora of possibilities for extrapolation models at differing orders, it is important to
include statistical tests of model selection for a given set of data. Bayesian model averaging
[960] or use of the Akaike Information Criterion [961] are common choices which penalize
over-parameterized models.

Ko(z) — (432)

10.2 Quality criteria for nucleon matrix elements and averaging
procedure

There are two specific issues that call for a modification and extension of the FLAG qual-
ity criteria listed in Sec. 2. The first concerns the rating of the chiral extrapolation: The
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FLAG criteria reflect the ability of xPT to provide accurate descriptions of the pion mass
dependence of observables. Clearly, this ability is linked to the convergence properties
of xPT in a particular mass range. Quantities extracted from nucleon matrix elements
are extrapolated to the physical pion mass using some variant of baryonic xyPT, whose
convergence is not well established as compared to the mesonic sector. Therefore, we have
opted for stricter quality criteria, 200 MeV < My min < 300 MeV, for a green circle in the
chiral extrapolation of nucleon matrix elements, i.e.,

My min < 200 MeV with three or more pion masses used in the extrapolation

or two values of M, with one lying within 10 MeV of 135 MeV (the physical neutral

pion mass) and the other one below 200 MeV

200 MeV < My min < 300 MeV with three or more pion masses used in the extrapo-
lation;

or two values of M, with M; min < 200 MeV;

or a single value of M, lying within 10 MeV of 135MeV (the physical neutral pion
mass)
m  Otherwise

In Sec. 10.1.2 we have discussed that insufficient control over excited-state contribu-
tions, arising from the noise problem in baryonic correlation functions, may lead to a
systematic bias in the determination of nucleon matrix elements. We therefore introduce
an additional criterion that rates the efforts to suppress excited-state contamination in the
final result. As described in Sec. 10.1.2, the applied methodology to control excited-state
contamination is quite diverse. Since a broad consensus on the question which procedures
should be followed has yet to emerge, our criterion is expressed in terms of simulation
parameters that can be straightforwardly extracted on the basis of publications. Further-
more, the criterion must also be readily applicable to a variety of different local operators
whose matrix elements are discussed in this chapter. These requirements are satisfied
by the source-sink separation 7, i.e., the Euclidean distance between the initial and final
nucleons. The discussion at the end of Sec. 10.1.2 shows that there is room for improve-
ment in the ability to control excited-state contamination. Hence, we have reverted to
a binary system, based on the range of source-sink separations of a given calculations.
While we do not award the highest category—a green star—in this edition, we stress that
the adoption of the modified ESC criterion has not led to a situation where calculations
that were previously rated with a green star are now excluded from FLAG averages. The
rating scale concerning control over excited-state contributions is thus

Three or more source-sink separations 7, at least two of which must be above 1.0 fm.
m  Otherwise

We will continue to monitor the situation concerning excited-state contamination and,
if necessary, adapt the criteria further in future editions of the FLAG report.

As explained in Sec. 2, FLAG averages are distinguished by the sea-quark content.
Hence, for a given configuration of the quark sea (i.e., for Ny =2,2+1,24+1+1, or
141+ 141), we first identify those calculations that pass the FLAG and the additional
quality criteria defined in this section, i.e. excluding any calculation that has a red tag in
one or more of the categories. We then add statistical and systematic errors in quadrature
and perform a weighted average. If the fit is of bad quality (i.e., if x2;,/dof > 1), the
errors of the input quantities are scaled by /x?/dof. In the following step, correlations
among different calculations are taken into account in the error estimate by applying
Schmelling’s procedure [167].
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10.3 Isovector charges

The axial, scalar and tensor isovector charges are needed to interpret the results of many
experiments and phenomena mediated by weak interactions, including probes of new
physics. The most natural process from which isovector charges can be measured is
neutron beta decay (n — pTe 7.). At the quark level, this process occurs when a down
quark in a neutron transforms into an up quark due to weak interactions, in particular
due to the axial current interaction. While scalar and tensor currents have not been
observed in nature, effective scalar and tensor interactions arise in the SM due to loop
effects. At the TeV and higher scales, contributions to these three currents could arise due
to new interactions and/or loop effects in BSM theories. These super-weak corrections to
standard weak decays can be probed through high precision measurements of the neutron
decay distribution by examining deviations from SM predictions as described in Ref. [962].
The lattice-QCD methodology for the calculation of isovector charges is well-established,
and the control over statistical and systematic uncertainties is becoming robust.

The axial charge gff(d is an important parameter that encapsulates the strength of
weak interactions of nucleons. It enters in many analyses of nucleon structure and of
SM and BSM physics. For example, it enters in (i) the extraction of V4 and tests
of the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix; (ii) the analysis of
neutrinoless double-beta decay, (iii) neutrino-nucleus quasi-elastic scattering cross-section;
(iv) the rate of proton-proton fusion, the first step in the thermonuclear reaction chains
that power low-mass hydrogen-burning stars like the Sun; (v) solar and reactor neutrino
fluxes; (vi) muon capture rates, etc.. The current best determination of the ratio of the
axial to the vector charge, ga/gv, comes from measurement of neutron beta decay using
polarized ultracold neutrons by the UCNA collaboration, 1.2772(20) [963, 964], and by
PERKEO II, 1.2761ﬂ$ [965]. Note that, in the SM, gy = 1 up to second-order corrections
in isospin breaking [966, 967] as a result of the conservation of the vector current. Given
the accuracy with which gz_d has been measured in experiments, the goal of lattice-QCD
calculations is to calculate it directly with O(1%) accuracy.

Isovector scalar or tensor interactions contribute to the helicity-flip parameters, called
b and B, in the neutron decay distribution. By combining the calculation of the scalar and
tensor charges with the measurements of b and B, one can put constraints on novel scalar
and tensor interactions at the TeV scale as described in Ref. [962]. To optimally bound
such scalar and tensor interactions using measurements of b and B parameters in planned
experiments targeting 102 precision [968-970], we need to determine gg_d and g&i_d at
the 10% level as explained in Refs. [886, 962]. Future higher-precision measurements of b
and B would require correspondingly higher-precision calculations of the matrix elements
to place even more stringent bounds on these couplings at the TeV-scale.

One can estimate gg_d using the conserved vector current (CVC) relation, gs/gy =
(Mpeutron — pmton)QCD/(md —m,,)9CP | as done by Gonzalez-Alonso et al. [971]. In their
analysis, they took estimates of the two mass differences on the right-hand side from the
global lattice-QCD data [2] and obtained g%~ = 1.02(8)(7).

The tensor charge g;f_d can be extracted experimentally from semi-inclusive deep-
inelastic scattering (SIDIS) data [972-975]. A sample of these phenomenological estimates
is shown in Fig. 46, and the noteworthy feature is that the current uncertainty in these
phenomenological estimates is large.

10.3.1 Results for gjf(d

Calculations of the isovector axial charge have a long history, as can be seen from the com-
pilation given in Tab. 69 and plotted in Fig. 44. The issue of excited-state contamination
received little if any attention before 2010. As a consequence, the range of source-sink sep-
arations employed in many of the early calculations prior to that year was rather limited,
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Collaboration Ref. Ny N & & & N & gy
CalLat 19 [104] 2+1+1 C o * * * o 1.2642(93)
ETM 19 [976)] 241+1 A n e * * o 1.286(23)
PNDME 18° [102] 241+1 A *! * * * 0 1.218(25)(30)
CalLat 18 [103)] 24141 A e * * * o 1.271(10)(7)
CalLat 17 887] 241+1 P e * * * o 1.278(21)(26)
PNDME 16° [886] 2+1+1 A ot * * * o 1.195(33)(20)
NME 21° [977] 2+1 P ot * * * o 1.31(6)(5)
LHPC 19 856) 2+1 A m? * * * o 1.265(49)
Mainz 19 [106] 241 A * o * * o 1.242(25) (79 150)
PACS 18A 854) 2+1 A n * * * o 1.273(24)(5)(9)
PACS 18 [852] 2+1 A " u * * n 1.163(75)(14)
xQCD 18 [105) 2+1 A ® * * * o 1.254(16)(30)*
JLQCD 18 [895] 2+1 A u e o * o 1.123(28)(29)(90)
LHPC 12A° [978) 241 A mi * * * o 0.97(8)
LHPC 10 [902] 2+1 A " o n * n 1.21(17)
RBC/UKQCD 098  [889] 2+1 A n " o * n 1.19(6)(4)
RBC/UKQCD 08B  [888] 2+1 A n " o * n 1.20(6)(4)
LHPC 05 [979] 2+1 A n " * * " 1.226(84)
Mainz 17 [876)] 2 A * * * * L] 1.278(68) (19 1e7)
ETM 17B [880] 2 A n o o * 0 1.212(33)(22)
ETM 15D [878] 2 A " o o * o 1.242(57)
RQCD 14 [874] 2 A o * * * n 1.280(44)(46)
QCDSF 13 [371] 2 A e * n * n 1.29(5)(3)
Mainz 12 [873] 2 A * e o * " 1.233(63) (10 0a)
RBC 08 [980] 2 A n " n * n 1.23(12)
QCDSF 06 [872] 2 A o u n * " 1.31(9)(7)

a
b
i

The improvement coefficient in the valence quark action is set to its tadpole-improved tree-level value.
The quark action is tree-level improved.

The rating takes into account that the action is not fully O(a) improved by requiring an additional
lattice spacing.

For this partially quenched analysis the criteria are applied to the unitary points.

Table 69: Overview of results for gﬁ_d.
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offering little control over this important systematic effect. This concerns, in particular,
the calculations by LHPC 05 [979], LHPC 10 [902], RBC 08 [980], RBC/UKQCD 08B
[888], RBC/UKQCD 09B [889] and QCDSF 06 [872]. Since the last edition of the FLAG
report, no new results in two-flavour QCD have been published. An exception is the cal-
culation ETM 19 [976], which reanalyzed two ensembles with Ny = 2 around the physical
pion mass to study finite-volume effects, while the main result is quoted from a calculation
with Ny = 2414 1. These two-flavour calculations still do not qualify for inclusion in the
FLAG average (see Table 69). We thus refrain from providing a detailed discussion of the
results in Refs. [371, 872-874, 876, 878, 880, 980] and refer the reader to the corresponding
chapter in the previous edition of the FLAG report.

Estimates for the axial charge with Ny = 2 4 1 have been published by many col-
laborations, i.e., LHPC [856, 902, 978, 979], RBC/UKQCD [888, 889], JLQCD 18 [895],
xQCD 18 [105], PACS 18/PACS 18A [852, 854], Mainz 19 [106] (superseding the previ-
ously listed result in [981]) and NME 21 [977].

The calculations in LHPC 05 [979] and LHPC 10 [902] were based on a mixed-action
setup, combining domain-wall fermions in the valence sector with staggered (asqtad) gauge
ensembles generated by MILC. Although the dependence of the results on the source-sink
separation was studied to some extent in LHPC 10, excited-state effects are not sufficiently
controlled according to our quality criteria described in Sec. 10.2. A different discretization
of the quark action was used in their later studies (LHPC 12A [978] and LHPC 19 [856]),
employing tree-level improved Wilson fermions with smeared gauge links, both in the
sea and valence sectors. While this setup does not realize full O(a) improvement, it
was found that smeared gauge links reduce the leading discretization effects of O(a)
substantially. The most recent publication (LHPC 19) is based on two ensembles within
1.5% of the physical pion, at two different values of the lattice spacing. Results for gZ_d
were determined using the summation and ratio methods, with and without including the
first excitation in the fit. LHPC quotes the result from the finer lattice spacing, with an
error that covers the spread of uncertainties on both ensembles.

The RBC/UKQCD collaboration has employed Ny = 2 + 1 flavours of domain-wall
fermions. The results quoted in RBC/UKQCD 08B [888] and RBC/UKQCD 09B [889]
were obtained at relatively heavy pion masses at a single value of the lattice spacing, with
only limited control over excited-state effects. While systematic investigation of different
source-sink separations has been recently performed on two ensembles at the same lattice
spacing and pion masses of 250 and 170 MeV, respectively [982], an estimate for gZ_d at
the physical point has not been quoted.

The JLQCD collaboration (JLQCD 18 [895]) has performed a calculation using Ny =
2 4+ 1 flavours of overlap fermions and the Iwasaki gauge action. Owing to the large
numerical cost of overlap fermions, which preserve exact chiral symmetry at nonzero lattice
spacing, they have only simulated four light quark masses with 290 < M, < 540 MeV
and at a single lattice spacing so far. Their simultaneous fit to the data for the correlator
ratio Ra(t,7) computed at six values of 7 to a constant, gives a low value for gjf‘_d at
the physical point. Overlap valence quarks were also used by the xYQCD collaboration
in their study of various nucleon matrix elements (yQCD 18 [105]), utilizing the gauge
ensembles generated by RBC/UKQCD with domain-wall fermions. The quoted estimate
for the axial charge was obtained from a combination of two-state fits and the summation
method, applied over a range of source-sink separations.

Calculations with Ny = 2 + 1 flavours of O(a) improved Wilson fermions have been
performed by PACS, the Mainz group and NME. The calculations by the PACS collabora-
tion (PACS 18 [852] and PACS 18A [854]) were performed on very large volumes (8.2 fm
and 10.8 fm, respectively) at or near the physical pion mass. In PACS 18A, the ratio
method without including excited states was used to determine the isovector axial charge,
which was found to be in good agreement with the experimental value. However, only
a single lattice spacing was used in PACS 18 and PACS 18A, so that these calculations
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lack control over discretization effects. The Mainz group (Mainz 19 [106]) has presented
results for the axial charge, obtained by performing two-state fits to six different nucleon
matrix elements (including the scalar and tensor charges), assuming that the mass gap
to the excited state can be more reliably constrained in this way. Up to six source-sink
separations per ensemble have been studied. The final results are obtained from a com-
bined chiral, continuum and finite-volume extrapolation. The NME collaboration (NME
21 [977]) has recently published the results from a calculation of various nucleon form
factors and charges. Results were obtained from multi-state fits, using up to four (three)
states in the two-point (three-point) correlation functions. In order to describe and control
excited-state effects, Nm and Nnn states with different relative momenta were included
in the analysis. The preferred result for gfffd was obtained from the axial form factor
G A(Q?) extrapolated to Q2 = 0.

Three groups, PNDME, CalLat and ETMC, have published results for Ny = 2+141,
i.e. PNDME 16 [886], PNDME 18 [102], CalLat 17 [887] CalLat 18 [103], CalLat 19 [104].
PNDME and CalLat share the staggered (HISQ) gauge ensembles generated by the MILC
collaboration, but employ different discretizations in the valence quark sector: PNDME
use O(a) improved Wilson fermions with the improvement coefficient cgy, set to its tadpole-
improved tree-level value. By contrast, CalLat use the Mobius variant of domain-wall
fermions, which are fully O(a) improved. The CalLat set of ensembles includes three
values of the lattice spacing, i.e. a =0.09, 0.12, and 0.15 fm, while PNDME added another
set of ensembles at the finer lattice spacing of 0.06 fm to this collection. Both groups have
included physical pion mass ensembles in their calculations. The operator matrix elements
are renormalized nonperturbatively, using the Rome-Southampton method.

In order to control excited-state contamination, PNDME perform multi-state fits, in-
cluding up to four (three) energy levels in the two-point (three-point) correlation functions.
By contrast, CalLat have employed the Feynman-Hellmann-inspired implementation of
summed operator insertions described in Sec.10.1.2. Plotting the summed correlator
Sa(7) as a function of the source-sink separation, they find that excited-state effects can-
not be detected for 7 2 1.0fm at their level of statistics. After subtracting the leading
contributions from excited states determined from two-state fits, they argue that the data
for S4(7) can be described consistently down to 7 ~ 0.3 fm.

The recent calculation by ETMC (ETM 19 [976]) with Ny = 2+ 1+ 1 was performed
using a single twisted-mass QCD ensemble with m, ~ 139MeV. In order to control
excited-state effects, the summation method and multi-state fits were used. No significant
finite-volume effects were expected based on a similar analysis of two Ny = 2 ensembles
with different spatial extents. The quoted estimate is identified with the result obtained
from a two-state fit on the single Ny = 24 1 + 1 ensemble, which agrees with the value
determined from the summation method.

We now proceed to discuss global averages for the axial charge, in accordance with
the procedures in Sec. 10.2. For QCD with Ny = 24 1 4 1, the calculations of PNDME
and CalLat pass all our quality criteria, while the result of ETM 19 is excluded due
to the fact that it was performed at a single value of the lattice spacing. Hence the
results from PNDME 18 [102] and CalLat 19 [104], which is an update of CalLat 18 [103],
qualify for being included in a global average. Since both PNDME and CalLat use gauge
ensembles produced by MILC, we assume that the quoted errors are 100% correlated, even
though the range of pion masses and lattice spacings explored in Refs. [102] and [103, 104]
is not exactly identical. Performing a weighted average yields gjf(d = 1.2617(126) with
x?2/dof = 1.33, where the error has been scaled by about 15% because of the large x?/dof.
The result by CalLat dominates the weighted average due to its smaller error. Given that
the calculations of PNDME 18 and CalLat 19 are correlated, the large value of x?/dof
indicates a slight tension between the two results. In this situation we adopt a more
conservative approach, by requiring that the uncertainty assigned to the FLAG estimate
encompasses the central value of PNDME 18. As a result, we choose to represent the
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Figure 44: Lattice results and FLAG averages for the isovector axial charge gff‘_d for Ny = 2,
2+ 1 and 2+ 1+ 1 flavour calculations. Also shown is the experimental result as quoted in
the PDG [169].

axial charge by the interval 1.218 < gfffd < 1.274, where the lower bound is identified
with the result of PNDME 18, while the upper bound is the weighted average plus the
scaled 1o uncertainty. Hence, for Ny = 2+141 we quote gjffd = 1.246(28) as the FLAG
estimate, where the central value marks the mid-point of the interval, and half the width
is taken to be the error.

For QCD with Ny = 2 4+ 1 dynamical quarks, the calculations of xQCD 18 [105],
Mainz 19 [106] and NME 21 [977] are free of red tags, while the calculation by PACS 18A
[854] and LHPC 19 [856] do not offer enough control over lattice artefacts according to
the FLAG criteria. Since the result by NME 21 was published only as a preprint by the
FLAG deadline, it does not qualify for being included in a global average. Hence, for
Ny = 241 we compute a weighted average from xQCD 18 [105] and Mainz 19 [106],
assuming no correlations between the two calculations. This yields gfffd = 1.248(23) with
x?/dof = 0.07.

Due to the modified criteria for excited-state contamination, none of the results ob-
tained in two-flavour QCD qualify for a global average. Nonetheless, we find it instructive
to show the results for Ny = 2 together with the calculations with Ny = 2+1and 2+1+1
and the respective FLAG estimates in Fig. 44.

To summarize, the FLAG averages for the axial charge read

Ny=2+1+1: g4 = 1.246(28) Refs. [102-104], (433)
Ny=2+1: g4~ =1.248(23) Ref. [105, 106], (434)
Within errors, these averages are compatible with the result of gqud = 1.2724(23) quoted
by the PDG. While the most recent lattice calculations reproduce the axial charge at the

level of a few percent or even better, the experimental result is more precise by an order
of magnitude.
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ETM 19 [976] 2+1+1 A " 1.35(17)
PNDME 18 [102] 2+1+1 A ¥ 1.022(80)(60)
PNDME 16 [886] 2+1+1 A ¥ 0.97(12)(6)
PNDME 13 [883] 241+1 A mf = 0.72(32)
NME 21 [977] 2+1 P ' 1.06(10)(6)
xQCD 21A [983] 2+1 P 0.94(10)(6)
RBC/UKQCD 19 [982] 2+1 A n " 0.9(3)
Mainz 19 [106] 241 A 1.13(11) (%)
LHPC 19 [856] 2+1 A mt 0.927(303)
JLQCD 18 [895] 241 A " 0.88(8)(3)(7)
LHPC 12 [984] 2+1 A mt 1.08(28)(16)
ETM 17 [882] 2 A " 0.930(252)(48)(204)
RQCD 14 [874] 2 A " 1.02(18)(30)

¥ The rating takes into account that the action is not fully O(a) improved by requiring an additional
lattice spacing.

Table 70: Overview of results for gg*d.

10.3.2 Results for gg_d

Calculations of the isovector scalar charge have, in general, larger errors than the isovector
axial charge as can be seen from the compilation given in Tab. 70 and plotted in Fig. 45.
The isovector scalar charge can also be determined indirectly via the conserved vector
current (CVC) relation from results for the neutron-proton mass difference [151, 176, 223,
985-990] and the down and up quark mass difference (see Sec. 3.1.6). For comparison,
Fig. 45 also shows an indirect determination obtained using lattice and phenomenological
input [971].

Asin FLAG 19, for 24141 flavours, only PNDME 18 [102], which supersedes PNDME 16
[886] and PNDME 13 [883], meets all the criteria for inclusion in the average. The dis-
cussions for this and other past calculations are repeated from FLAG 19 for completion.

This mixed-action calculation was performed using the MILC HISQ ensembles, with
a clover valence action. The 11 ensembles used include three pion mass values, M, ~
135, 225, 320 MeV, and four lattice spacings, a ~ 0.06, 0.09, 0.12, 0.15 fm. Note that
four lattice spacings are required to meet the green star criteria, as this calculation is
not fully O(a) improved. Lattice size ranges between 3.3 < M, L < 5.5. Physical point
extrapolations were performed simultaneously, keeping only the leading-order terms in the
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various expansion parameters. For the finite-volume extrapolation, the asymptotic limit
of the xPT prediction, Eq. (432), was used. Excited-state contamination is controlled
using two-state fits to between three and five source-sink time separations between 0.72 <
7 < 1.68 fm. Renormalization was performed nonperturbatively using the RI-SMOM
scheme and converted to MS at 2 GeV using 2-loop perturbation theory.

The calculation performed in ETM 19 [976] was generated using twisted-mass fermions
with a clover term. The calculation utilized a single 2+141-flavour gauge configuration,
with a pion mass near the physical point, m, ~ 139 MeV, lattice spacing of a ~ 0.08 fm,
and volume corresponding to m,L = 3.86. Seven source-sink separations were used in
the analysis, ranging from ¢ = 0.64-1.6 fm. Two further two-flavour ensembles were also
explored, having the same pion mass, m, ~ 130 MeV and lattice spacing a ~ 0.09 fm,
but with different volumes corresponding to m,L ~ 3 and m,L ~ 4. The final result is
quoted from the single 24141 flavour ensemble and does not include an assessment of
discretization systematics, and therefore does not meet the continuum quality criterion
for inclusion in the average.

Regarding 2+1-flavour calculations, a single calculation meets all criteria necessary
for inclusion in the average. The Mainz 19 [106] calculation was performed on the Wilson
CLS ensembles, using four lattice spacings (a ~ 0.05 fm to 0.086 fm), several pion masses
ranging from ~ 200 MeV to ~ 350 MeV, and volumes corresponding to m,L ~ 3 to ~ 5.4.
Physical point extrapolations were performed simultaneously in the lattice spacing, pion
mass, and volume. FExcited states were controlled using two-state simultaneous fits to
multiple observables, and included several source-sink separations typically in the range
1-1.5 fm. Renormalization was performed nonperturbatively using the RI-SMOM scheme
and converted to MS at 2 GeV using 2-loop perturbation theory.

The 2+1-flavour calculation of yQCD 21A [983] was performed using a mixed-action
approach with domain-wall fermion gauge configurations generated by the RBC/UKQCD
collaboration and overlap valence quarks. They include five pion masses ranging from
my ~ 140 MeV to 370 MeV, four lattice spacings (a ~ 0.06, 0.08, 0.11, and 0.14 fm). Three
to six different valence-quark masses are computed on each ensemble. The extrapolation
to the physical pion mass, continuum and infinite-volume limits is obtained by a global
fit of all data to a partially quenched chiral perturbation theory ansatz. Excited-state
contamination is assessed using three to five sink-source separations and multi-state fits.
Renormalization is performed using RI/MOM and the final result quoted in MS at 2 GeV.
At the time of writing of this review, this calculation was unpublished and the results are
therefore not included in the average.

The NME 21[977] 2+1-flavour calculation utilized seven ensembles of Wilson-clover
fermions. Three lattice spacings, ranging from a ~ 0.07 fm to 0.13 fm, several pion masses,
my ~ 165 MeV to 285 MeV, and volumes corresponding to m,L ~ 3.75 to 6.15 were
used. Combined continuum, chiral, and infinite-volume extrapolations are performed to
the physical point using leading-order fit functions. Several fitting strategies are explored
using four to six source-sink separations ranging from 0.7-1.8 fm. Final results are quoted
by averaging results from two of these fitting strategies, in which the excited-state energy
for the three-point function is fixed using two different prior strategies. Renormalization
is non-perturbative (RI-SMOM) using two strategies, and quoted in MS at 2 GeV. This
work was also unpublished at the time of writing of this review and is not included in the
average.

The RBC/UKQCD 19 [982] calculation employed 2+1 flavours of domain-wall fermions
using an Iwasaki and dislocation-suppressing-determinant-ratio gauge action. They uti-
lized two values of the pion mass, m, ~ 250 and 170 MeV with volumes corresponding to
myL ~ 5.8 and 4.0, respectively. The results are quoted using only one lattice spacing of
0.14 fm, and a single source-sink separation of 1.3 fm and therefore do not meet the cri-
teria for continuum or excited-state contamination. The LHPC 19 [856] calculation used
a 2+1 flavour 2-HEX-smeared Wilson-clover action with two ensembles near the physical
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pion mass, m, ~ 133 and 137 MeV. The lattice spacings corresponded to a ~ 0.09 and
0.12 fm and volumes m,L ~ 4. They used 3 and 8 different time separations for the two
ensembles and compare ratio, summation, and multi-state methods to assess excited-state
contamination. Because the calculation is not fully O(a) improved, an additional lattice
spacing would be necessary to meet the continuum criterion for inclusion in the average.

The JLQCD 18 [895] calculation, performed using overlap fermions on the Iwasaki
gauge action, covered four pion masses down to 290 MeV. The lattice size was adjusted to
keep ML > 4 in all four cases. However, the single lattice spacing of a = 0.11 fm does not
meet the criteria for continuum extrapolation. The calculations presented in LHPC 12A
used three different lattice actions, Wilson-clover, domain-wall, and mixed action. Pion
masses ranged down to near the physical pion mass. Data at two lattice spacings were
produced with the domain-wall and Wilson actions, however, the final result utilized only
the single lattice spacing of @ = 0.116 fm from the Wilson action. Because the action is
not fully O(a) improved, two lattice spacings are not sufficient for meeting the quality
criteria for the continuum extrapolation.

The two-flavour calculations in Tab. 70 include ETM 17, which employed twisted-mass
fermions on the Iwasaki gauge action”®. This work utilized a single physical pion mass
ensemble with lattice spacing a ~ 0.09 fm, and therefore does not meet the criteria for
continuum extrapolation. The RQCD 14 calculation included three lattice spacings down
to 0.06 fm and several pion masses down to near the physical point. While a study of
excited-state contamination was performed on some ensembles using multiple source-sink
separations, many ensembles included only a single time separation, so it does not meet
the criteria for excited states.

The final FLAG value for gg_d is

Ny=2+1+1: g4 =1.02(10) Ref. [102], (435)
Ny=2+1: g™ = 1.13(14) Ref. [106]. (436)

10.3.3 Results for géﬁ_d

Estimates of the isovector tensor charge are currently the most precise of the isovector
charges with values that are stable over time, as can be seen from the compilation given in
Tab. 71 and plotted in Fig. 46. This is a consequence of the smaller statistical fluctuations
in the raw data and the very mild dependence on a, M, , and the lattice size M L. As
a result, the uncertainty due to the various extrapolations is small. Also shown for com-
parison in Fig. 46 are phenomenological results using measures of transversity [991-995].

Asin FLAG 19, for 24141 flavours, only PNDME 18 [102], which supersedes PNDME 16
[886], PNDME 15 [884] and PNDME 13 [883], meets all the criteria for inclusion in the
average. The details for this calculation are the same as those for gg_d described in the
previous section (Sec. 10.3.2), except that three-state fits were used to remove excited-state
effects. The details of the 2+1+1 flavour calculation by ETM 19, which does not meet the
criteria for averaging, are also the same as those described in the previous section for ggfd.

For 2+1-flavour calculations, only Mainz 19 [106] meets all criteria for inclusion in the
averages. Details of this calculation are the same as for gg_d, described in the previous
section.

Details for the 24 1-flavour NME 21, RBC/UKQCD 19, LHPC 19, Mainz 18, JLQCD 18,
and LHPC 12A, calculations are identical to those presented previously in Sec. 10.3.2. The
earlier RBC/UKQCD 10 calculation was performed using domain-wall fermions on the
Iwasaki gauge action, with two volumes and several pion masses. The lowest pion mass

"6The earlier work, ETM 15D [878], did not give a final value for gg_d and is therefore not included in the
tables.
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Figure 45: Lattice results and FLAG averages for the isovector scalar charge gg_d for Ny = 2,
241, and 2 4+ 1 + 1 flavour calculations. Also shown is a phenomenological result obtained
using the conserved vector current (CVC) relation [971] (circle).

used was M, ~ 330 MeV and does not meet the criteria for chiral extrapolation. In addi-
tion, the single lattice spacing and single source-sink separation do not meet the criteria
for continuum extrapolation and excited states.

Two-flavour calculations include RQCD 14, with details identical to those described
in Sec. 10.3.2. There are two calculations, ETM 15D [878] and ETM 17 [882], which
employed twisted-mass fermions on the Iwasaki gauge action. The earlier work utilized
three ensembles, with three volumes and two pion masses down to the physical point.
The more recent work used only the physical pion mass ensemble. Both works used only
a single lattice spacing a ~ 0.09 fm, and therefore do not meet the criteria for continuum
extrapolation. The early work by RBC 08 with domain-wall fermions used three heavy
values for the pion mass, and a single value for the lattice spacing, volume, and source-sink
separation, and therefore do not meet many of the criteria.

The final FLAG value for g%_d is

Ny=2+1+1: g™ = 0.989(34) Ref. [102], (437)
Ny=2+1: gst = 0.965(61) Ref. [106]. (438)

10.4 Flavour Diagonal Charges

Three examples of interactions for which matrix elements of flavour-diagonal operators
(qT'q where I" defines the Lorentz structure of the bilinear quark operator) are needed are
the neutral current interactions of neutrinos, elastic scattering of electrons off nuclei, and
the scattering of dark matter off nuclei. In addition, these matrix elements also probe
intrinsic properties of nucleons (the spin, the nucleon sigma term and strangeness content,
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Collaboration Ref. Ny QQ & & S < & 9;_d
ETM 19 [976] 24141 A n 0.936(25)
PNDME 18 [102] 24141 A i 0.989(32)(10)
PNDME 16 [886] 24141 A i 0.987(51)(20)
PNDME 15 (884, 885]  2+1+1 A i 1.020(76)
PNDME 13 [883] 24+1+1 A mif n 1.047(61)
NME 21 [977] 241 P i 0.95(5)(2)
RBC/UKQCD 19 [982] 241 A n u 1.04(5)
Mainz 19 [106] 2+1 A 0.965(38)(53)
LHPC 19 [856] 241 A mt 0.972(41)
JLQCD 18 [895] 2+1 A m 1.08(3)(3)(9)
LHPC 12 [984] 241 A mt 1.038(11)(12)
RBC/UKQCD 10D [890] 2+1 A n n n 0.9(2)
ETM 17 [882] 2 A n 1.004(21)(2)(19)
ETM 15D [878) 2 A n 1.027(62)
RQCD 14 [874] 2 A n 1.005(17)(29)
RBC 08 [980] 2 A [ [ [ [ 0.93(6)

¥ The rating takes into account that the action is not fully O(a) improved by requiring an additional
lattice spacing.

Table 71: Overview of results for gé,ﬂ_d.

and the contribution of the electric dipole moment (EDM) of the quarks to the nucleon
EDM) as explained below. For brevity, all operators are assumed to be appropriately
renormalized as discussed in Sec. 10.1.3.

The matrix elements of the scalar operator gg with flavour ¢ give the rate of change
in the nucleon mass due to nonzero values of the corresponding quark mass. This rela-
tionship is given by the Feynman-Hellmann theorem. The quantities of interest are the
nucleon o-term, oy, and the strange and charm content of the nucleon, o, and o,

N = Myg(N|uu + dd|N), (439)
s = mg(N|3s|N), (440)
0. = me(N|cc|N) . (441)

Here m,q is the average of the up and down quark masses and mg (m.) is the strange
(charm) quark mass. The o,y s give the shift in My due to nonzero light-, strange-
and charm-quark masses. The same matrix elements are also needed to quantify the spin
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Figure 46: Lattice results and FLAG averages for the isovector tensor charge g%_d for

Ny =2,241, and 2 + 1+ 1 flavour calculations. Also shown are phenomenological results
using measures of transversity [991-995] (circles).

Pheno. N
®

independent interaction of dark matter with nucleons. Note that, while o, and o; are also
phenomenologically interesting, they are unlikely to be calculated on the lattice due to
the expected tiny signal in the matrix elements. In principle, the heavy sigma terms can
be estimated using o, 4, by exploiting the heavy-quark limit [996-998].

The matrix elements of the axial operator gv,vsq give the contribution Agq of quarks
of flavour ¢ to the spin of the nucleon:

(N[@yu75qIN) = gATunY5uN,

s =80 = [ dn(Bo(e) + A7(w)). (442)

The charge g% is thus the contribution of the spin of a quark of flavour ¢ to the spin
of the nucleon. It is also related to the first Mellin moment of the polarized parton dis-
tribution function (PDF) Agq as shown in the second line in Eq. (442). Measurements
by the European Muon collaboration in 1987 of the spin asymmetry in polarized deep
inelastic scattering showed that the sum of the spins of the quarks contributes less than
half of the total spin of the proton [999]. To understand this unexpected result, called
the “proton spin crisis”, it is common to start with Ji’s sum rule [1000], which provides
a gauge invariant decomposition of the nucleon’s total spin, as

1 1
5= > <2Aq+Lq)+Jg, (443)

q=u,d,s,c,

where Ag/2 = ¢% /2 is the contribution of the intrinsic spin of a quark with flavour ¢; L,
is the orbital angular momentum of that quark; and J, is the total angular momentum of
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the gluons. Thus, to obtain the spin of the proton starting from QCD requires calculat-
ing the contributions of the three terms: the spin and orbital angular momentum of the
quarks, and the angular momentum of the gluons. Lattice-QCD calculations of the vari-
ous matrix elements needed to extract the three contributions are underway. An alternate
decomposition of the spin of the proton has been provided by Jaffe and Manohar [1001].
The two formulations differ in the decomposition of the contributions of the quark orbital
angular momentum and of the gluons. The contribution of the quark spin, which is the
subject of this review and given in Eq. (442), is the same in both formulations.

The tensor charges are defined as the matrix elements of the tensor operator go""g¢

with o = {v,,,7,}/2:

g%ﬂNO',uuuN = <N|60'l“,q|N> . (444)
These flavour-diagonal tensor charges g;’d’s’c quantify the contributions of the u, d, s, ¢

quark EDM to the neutron electric dipole moment (nREDM) [884, 1002]. Since particles
can have an EDM only due to P and T (or CP assuming CPT is a good symmetry)
violating interactions, the nEDM is a very sensitive probe of new sources of CP violation
that arise in most extensions of the SM designed to explain nature at the TeV scale. The
current experimental bound on the nEDM is d,, < 2.9 x 10726 ¢ cm [1003], while the
known CP violation in the SM implies d,, < 1073! e cm [1004]. A nonzero result over
the intervening five orders of magnitude would signal new physics. Planned experiments
aim to reduce the bound to around 1072® e cm. A discovery or reduction in the bound
from these experiments will put stringent constraints on many BSM theories, provided
the matrix elements of novel CP-violating interactions, of which the quark EDM is one,
are calculated with the required precision.

One can also extract these tensor charges from the zeroth moment of the transver-
sity distributions that are measured in many experiments including Drell-Yan and semi-
inclusive deep inelastic scattering (SIDIS). Of particular importance is the active program
at Jefferson Lab (JLab) to measure them [972, 973]. Transversity distributions describe
the net transverse polarization of quarks in a transversely polarized nucleon. Their ex-
traction from the data taken over a limited range of Q2 and Bjorken z is, however, not
straightforward and requires additional phenomenological modeling. At present, lattice-
QCD estimates of g;ﬂ’d’s are the most accurate [884, 974, 975] as can be deduced from
Fig. 46. Future experiments will significantly improve the extraction of the transversity
distributions. Thus, accurate calculations of the tensor charges using lattice QCD will
continue to help elucidate the structure of the nucleon in terms of quarks and gluons and
provide a benchmark against which phenomenological estimates utilizing measurements
at JLab and other experimental facilities worldwide can be compared.

The methodology for the calculation of flavour-diagonal charges is also well-established.
The major challenges are the much larger statistical errors in the disconnected contribu-
tions for the same computational cost and the need for the additional calculations of the
isosinglet renormalization factors.

10.4.1 Results for gjfl’d’s

A compilation of results for the flavour-diagonal axial charges for the proton is given in
Tab. 72 and plotted in Fig. 47. Results for the neutron can be obtained by interchang-
ing the u and d flavour indices. Only two calculations already discussed in FLAG 19 [4]
qualify for global averages: the PNDME 18A [107] for 2+1+1 flavours and the yQCD 18
[105] for 241 flavours.

The PNDME 18A [107] results were obtained using the 2+1+1 flavour clover-on-HISQ
formulation. The connected contributions were obtained on 11 HISQ ensembles generated
by the MILC collaboration with a ~ 0.057, 0.87, 0.12 and 0.15 fm, M, ~ 135, 220 and
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PNDME 20 [1005] 24141 C t 0.790(23)(30) —0.425(15)(30)
ETM 19 [976] 2+1+1 A m 0.862(17) —0.424(16)
PNDME 18A [107] 2+1+1 A i 0.777(25)(30)% —0.438(18)(30)*
Mainz 19A  [1006]  2+1 C 0.84(3)(4) —0.40(3)(4)
xQCD 18 [105]  2+1 A 0.847(18)(32)% —0.407(16)(18)*
ETM 17C [881] 2 A =m 0.830(26)(4) —0.386(16)(6)
As
PNDME 20 [1005] 2+1+1 C ¥ —0.053(7)
ETM 19 [976] 2+1+1 A m —0.0458(73)
PNDME 18A [107] 2+14+1 A ¥ —0.053(8)*
Mainz 19A  [1006]  2+1 C —0.044(4)(5)
xQCD 18 [105]  2+1 A —0.035(6)(7)®
JLQCD 18 [895] 2+1 A —0.046(26)(9)*
xQCD 15 [892] 241 A —0.0403(44)(78)*
Engelhardt 12[1007] ~ 2+1 A —0.031(17)*
ETM 17C [881] 2 A =m —0.042(10)(2)

# Assumed that Z%* = Z5.
¥ The rating takes into account that the action is not fully O(a) improved by requiring an additional
lattice spacing.

$ For this partially quenched analysis the criteria are applied to the unitary points.

Table 72: Overview of results for g9 .

320 MeV, and 3.3 < ML < 5.5. The light disconnected contributions were obtained
on six of these ensembles with the lowest pion mass M, ~ 220 MeV, while the strange
disconnected contributions were obtained on seven ensembles, i.e., including an additional
one at a ~ 0.087 fm and M, ~ 135 MeV. The excited state and the chiral-continuum fits
were done separately for the connected and disconnected contributions, which introduces
a systematic that is hypothesied to be small as explained in Ref. [107]. The analysis
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Figure 47: Lattice results and FLAG averages for g;‘fl’d’s for the Ny =2,241,and 2+1+1

flavour calculations.

of the excited-state contamination, discussed in Sec. 10.1.2, was done using three-state
fits for the connected contribution and two-state fits for the disconnected contributions.
The chiral-continuum extrapolation was done keeping the leading correction terms pro-
portional to M2 and a in both cases, and the leading finite-volume correction in M, L
was included in the analysis of the connected contributions. Isovector renormalization
constants, calculated on the lattice in the RI-SMOM scheme and converted to MS, are
used for all three flavour diagonal operators.

The PNDME 20 [1005] provided a status update to PNDME 18A [107] and presented
results showing that flavour mixing in the calculation of renormalization constants is
small, and the isovector renormalization factor is a good approximation for renormalizing
flavour diagonal axial charges as discussed in Sec. 10.1.3. It is not considered for the
average as it is a conference proceeding.

The ETM 19 [976] presented new results for g%%*¢ from a single ensemble with
2+1+1-flavour twisted-mass fermions with a clover term at a = 0.0801(4) fm and M, =
139.3(7) MeV. These are not considered for the averages as they do not satisfy the criteria
for the continuum extrapolation.

The 24+1+1 flavour FLAG values for the axial charges gjf;d’s of the proton are, there-
fore, the same as the corresponding results given in Tab. 72 and unchanged from FLAG
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19 [4]:

Ny=2+1+1: g% = 0.777(25)(30) Ref. [107), (445)
Ny=2+1+1: g% = —0.438(18)(30) Ref. [107], (446)
Ny=2+1+1: g% = —0.053(8) Ref. [107]. (447)

There are also new results for gjfl’d’s from Mainz 19A [1006] with 2+1-flavour ensem-
bles. While they satisfy all the criteria, they are not included in the averages as [1006] is
a conference proceeding.

The 2+1 flavour FLAG results from xQCD 18 [105] were obtained using the overlap-
on-domain-wall formalism. Three domain-wall ensembles with lattice spacings 0.143, 0.11
and 0.083 fm and sea-quark pion masses M, = 171, 337 and 302 MeV, respectively, were
analyzed. In addition to the three approximately unitary points, the paper presents data
for an additional 4-5 valence quark masses on each ensemble, i.e., partially quenched data.
Separate excited-state fits were done for the connected and disconnected contributions.
The continuum, chiral and volume extrapolation to the combined unitary and nonunitary
data is made including terms proportional to both Mivalence and Misea, and two O(a?)
discretization terms for the two different domain-wall actions. With just three unitary
points, not all the coefficients are well constrained. The My ;.. dependence is omitted
and considered as a systematic, and a prior is used for the coefficients of the a? terms to
stabilize the fit. These yQCD 18 241 flavour results for the proton, which supersede the
xQCD 15 [892] analysis, are

Ny=2+1: g% = 0.847(18)(32) Ref. [105], (448)
Ny=2+1: g% = —0.407(16)(18) Ref. [105], (449)
Ny=2+1: g% = —0.035(6)(7) Ref. [105)]. (450)

The JLQCD 18 [895], ETM 17C [881] and Engelhardt 12 [1007] calculations were not
considered for the averages as they did not satisfy the criteria for the continuum extrap-
olation. All three calculations were done at a single lattice spacing. The JLQCD 18
calculation used overlap fermions and the Iwasaki gauge action. They perform a chiral fit
using data at four pion masses in the range 290-540 MeV. Finite volume corrections are
assumed to be negligible since each of the two pairs of points on different lattice volumes
satisfy ML > 4. The ETM 17C calculation is based on a single twisted-mass ensemble
with M, = 130 MeV, a = 0.094 and a relatively small ML = 2.98. Engelhardt 12 [1007]
calculation was done on three asqtad ensembles with M, = 293, 356 and 495 MeV, but
all at a single lattice spacing a = 0.124 fm.

Results for g% were also presented recently by LHPC in Ref. [848]. However, this
calculation is not included in Tab. 72 as it has been performed on a single ensemble with
a = 0.114 fm and a heavy pion mass value of M, =~ 317 MeV.

10.4.2 Results for gg’d’s from direct and hybrid calculations of the ma-
trix elements

The sigma terms oq = my(N|Gq|N) = mgg or the quark mass fractions fr, = 0,/Mn
are normally computed rather than g%. These combinations have the advantage of being
renormalization group invariant in the continuum, and this holds on the lattice for actions
with good chiral properties, see Sec. 10.1.3 for a discussion. In order to aid comparison
with phenomenological estimates, e.g. from 7-N scattering [1008-1010], the light quark
sigma terms are usually added to give the 7N sigma term, o, n = 0, +04. The direct eval-
uation of the sigma terms involves the calculation of the corresponding three-point corre-
lation functions for different source-sink separations 7. For o, there are both connected
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and disconnected contributions, while for most lattice fermion formulations only discon-
nected contributions are needed for o,. The techniques typically employed lead to the
availability of a wider range of 7 for the disconnected contributions compared to the con-
nected ones (both, however, suffer from signal-to-noise problems for large 7, as discussed in
Sec. 10.1) and we only comment on the range of 7 computed for the latter in the following.

Recent results for o,n and for o, from the direct approach are compiled in Tab. 73.
ETM 19 [976] (discussed below) is the only new study included in this table since the last
FLAG report. Ref. [1011] is also new, however, it was submitted to the arXiv after the
deadline and will be reviewed in the next edition. For completeness, the descriptions of
other works are reproduced from FLAG 19.

For both o,y and for o, only the results from yQCD 15A [110] qualify for global
averaging. In this mixed-action study, three RBC/UKQCD N; = 2 + 1 domain-wall en-
sembles are analyzed comprising two lattice spacings, a = 0.08 fm with My ¢, = 300 MeV
and a = 0.11 fm with My o = 330 MeV and 139 MeV. Overlap fermions are employed
with a number of nonunitary valence quark masses. The connected three-point functions
are measured with three values of 7 in the range 0.9-1.4 fm. A combined chiral, con-
tinuum and volume extrapolation is performed for all data with M, < 350 MeV. The
leading order expressions are taken for the lattice-spacing and volume dependence while
partially quenched SU(2) HBxPT up to M2 terms models the chiral behaviour for o .
The strange-quark sigma term has a milder dependence on the pion mass and only the
leading-order quadratic terms are included in this case.

The lack of other qualifying studies is an indication of the difficulty and computational
expense of performing these calculations. Nonetheless, this situation is likely to improve
in the future. We note that although the recent analyses, ETM 16A [879], the new study
ETM 19 [976] and JLQCD 18 [895], are at a single lattice spacing (a = 0.09 fm, 0.08 fm
and 0.11 fm, respectively), they satisfy the criteria for chiral extrapolation, finite vol-
ume and excited states. ETM 16A is a single ensemble study with N; = 2 twisted-mass
fermions with a pion mass close to the physical point and M, L = 3.0. Excited states are
investigated utilizing 7 = 0.9 fm up to 7 = 1.7 fm for the connected three-point functions.
In ETM 19 a high statistics analysis was carried out employing a Ny = 2+ 1 + 1 physical
point ensemble and seven source-sink separations in the range 7 = 0.6-1.6 fm, improving
the precision they obtain for both o,y and o, compared to their Ny = 2 results. JLQCD
in JLQCD 18 utilize Ny = 2 + 1 overlap fermion ensembles with pion masses reaching
down to 293 MeV (M, L = 4.0) and apply techniques which give a wide range of 7 for the
connected contribution, with the final results extracted from 7 > 1.2 fm.

RQCD (RQCD 16 [875]) investigates the continuum, physical quark mass and infinite-
volume limits, where the lattice spacing spans the range 0.06—0.08 fm, the minimum M
is 150 MeV and ML is varied between 3.4 to 6.7 at M, = 290 MeV. This Ny = 2 study
has a red tag for the excited state criterion as multiple source-sink separations for the
connected three-point functions are only computed on a subset of the ensembles. Clover
fermions are employed and the lack of good chiral properties for this action means that
there is mixing between quark flavours under renormalization when determining o4 and
a gluonic term needs to be considered for full O(a) improvement (which has not been
included, see Sec. 10.1.3 for a discussion).

Earlier work focuses only on . The analysis of JLQCD 12A [894], is performed on the
same set of ensembles as the JLQCD 18 study discussed above and in addition includes
smaller volumes for the lightest two pion masses.”” No significant finite-volume effects are
observed. Engelhardt 12 [1007] and xQCD 13A [891] have less control over the systemat-
ics. The former is a single lattice spacing analysis restricted to small spatial volumes while
the latter is a partially quenched study on a single ensemble with unitary M, > 300 MeV.

""JLQCD also determine fr, in Ref. [1013] in a single lattice spacing study on small volumes with heavy
pion masses.
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ETM 19 976] 2+1+1 A =m na/na 41.6(3.8) 45.6(6.2)
JLQCD 18 [895] 2+1 A =m na/na 26(3)(5)(2) 17(18)(9)
xQCD 15A  [110] 2+1 A na/na 45.9(7.4)(2.8)%  40.2(11.7)(3.5)%
xQCD 13A  [891] 2+1 A " —/na - 33.3(6.2)"
JLQCD 12A  [894] 241 A —/na - 0.009(15)(16) xmn '
Engelhardt 12[1007]  2+1 A m  —/na - 0.046(11)xmn "
ETM 16A [879] 2 A m na/na 37.2(2.6)(%3)  41.1(8.2)(%)
RQCD 16 [875] 2 A na/ m 35(6) 35(12)
MILC 12C  [112] 2+14+1 A -/ - 0.44(8)(5) xm 18
MILC 12C  [112] 2+1 A -/ — 0.637(55)(74) xm, 18
MILC 09D [1012] 2+1 A —/na - 59(6)(8)*

The renormalization criteria is given for o.n (first) and os (second). The label 'na’ indicates that no renor-
malization is required.

$ For this partially quenched analysis the criteria are applied to the unitary points.

t This study computes the strange quark fraction fr, /mxn.

§ This study employs a hybrid method, see Ref. [1012].

¥ The matrix element (N|3s|N) at the scale u = 2 GeV in the MS scheme is computed.

Table 73: Overview of results for o,x and o from the direct approach (above) and o4 from
the hybrid approach (below).

MILC has also computed o, using a hybrid method [1012] which makes use of the
Feynman-Hellmann (FH) theorem and involves evaluating the nucleon matrix element
(N| [d*5s|N).™ This method is applied in MILC 09D [1012] to the Ny = 2+ 1 asqtad
ensembles with lattice spacings a = 0.06, 0.09, 0.12 fm and values of M, ranging down to
224 MeV. A continuum and chiral extrapolation is performed including terms linear in the
light-quark mass and quadratic in a. As the coefficient of the discretization term is poorly
determined, a Bayesian prior is used, with a width corresponding to a 10% discretization
effect between the continuum limit and the coarsest lattice spacing.”™ A similar updated

"Note that in the direct method the matrix element (N| [d® 5s|N), involving the spatial volume sum, is
evaluated for a fixed timeslice.
"This is consistent with discretization effects observed in other quantities at a = 0.12 fm.
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analysis is presented in MILC 12C [112], with an improved evaluation of (N| [d* ss|N)
on a subset of the Ny = 2 4 1 asqtad ensembles. The study is also extended to HISQ
Ny =2+ 1+ 1 ensembles comprising four lattice spacings with a = 0.06-0.15 fm and a
minimum pion mass of 131 MeV. Results are presented for gi = (N|3s|N) (in the MS
scheme at 2 GeV) rather than for o;. The scalar matrix element is renormalized for both
three and four flavours using the 2-loop factor for the asqtad action [200]. The error
incurred by applying the same factor to the HISQ results is expected to be small.®9
Both MILC 09D and MILC 12C achieve green tags for all the criteria, see Tab. 73. As
the same set of asqtad ensembles is utilized in both studies we take MILC 12C as supersed-
ing MILC 09D for the three-flavour case. The global averaging is discussed in Sec. 10.4.4.

10.4.3 Results for gg’d’s using the Feynman-Hellmann theorem

An alternative approach for accessing the sigma terms is to determine the slope of the

nucleon mass as a function of the quark masses, or equivalently, the squared pseudoscalar

meson masses. The Feynman-Hellman (FH) theorem gives

oM, oM, oM, oM, oM,
5 g O DM g DM

Omy, omgq oM Omg OM?Z,

(451)

OnN = My,

where the fictitious 5s meson has a mass squared M2, = 2M% — M2. In principle this
is a straightforward method as the nucleon mass can be extracted from fits to two-point
correlation functions, and a further fit to My as a function of M, (and also Mg for
os) provides the slope. Nonetheless, this approach presents its own challenges: a func-
tional form for the chiral behaviour of the nucleon mass is needed, and while baryonic
xPT (BxPT) is the natural choice, the convergence properties of the different formula-
tions are not well established. Results are sensitive to the formulation chosen and the
order of the expansion employed. If there is an insufficient number of data points when
implementing higher order terms, the coefficients are sometimes fixed using additional
input, e.g. from analyses of experimental data. This may influence the slope extracted.
Simulations with pion masses close to or bracketing the physical point can alleviate these
difficulties. In some studies the nucleon mass is used to set the lattice spacing. This
naturally forces the fit to reproduce the physical nucleon mass at the physical point and
may affect the extracted slope. Note that, if the nucleon mass is fitted as a function of
the pion and kaon masses, the dependence of the meson masses on the quark masses also,
in principle, needs to be considered in order to extract the sigma terms.

An overview of recent determinations of o,y and os is given in Tab. 74. BMW
20A [1015] (discussed below) is the only new study since the last FLAG report. For
completeness, the descriptions of other works are reproduced from FLAG 19. Note that
the renormalization criterion is not included in Tab. 74 as renormalization is not nor-
mally required when computing the sigma terms in the Feynman-Hellmann approach.8!
At present, a rating indicating control over excited state contamination is also not con-
sidered since a wide range of source-sink separations are available for nucleon two-point
functions and ground state dominance is normally achieved. This issue may be revisited
in the future as statistical precision improves and this systematic is further investigated.

There are several results for o, that can be included in a global average. For Ny = 2,
one study meets the selection criteria.®? The analysis of QCDSF 12 [111] employs non-
perturbatively improved clover fermions over three lattice spacings (a = 0.06-0.08 fm)

80 At least at 1-loop the Z factors for HISQ and asqtad are very similar, cf. Ref. [1014].

81 An exception to this is when clover fermions are employed. In this case one must take care of the mixing
between quark flavours when renormalizing the quark masses that appear in Eq. (451).

82The ETM collaboration also determine o,y in Ref. [1022] as part of an Ny = 2 analysis to determine the
lattice spacing from the nucleon mass. However, no final result is given.
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BMW 20A [1015] 1+1+1+1 P i 0.0398(32)(44)xmnT  0.0577(46)(33) xmn "
ETM 14A [24]  2+1+1 A 64.9(1.5)(13.2)2 —
BMW 15 [109] 2+1 A i 38(3)(3) 105(41)(37)
Junnarkar 13 [113] 2+1 A - 48(10)(15)
Shanahan 12 [1016] 241 A =m 45(6)/51(7)* 21(6)/59(6)*
JLQCD 12A [894] 2+1 A =m - 0.023(29)(28) xmn '
QCDSF 11 [1017] 241 A = = 31(3)(4 71(34)(59)
BMW 11A [108] 2+1 A i 39(4)(3%) 67(27)(32)
Martin Camalich 10[1018]  2+1 A =m 59(2)(17) —4(23)(25)
PACS-CS 09 [877)  2+1 A =m 75(15) =
Walker-Loud 08 [1019] 2+1 A =m 84(17)(20)/42(14)(9)* —
QCDSF 12 [111] 2 A 37(8)(6) =
JLQCD 08B [893] 2 A m B 53(2)(T2 —

A

Two results for o.n are quoted arising from different fit ansitze to the nucleon mass. The systematic

error is the same as in Ref. [1020] for a combined Ny =2 and Ny = 2+ 1 + 1 analysis [1021].

The rating takes into account that the action is not fully O(a) improved by requiring an additional

lattice spacing.
Two results are quoted.
The quark fractions fr,, = fr, + fr, = oxn/mn and/or fr, = o5/my are computed.

Table 74: Overview of results for o,y and og from the Feynman-Hellmann approach.

with pion masses reaching down to around 160 MeV. Finite volume corrected nucleon
masses are extrapolated via O(p*) covariant BxPT with three free parameters. The other
coefficients are taken from experiment, phenomenology or FLAG, with the corresponding
uncertainties accounted for in the fit for those coefficients that are not well known. The
nucleon mass is used to set the scale. A novel feature of this study is that a direct determi-
nation of o, n at around M, = 290 MeV was used as an additional constraint on the slope.

Turning to Ny = 2 4+ 1, two studies performed by the BMW collaboration and one
by xQCD are relevant. In BMW 11A [108], stout-smeared tree-level clover fermions are
employed on 15 ensembles with simulation parameters encompassing a = 0.06—-0.12 fm,
M, ~ 190-550 MeV and ML 2 4. Taylor, Padé and covariant SU(3) BxPT fit forms
are considered. Due to the use of smeared gauge links, discretization effects are found to
be mild even though the fermion action is not fully O(a) improved. Fits are performed
including an O(a) or O(a?) term and also without a lattice-spacing dependent term. Fi-
nite volume effects were assessed to be small in an earlier work [1023]. The final results
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are computed considering all combinations of the fit ansatz weighted by the quality of the
fit. In BMW 15 [109], a more extensive analysis on 47 ensembles is presented for HEX-
smeared clover fermions involving five lattice spacings and pion masses reaching down to
120 MeV. Bracketing the physical point reduces the reliance on a chiral extrapolation.
Joint continuum, chiral and infinite-volume extrapolations are carried out for a number
of fit parameterisations with the final results determined via the Akaike information cri-
terion procedure [961]. Although only o,y is accessible in the FH approach in the isospin
limit, the individual quark fractions fr, = o4/My for ¢ = u,d for the proton and the
neutron are also quoted in BMW 15, using isospin relations.5?

Regarding Ny = 24 1+1, there is only one recent study. In ETM 14A [24], fits are per-
formed to the nucleon mass utilizing SU(2) xPT for data with M, > 213 MeV as part of an
analysis to set the lattice spacing. The expansion is considered to O(p?) and O(p*), with
two and three of the coefficients as free parameters, respectively. The difference between
the two fits is taken as the systematic error. No discernable discretization or finite-volume
effects are observed where the lattice spacing is varied over the range a = 0.06-0.09 fm
and the spatial volumes cover ML = 3.4 up to ML > 5. The results are unchanged
when a near physical point Ny = 2 ensemble is added to the analysis in Ref. [1020].

Since FLAG 19, BMW have performed a new Ny = 1+1+1+41 study BMW 20A [1015].
A two step analysis is followed: the dependence of the nucleon mass on the pion and kaon
masses is determined on HEX-smeared clover ensembles with a = 0.06-0.1 fm and pion
masses in the range M, = 195-420 MeV. The meson masses as a function of the quark
masses are evaluated on stout-staggered ensembles with a similar range in a¢ and quark
masses which bracket their physical values. As [1015] is a preprint, the result is not
considered for the average.

We note that the Ny = 2+ 1 study by xQCD [1025] based on overlap valence fermions
on four domain-wall fermion ensembles with ¢ = 0.08-0.14 fm and M, down to the
physical point is also new. However, since o,y is determined from a single fit and the
systematic uncertainties are not estimated, we do not present the result in the table.

Other determinations of o, in Tab. 74 receive one or more red tags. Walker-Loud
08 [1019], JLQCD 08B [893], PACS-CS 09 [877] and QCDSF 11 [1017] are single lattice
spacing studies. In addition, the volume for the minimum pion mass is rather small for
Walker-Loud 08, JLQCD 08B and PACS-CS 09, while QCDSF 11 is restricted to heavier
pion masses.

We also consider publications that are based on results for baryon masses found in the
literature. As different lattice setups (in terms of Ny, lattice actions, etc.) will lead to
different systematics, we only include works in Tab. 74 which utilize a single setup. These
correspond to Shanahan 12 [1016] and Martin Camalich 10 [1018], which fit PACS-CS
data [197] (the PACS-CS 09 study is also based on these results). Note that Shanahan 12
avoids a red tag for the volume criterion as the lightest pion mass ensemble is omitted.
Recent studies which combine data from different setups/collaborations are displayed for
comparison in Figs. 48 and 49 in the next section.

Several of the above studies have also determined the strange quark sigma term. This
quantity is difficult to access via the Feynman-Hellmann method since in most simulations
the physical point is approached by varying the light-quark mass, keeping m, approxi-
mately constant. While additional ensembles can be generated, it is hard to resolve a
small slope with respect to ms. Such problems are illustrated by the large uncertainties
in the results from BMW 11A and BMW 15. Alternative approaches have been pursued
in QCDSF 11, where the physical point is approached along a trajectory keeping the av-
erage of the light- and strange-quark masses fixed, and JLQCD 12A [894], where quark
mass reweighting is applied. The latter is a single lattice spacing study. One can also fit
to the whole baryon octet and apply SU(3) flavour symmetry constraints as investigated

83These isospin relations were also derived in Ref. [1024].
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in, e.g. Martin Camalich 10, Shanahan 12, QCDSF 11 and BMW 11A.

The determinations of o; in BMW 11A and BMW 15 qualify for averaging. The
mixed action study of Junnarkar 13 [113] with domain-wall valence fermions on MILC
Ny = 2+ 1 asqtad ensembles also passes the FLAG criteria. The derivative 0My/0Om;
is determined from simulations above and below the physical strange quark mass for M
around 240-675 MeV. The resulting values of o4 are extrapolated quadratically in M.
The quark fraction fr, = 04/My exhibits a milder pion-mass dependence and extrapola-
tions of this quantity were also performed using ansétze linear and quadratic in M. A
weighted average of all three fits was used to form the final result. Two lattice spacings
were analyzed, with a around 0.09 fm and 0.12 fm, however, discretization effects could
not be resolved. We note that BMW in their Ny = 1+14 141 study [1015] significantly
improve the precision of their estimate of 0. Even though all the criteria are satisfied, it
is not considered for the average as Ref. [1015] is a preprint. The global averaging of all
calculations that qualify is discussed in the next section.

10.4.4 Summary of Results for gg’d’s

We consider computing global averages of results determined via the direct, hybrid and
Feynman-Hellmann (FH) methods. These are unchanged from FLAG 19. Beginning with
oxn, Tabs. 73 and 74 show that for Ny = 24+ 1+ 1 only ETM 14A (FH) satisfies the
selection criteria. We take this value as our FLAG result for the four-flavour case.

Ny=2+1+1: orn = 64.9(1.5)(13.2) MeV Ref. [24]. (452)

We remark that although the Ny =1+1+1+1 BMW 20A study also satisfies the crite-
ria, as Ref. [1015] is a preprint this work is not considered for averaging. For Ny =2 +1
we form an average from the BMW 11A (FH), BMW 15 (FH) and xQCD 15A (direct)
results, yielding

Ny=2+1: orn = 39.7(3.6) MeV Refs. [108-110]. (453)

Note that both BMW results are included as they were obtained on independent sets of en-
sembles (employing different fermion actions). The average is dominated by the BMW 15
calculation, which has much smaller overall errors compared to the other two studies.

Turning to the results for Ny = 2, only QCDSF 12 (FH) qualifies. This is taken as
the FLAG result

Ny =2: oxn = 37(8)(6) MeV Ref. [111]. (454)

Moving on to o, and the calculations detailed in Tab. 73, for Ny = 24+ 1+ 1
MILC 12C (hybrid) and BMW 20A satisfy the quality criteria, however, the latter is
a preprint and is not considered for averaging. In order to convert the result for (N|ss|N)
given in MILC 12C to a value for o5, we multiply by the appropriate FLAG average for
ms given in Eq. (35) of FLAG 19. This gives our result for four flavours.

Ny =2+1+1: o, = 41.0(8.8) MeV Ref. [112].  (455)

For Ny = 2+ 1 we perform a weighted average of BMW 11A (FH), MILC 12C (hybrid),
Junnarkar 13 (FH), BMW 15 (FH) and xQCD 15A (direct). MILC 09D [1012] also
passes the FLAG selection rules, however, this calculation is superseded by MILC 12C.
As for Eq. (455), the strangeness scalar matrix element determined in the latter study is
multiplied by the three flavour FLAG average for m; given in Eq. (33) of FLAG 19. There
are correlations between the MILC 12C and Junnarkar 13 results as there is some overlap
between the sets of asqtad ensembles used in both cases. To be conservative we take the
statistical errors for these two studies to be 100% correlated. The global average is

Nf=241: o, = 52.9(7.0) MeV Refs. [108-110, 112, 113]. (456)
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Figure 48: Lattice results and FLAG averages for the nucleon sigma term, oy, for the
Ny =2,2+1, and 2+ 1 + 1 flavour calculations. Determinations via the direct approach
are indicated by squares and the Feynman-Hellmann method by triangles. Results from
calculations which analyze more than one lattice data set within the Feynman-Hellmann
approach [1020, 1026-1034] are shown for comparison (pentagons) along with those from
recent analyses of 7-N scattering [1008-1010, 1035] (circles).

Given that all of the Ny = 2 studies have at least one red tag we are not able to give an
average in this case.

All the results for o,y and o, are displayed in Figs. 48 and 49 along with the averages
given above. Note that where fr,, = fr, + fr, or fr, is quoted in Tabs. 73 and 74, we
multiply by the experimental proton mass in order to include the results in the figures.
Those results which pass the FLAG criteria, shown in green, are reasonably consistent.
However, there is some fluctuation in the central values, in particular, when taking the
lattice results as a whole into account, and we caution the reader that the averages may
change as new results become available.

Also shown for comparison in the figures are determinations from the FH method
which utilize more than one lattice data set [1020, 1026-1034] as well as results for o,
obtained from recent analyses of 7-N scattering [1008-1010, 1035]. There is some tension,
at the level of three to four standard deviations, between the lattice average for Ny = 241
and Hoferichter et al. [1010] (Hoferichter 15 in Fig. 48), who quote a precision similar to
that of the average.

Finally we remark that, by exploiting the heavy-quark limit, the light- and strange-
quark sigma terms can be used to estimate o, for the charm, bottom and top quarks [996—
998]. The resulting estimate for the charm quark, see, e.g. the RQCD 16 Ny = 2 analysis
of Ref. [875] that reports fr, = 0.075(4) or o. = 70(4) MeV is consistent with the di-
rect determinations of ETM 19 [976] for Ny = 24+ 1+ 1 of 0. = 107(22) MeV, ETM
16A [879] for Ny = 2 of o, = 79(21)(§?) MeV and xQCD 13A [891] for Ny = 2+ 1 of
0. = 94(31) MeV. BMW in BMW 20A [1015] employing the Feynman-Hellmann approach
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Figure 49:

Lattice results and FLAG averages for o, for the Ny = 2,241, and 2 +1+1

flavour calculations. Determinations via the direct approach are indicated by squares, the
Feynman-Hellmann method by triangles and the hybrid approach by circles. Results from
calculations which analyze more than one lattice data set within the Feynman-Hellmann
approach [1027, 1028, 1030, 1031, 1034] are shown for comparison (pentagons).

obtain fr, = o./my = 0.0734(45)(55) for Ny =1+ 1+ 1+ 1. MILC in MILC 12C [112]
find (N|ec|N) = 0.056(27) in the MS scheme at a scale of 2 GeV for Ny =2+ 1+ 1 via
the hybrid method. Considering the large uncertainty, this is consistent with the other
results once multiplied by the charm quark mass.

10.4.5 Results for g%’d’s

A compilation of recent results for the flavour-diagonal tensor charges g;"d’s for the proton
in the MS scheme at 2 GeV is given in Tab. 75 and plotted in Fig. 50. Results for the
neutron can be obtained by interchanging the u and d flavour indices. Only the PNDME
2+1+41 flavour calculations qualify for the global average.

The FLAG values remain the same as in FLAG 19, i.e., the PNDME 18B [114] results,
which supersede the PNDME 16 [886] and the PNDME 15 [884] results:

Ny=2+1+1: g% = 0.784(28)(10) Ref. [114], (457)
Ny =2+1+1: g% = —0.204(11)(10) Ref. [114], (458)
Ny=2+1+1: g5 = —0.0027(16) Ref. [114]. (459)

The ensembles and the analysis strategy used in PNDME 18B is the same as described
in Sec. 10.4.1 for gffl’d’s. The only difference for the tensor charges was that a one-state
(constant) fit was used for the disconnected contributions as the data did not show sig-
nificant excited-state contamination. The isovector renormalization constant, used for all
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Figure 50: Lattice results and FLAG averages for gaﬁ’d’s for the Ny =2,2+1,and 2+1+1
flavour calculations.

three flavour-diagonal tensor operators, was calculated on the lattice in the RI-SMOM
scheme and converted to MS at 2 GeV using 2-loop perturbation theory.

The PNDME 20 [1005] provided a status update on g%** to PNDME 18B [107] but
is not considered for the average as it is a conference proceeding. It also presented re-
sults showing that flavour mixing in the calculation of tensor renormalization constants is
small, and the isovector renormalization factor is a good approximation for renormalizing
flavour-diagonal tensor charges as discussed in Sec. 10.1.3.

The ETM 19 [976] presented new results for g%’d’s’c from a single ensemble with
2+1+1-flavour twisted-mass fermions with a clover term at @ = 0.0801(4) fm and M, =
139.3(7) MeV. It was not considered for the final averages because it did not satisfy the
criteria for the continuum extrapolation as already discussed in Sec. 10.4.1. The same
applies to the JLQCD 18 [895] and ETM 17 [882] calculations. The Mainz 19A [1006]
results with 24+1-flavour ensembles of clover fermions are not included in the averages as
Ref. [1006] is a conference proceeding.
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Collaboration Ref. Ny QQ & T & & 7 gt 9%
PNDME 20 [1005] 2+1+1 C 0.783(27)(10) —0.205(10)(10)
ETM 19 [976] 24+1+1 A = 0.729(22) —0.2075(75)
PNDME 18B [114] 2+14+1 A 0.784(28)(10)# —0.204(11)(10)#
PNDME 16 [886] 2+1+1 A 0.792(42)#% —0.194(14)#%
PNDME 15 [884, 885] 2+1+1 A 0.774(66)% —0.233(28)*
Mainz 19A [1006] 2+1 C 0.77(4)(6) —0.19(4)(6)
JLQCD 18 [895] 2+1 A = 0.85(3)(2)(7) —0.24(2)(0)(2)
ETM 17 [882] 2 A = 0.782(16)(2)(13)  —0.219(10)(2)(13)
97

PNDME 20 [1005] 2+1+1 C —0.0022(12)
ETM 19 [976] 2+1+1 A = —0.00268(58)
PNDME 18B [114] 2+1+1 A —0.0027(16)%
PNDME 15 (884, 885] 2+1+1 A 0.008(9)*
Mainz 19A [1006] 2+1 C —0.0026(73)(42)
JLQCD 18 [895] 2+1 A = —0.012(16)(8)
ETM 17 [882] 2 A = —0.00319(69)(2)(22)

¥ The rating takes into account that the action is not fully O(a) improved by requiring an additional

lattice spacing.

# Assumed that Z3 = Z5.

& Disconnected terms omitted.

Table 75: Overview of results for g..
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11 Scale setting

Authors: R. Sommer, N. Tantalo, U. Wenger

Matching QCD to Nature requires fixing the quark masses and matching an overall
scale to experiment. That overall energy scale S may be taken, for example, as the nucleon
mass. This process is referred to as scale setting.

11.1 Impact

The scale setting procedure, described in some detail below, is a rather technical step
necessary to obtain predictions from QCD. What may easily be overlooked is that the
exact predictions obtained may depend rather sensitively on the scale.

As long as the theory is incomplete, e.g., because we have predictions from Ny =241
QCD, results will depend on which physics scale is used. Whenever a theory scale (see
Sec. 11.5) is used, it matters which value one imposes. Thus, to know whether computa-
tions of a particular quantity agree or not, one should check which (value for a) scale was
used.

The sensitivity of predictions to the scale vary with the observable. For example, the
A parameter of the theory has a linear dependence,

oA 98 (460)
A S

because A has mass dimension one and other hidden dependences on the scale are (usu-
ally) suppressed. Let us preview the results. The present precision on the most popular
theory scale, wg in Eq. (510) is about 0.4% and for /% it is 0.6%. On the A parameter
it is about 3%. Thus, we would think that the scale uncertainty is irrelevant. However,
in Sec. 11.8 we will discuss that differences between Ny =2 + 1 and 24141 numbers for
V1o are at around 2% which does matter.

Also, light-quark masses have an approximatively linear dependence on the scale
(roughly speaking one determines, e.g., Mmuyq = % X [MZ]exp X [m;l”és]lat) and scale un-
certainties may play an important role in the discussion of agreemen@ vs. disagreement of
computations within their error budget.

The list of quantities where scale setting is very important may be continued; we just
want to mention an observable very much discussed at present, the hadronic vacuum po-
larisation contribution to the anomalous magnetic moment of the muon [1036]. It is easily

seen that the dependence on the scale is about quadratic in that case [1037],

6(1HVP 55
H ~

This fact means that scale setting has to be precise at the few per-mille precision to have
an impact [119] on the discussion whether or not a, computed in the standard model
shows a deviation from experiment.

11.2 Scale setting as part of hadronic renormalization schemes

We consider QCD with Ny quarks and without a §-parameter. This theory is completely
defined by its coupling constant as well as Ny quark masses. After these parameters are
specified all other properties of the theory are predictions. Coupling and quark masses
depend on a renormalization scale p as well as on a renormalization scheme. The most
popular scheme in the framework of perturbative computations is the MS scheme, but
one may also define nonperturbative renormalization schemes, see Secs. 3 and 9.

284 Updated Feb. 2023



In principle, a lattice computation may, therefore, use these N¢+1 parameters as input
together with the renormalization scale u to fix the bare quark masses and coupling of the
discretized Lagrangian, perform continuum and infinite volume limit and obtain desired
results, e.g., for decay rates.®® However, there are various reasons why this strategy is
inefficient. The most relevant one is that coupling and quark masses cannot be obtained
from experiments without invoking perturbation theory and thus necessarily truncation
errors. Moreover, these parameters are naturally short distance quantities, since this is
where perturbation theory applies. Lattice QCD on the other hand is most effective at
long distances, where the lattice spacing plays a minor role. Therefore, it is more natural
to proceed differently.

Namely, we may fix Ny 4 1 nonperturbative, long-distance observables to have the
values found in Nature. An obvious choice are Ny + 1 hadron masses that are stable in
the absence of weak interactions. This hadronic renormalization scheme is defined by

Mi(go, {amo;}) _ M;™
Mi(go, {amo,}) — M

i=2.. . Nj+1, j=1...N;. (462)

Here, M; are the chosen hadron masses, go is the bare coupling, and amy ; are the bare
quark masses in lattice units. The ratio M;/M; is, precisely speaking, defined through
the hadron masses in lattice units, but in infinite volume. In QCD (without QED), all
particles are massive. Therefore, the infinite volume limit of the properties of stable
particles is approached with exponentially small corrections which are assumed to be es-
timated reliably. The power-like finite-volume corrections in QCD+QED are discussed in
subsection 11.3. For fixed go, Eq. (462) needs to be solved for the bare quark masses,

amod- = /,Lj (go) . (463)

The functions p; define a line in the bare parameter space, called the line of constant
physics. Its dependence on the set of masses {M;} is suppressed. The continuum limit is
obtained as gy — 0 with the lattice spacing shrinking roughly as aM; ~ e~1/(20095)  More
precisely, consider observables O with mass dimension dp. One defines their dimensionless

ratio
A @)
OlaMy) = + 55 : (464)
L lamo,=p;(g0)
and obtains the continuum prediction as
Ot = (MSP)©  lim  O(aly) (465)

aMi—0

which explains why the determination and use of aM; is referred to as scale setting.
Equation (463) has to be obtained from numerical results. Therefore, it is easiest
and most transparent if the i-th mass ratio depends predominantly on the i-th quark
mass. Remaining for a while in the isospin-symmetric theory with mg1 = mg,2 (we enu-
merate the quark masses in the order up, down, strange, charm, bottom and ignore the
top quark), we have natural candidates for the numerators as the pseudoscalar masses in
the associated flavour sectors, i.e., 7, K, D, B. The desired strong dependence on light-
(strange-)quark masses of 7- (K-)meson masses derives from their pseudo-Goldstone na-
ture of the approximate SU(3)r, x SU(3)g symmetry of the massless QCD Lagrangian
which predicts that M2 is roughly proportional to the light-quark mass and MZ to the
sum of light- and strange-quark masses. For D and B mesons approximate heavy-quark
symmetry predicts Mp and Mp to be proportional to charm- and bottom-quark masses.

84 At first sight this seems like too many inputs, but note that it is the scale y, at which a(p) has a particular
value, which is the input. The coupling « by itself can have any (small) value as it runs.
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Also other heavy-light bound states have this property. There is another important fea-
ture which singles out pseudoscalar masses. Because they are the lightest particles with
the given flavour quantum numbers, their correlation functions have the least signal /noise
problem in the Monte Carlo evaluation of the path integral [871, 1038].

Still restricting ourselves to isospin-symmetric QCD (isoQCD), we thus take it for
granted that the choice M;, i > 2 is easy, and we do not need to discuss it in detail: the
pseudoscalar meson masses are very good choices, and some variations for heavy quarks
may provide further improvements.

The choice of M; is more difficult. From the point of view of physics, a natural choice
is the nucleon mass, My = Myyuc. Unfortunately it has a rather bad signal/noise problem
when quark masses are close to their physical values. The ratio of signal to noise of the
correlation function at time zy from N measurements behaves as [871]

z0 lar 3
Rg‘ﬁ\l, oREe /N exp(—(Mnuct — imﬁ) 20) ~ VN exp(—2/0.27fm), (466)
where the numerical value of 0.27fm uses the experimental masses. The behaviour in

practice, but at still favourably large quark masses, is illustrated in Fig. 51. Because
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Figure 51: Effective masses for Mproton [1039], Mq [1040], V(= 19), V(= r1) [712] and fr [316]
on Ny = 2 CLS ensemble N6 with a = 0.045 fm, M, = 340 MeV on a 48396 lattice [316].
All effective “masses” have been scaled such that the errors in the graph reflect directly the
errors of the determined scales. They are shifted vertically by arbitrary amounts. Figure from
Ref. [719]. Note that this example is at still favourably large quark masses. The situation
for Mproton becomes worse closer to the physical point, but may be changed by algorithmic
improvements.

this property leads to large statistical errors and it is further difficult to control excited-
state contaminations when statistical errors are large, it is useful to search for alternative
physics scales. The community has gone this way, and we discuss some of them below.
For illustration, here we just give one example: the decay constants of leptonic m or K
decays have mass dimension one and can directly replace M; above. Figure 51 demon-
strates their long and precise plateaux as a function of the FEuclidean time. Advantages
and disadvantages of this choice and others are discussed more systematically in Sec. 11.4.
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11.2.1 Theory scales

Since the signal/noise problem of physics scales is rather severe, they were already re-
placed by theory scales in the very first days of lattice QCD. These scales cannot be
determined from experiment alone. Rather, their values have to be computed by lattice
QCD using a physics scale as input.

Creutz already used the string tension in his seminal paper on SU(2) Yang Mills the-
ory [1041], because it is by far easier to determine than glueball masses. A further step
was made by the potential scale 7o, defined in terms of the static force F(r) as [705]

r2F(rg) = 1.65. (467)

Even though r¢ can vaguely be related to the phenomenology of charmonium and bot-
tomonium states, its precise definition is in terms of F'(r) which can be obtained accurately
from Monte Carlo lattice computations with (improvable) control over the uncertainties,
but not from experiment. In that sense, it is a prototype of a theory scale.

Useful properties of a good theory scale are high statistical accuracy, easy to control sys-
tematics (also large volume), quark mass dependence only due to the fermion determinant,
and low numerical cost for its evaluation. These properties are realized to varying degrees
by the different theory scales covered in this section and, in this respect, they are much
preferred compared to physics scales. Consequently, the physics scale M; has often been
replaced by a theory scale as, e.g., § = 7"0_1 in the form

Oont — (gphys) T lim_ Os(aS) with Os(aS) = [S74 O] (468)
aS—

amo,;j=p;(go) ’
and .
SPIYS — (MP*P)  lim Sy, (aM). (469)
aIVIl —0
In this section, we review the determination of numerical results for the values of var-
ious theory scales in physical units, Eq. (469). The main difficulty is that a physics scale
M has to be determined first in order to connect to Nature and, in particular, that the
continuum limit of the theory scale in units of the physics scale has to be taken.

11.3 Isospin breaking, electromagnetism, and definition of hadronic
schemes

11.3.1 The approximate nature of QCD

For simplicity and because it is a very good approximation, we have assumed above that
all other interactions except for QCD can be ignored when hadron masses and many other
properties of hadrons are considered. This is a natural point of view because QCD is a
renormalizable field theory and thus provides unique results.

However, we must be aware that while it is true that the predictions (e.g., for hadron
masses M;, i > Ny + 1) are unique once Eq. (462) is specified, they will change when
we change the inputs M;*". These ambiguities are due to the neglected electroweak and
gravitational interactions, namely because QCD is only an approximate—even if precise—
theory of hadrons. At the sub-percent level, QED effects and isospin violations due to
my # mg must be included. At that level one has a very precise description of Nature,
where weak decays or weak effects, in general, can be included perturbatively and sys-
tematically in an effective field theory description through the weak effective interaction
Hamiltonian, while gravity may be ignored.

We now discuss how to handle the scale setting as part of the renormalization of
QCD+QED. Note that a similar discussion with emphasis on quark masses can be found
in Sec. 3. In the following discussion, we focus more on the issues related to the scale

287 Updated Feb. 2023



setting (see also Ref. [241]). In this connection, triviality of QED does not play a role at
small enough a: we may think of replacing the continuum limit @ — 0 by a limit ¢ — ay
with ay nonzero but very far below all QCD+QED scales.

11.3.2 Hadronic renormalization of QCD+QED

The definition and implementation of a hadronic renormalization scheme of QCD+QED
defined on the lattice needs some additions to subsection 11.2 which we now discuss.

In addition to the Ny + 1 parameters of the QCD action (without isospin symmetry),
one now also has the elementary electric charge e. This requires Ny + 2 experimentally
measurable observables to fix the bare parameters of the theory. A natural choice for the
experimental inputs are again hadron masses. Indeed, hadron masses are infrared safe
quantities also in QCD+QED, while in the cases of cross sections and decay rates, infrared
divergences appear at intermediate stages of the calculations (see below). Therefore, we
consider the generalization

Mi(go, €0, {amo,}) _ M
Mi(go, €0, {amo;}) M7’

i=2...Ny+2, j=1...N; (470)

of Eq. (462). Here, M; are the chosen hadron masses, go the bare strong coupling, e the
bare electric charge, and amyg ; are the bare quark masses in lattice units. For fixed go,
the system of equations (470) now needs to be solved for the bare quark masses and the
bare electric charge,

amoj = pj(go), €0 =e(go), (471)

to obtain the line of constant physics of the theory. Some observations are in order.

So far, we have assumed that QCD+QED is simulated nonperturbatively in the electro-
magnetic coupling constant a.,. In this case, the bare electric charge can be conveniently
fixed by considering among the experimental inputs both the charged and neutral pion
masses. Indeed, by neglecting terms of O((m, — mq)?) [218] one has that m2, —m?2, ~
Qem- If the theory is instead treated neglecting O(a?2,,) contributions, the electric charge
does not renormalize and it is consistent and convenient to fix it by the condition [169]

47 1
— = —m——— = 137.035999084(21) . (472)

Thomson
€0 Qe
Another important difference from pure QCD concerns finite-volume effects. In con-

trast to the exponentially suppressed finite-volume effects of stable hadron masses at
Qem = 0, in QCD4+QED with cie, > 0 finite-volume effects are

14 Cemq7E(1) N Qem@7E(2)
M;(go, eo, amg,j; 00) LM;(go, €0, amo,j;00)  [LM;(go, eo, amg,j; 00)]

M;(go, €0, amq j; L)

5+0 (L_”, agm) ,

(473)
where ¢; is the electric charge of the hadron in units of the charge of the positron, the £(i)
are known numerical constants that depend on the spatial boundary conditions, and the
remainder terms start with a power n = 3 in the QEDy, formulation[151, 152] and with
n =4 in QEDc [181]. These two definitions of QED in a finite volume are discussed in
Refs. [174, 183, 184] and Refs. [181, 189, 190], respectively. For other formulations [182,
187, 188], we refer to Sec. 3 and for a discussion on open problems to Ref. [1042]. Since the
bare parameters need to be fixed through experimental observables, finite volume effects
have to be removed from the M; and the behaviour Eq. (473) is crucial in this respect.

Another important observation concerns the use of observables associated with decay
rates or cross sections in setting the scale. The issue is particularly subtle in QCD+QED
because of the well known problem associated with the appearance of infrared divergences
at intermediate stages of the calculations. The solution requires a proper definition of
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infrared-safe observables, according to the Bloch—Nordsieck mechanism [1043]. These
measurable observables are obtained by including in the final state of a process any number
of soft photons with total energy up to a given physical threshold. Once the infrared-safe
measurable observable has been constructed, it can be used in the scale setting as any other
measurable quantity. A particularly relevant example is the leptonic decay rate of the pion,

PQEPHRED (7= s i, (v), B ] - (474)

Here, phase space is integrated over with the constraint that the total energy of the pho-
tons is below E,. The feasibility of using such an observable in place of a stable hadron
mass has to be judged on the basis of the overall precision, statistical plus systematics,
that is achievable in the lattice calculation (see Refs. [240, 241]).

11.3.3 Hadronic definition of QCD and of QED corrections

Under the assumption of negligible weak (and gravity) corrections QCD+QED is the
complete theory and, therefore, the predictions obtained from lattice simulations for any
observable OQCP+QED " that has not already been used in the scale setting, are unam-
biguous. On the contrary, what we call the QCD contribution @O2€P and the associated

radiative corrections,
(OQCD+QED

CD _

do depend upon the inputs used to define QCD.

Going back to Eq. (462), different hadronic definitions of QCD can be obtained by
chosing different hadron masses and/or different values for the “physical” inputs. Once we
have chosen which hadron masses to use, the different hadronic schemes can be identified

(475)

by writing
Mi(go, {amos}) _ MPP ,
Rl = L , 1=2...Ng+1, j=1...Ng, 476
Mi(go, {amos}) M3 s s (476)
and by specifying the values of the external inputs, for example parameterized by eg’zCD
in85

i

MR = M (14£2°P) (477)
A “natural” choice is to set €?CD =0, i.e., to define QCD by using exactly the experi-
mental values for the stable hadron masses entering the calibration procedure. In this case,
if the same hadron mass is used in the definition of the full theory, Eq. (470), and in the def-
inition of QCD, then the radiative corrections on these quantities are zero by construction.
Radiative corrections on any other predictable quantity are well defined and nonvanishing.

In light of this observation, the introduction of the leCD parameters might appear
unnecessary. However, this is not the case for the following reasons. Isosymmetric QCD
(isoQCD), already introduced in Sec. 11.2, is another good approximation of the real
world. Due to m, = mg = myq, the theory only depends on Ny parameters. In order
to set the masses of the light and strange quarks in isoQCD the options of using the
charged or the neutral pion and kaon masses are equally valid from the physical point
of view. If one picks, e.g., the neutral meson masses, then one has nonzero ¢; when the

85 After having calibrated the full theory (QCD+QED) with physical hadronic inputs, one can compute the
strong coupling constant and the quark masses in a given renormalization scheme. These can then be used
to define QCD by matching the corresponding renormalized quantities. This is the so—called GRS approach
originally introduced in Ref. [236]. We refer to Ref. [241] for a discussion concerning the connection of the
e-language used here and the GRS scheme, and to Sec. 3 for a detailed discussion of the different schemes that
have been used in the literature to define (iso)QCD including the original references on the subject.
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right hand side of Eq. (477) is written in terms of the charged ones. Furthermore, on the
basis of symmetry arguments and/or (chiral) effective theory calculations one may argue
that certain linear combinations of charged and neutral meson masses are more “natural”
than others (see the discussion in the quark-mass section, Sec. 3) because the resulting
radiative corrections are smaller.

As a matter of fact, many of the existing lattice calculations have been performed in
the isospin-symmetric limit, but not all the results considered in this review correspond
to the very same definition of QCD. The commonly adopted values for the pion and 2
masses in isoQCD are

MeQCD — preP - MGOYP = MO® in Refs. [10, 115, 197].
For the kaon mass in isoQCD different collaborations made different choices, e.g., the
values
MECCP — 494.2(4) MeV  in Refs. [7, 17, 115] ,
MECQEP — 4957 MeV  in Ref. [10]
MECQCP — 497.6 MeV  in Ref. [197] .

The different choices of experimental inputs are perfectly legitimate if QED radiative cor-
rections are neglected, but in principle predictions of isoQCD do depend on these choices,
and it is not meaningful to average numbers obtained with different inputs. However,
at the present level of precision the sub-percent differences in the inputs are most likely
not relevant, and we will average and compare isoQCD results irrespective of these differ-
ences. The issue will become important when results become significantly more precise.
Of course, it may not be ignored, when radiative corrections, Eq. (475), are directly com-
pared between collaborations. In this case, we strongly suggest to compare results for the
unambiguous full theory observable or to stick to a standard.

Indeed, for the future, it is highly desirable to define such a standard for the parameters
used to define (is0)QCD. We suggest using®®

M:FSOQCD _ M;B(P’
. (478)
MR = M,

while it is difficult to define a standard scale M; right now. Going by the majority of the
large-scale computations, the two options mgq and pion leptonic decay rate are equally
popular at the moment (see Sec. 11.4).

Since leptonic decay rates of pion and kaon play a prominent role in scale setting,
we discuss the (pure) QCD definition of these quantities and of the associated radiative
corrections in some detail. There are no ambiguities in the definition of the physical
observable in QCD+QED that, in this case, is the decay rate introduced in Eq. (474)
above. We now assume that (iso)QCD has been already defined by using as hadronic
inputs hadron masses. It is then possible to compute the leptonic decay rate in QCD,

ex 2
QCD 1 GZF Voo |2 MEP (ppexp 2 1— u p) QCD) 2 479
[77 = MVH} oy ‘ ud| o (m,u, ) ( (f ) ( )

86We note that the 7° is unstable in QCD+QED and, therefore, it is much more convenient to use M:’ip
to calibrate the full theory. Although it is perfectly consistent to use different observables in the calibration
of the full theory and of isoQCD, in the specific case one can write M°QCP = MZFP(1+ gl5oQCD) with
glsoQCD — (MZP — M7P)/M7P. In that language, the same observable is used in both theories but with a
nonvanishing .
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where the so—called decay constant of the pion is given by

_ QCD
cp _ (0l ay’y°d|m)
fg = MQCD (480)
Radiative corrections to fQP are then defined by
[QCPHQED (7~ — 17, (), E]
SI2P(E,) = o2 (481)
7 [QEP (71— ui,
such that
_ _ _ 2
POOPHAED ™ s 1, (7), B,] = TP v iz, [1+ 5fgCD(E'y)} . (482)

We want to stress once again that the definition of § f8CP(E.) is not unique. As in the case
of any other observable, different values of 6 fQCP (E,) are obtained if one changes the pre-
scription used to define QCD. In this case, in addition, one has to specify the photon energy
treshold E, and, moreover, the exact expression used to define I'QCP | Indeed, it would
be perfectly legitimate to replace M ™" appearing in the kinematical factors of Eq. (479)
with MQCP . The effect of such a different definition of I'?“P would be compensated by
a change in § fQ¢P (E,) with no ambiguities in the full theory observable [QCD+QED,

We mentioned in Sec. 11.2 that there are advantages from the numerical point of view
in using the leptonic decay constants of the mesons in the QCD scale setting procedure.
That observation can now be made more precise in light of the discussion of the previous
paragraph. When we say that we use f, to calibrate QCD, we mean that we choose a
value for the §fQCP(E,) and we define

£QCD _ 1 Lexp(r— = piu(v), By

. (483)
T 146 SCD E G2 ex exp\2 mS*P)?
O (E) | SE Iy g2 MEP (mSP)? |1 - ((ngp))Q
In the notation of the ¢ parameters introduced above, one has
1
1+e9P = — - (484)

Fo 14 68N (R

Again, a possible choice would be to set S?CD

"“” to zero and to use directly the experimen-
tally measured decay rate at a given value of E.,.5” Common practice among the different

lattice collaborations is to set

max :'}ip (mexp)2
B, = By = — — (M‘;Xp)gl, (485)

the maximum energy allowed to a single photon in the case of negligible O(a2,,) correc-
tions, and to use the value

§ fioQCP(Emax) = 0.0088(11) (486)

obtained in Refs. [242, 522, 1044] in chiral perturbation theory and using the standard
definition Eq. (478). The corresponding number for kaon decays is

S0 (Em) = 0.0053(11) . (487)

87This procedure unavoidably requires that one provides a value for the CKM matrix element V,q that has
then to be considered an input of the lattice calculation and not a predictable quantity.
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A recent lattice determination in the electro-quenched approximation [241]

§ fioQCP(Emax) = 0.0076(9) , (488)
agrees well with Eq. (486), while the number for Kaon decays,

S0P (Em) = 0.0012(5), (489)

differs by more than three (quadratically combined) error bars from Eq. (487). The scheme
dependence can be neglected at the present level of accuracy.

11.4 Physical scales

The purpose of this short section is to summarize the most popular scales and give a short
discussion of their advantages and disadvantages. We restrict ourselves to those used in
more recent computations and thus have a rather short list.

11.4.1 The mass of the () baryon

As already discussed, masses of hadrons that are stable in QCD+QED and have a small
width, in general, are very good candidates for physical scales since there are no QED
infrared divergences to be discussed. Furthermore, remaining within this class, the radia-
tive corrections 5MiQCD, Eq. (475), are expected to be small. Furthermore, the 2 baryon
has a significantly better noise/signal ratio than the nucleon (see Fig. 51). It also has
little dependence on up- and down-quark masses, since it is composed entirely of strange
valence quarks.

Still, one has to be aware that the mass is not extracted from the plateau region but
from a modelling of the approach to a plateau in the form of fits [10, 115, 118, 119, 121,
197]. In this sense, the noise/signal ratio problem may persist. The use of various in-
terpolating fields for the 2 helps in constraining such analyses, but it would be desirable
to have a theoretical understanding of multi-hadron (or in QCD+QED multi-hadron +
photon) contributions as it exists for the nucleon [1045] as discussed in Sec. 10. In the
present review, we take the estimates of the collaborations at face value and do not try
to apply a rating or an estimate of systematic error due to excited-state contributions.

11.4.2 Pion and kaon leptonic decay rates

These decay rates have been discussed above. Here, we just summarize the main issues. In
QCD+QED there is so far only one computation of the decay rate in the electro-quenched
approximation [241]. The derived estimate for the radiative corrections agrees with the
estimates from chiral perturbation theory (see Eqgs. (486) and (487)). The quoted uncer-
tainties are at the level of 0.001. This directly sets a limit to the achievable precision on the
scale in iS0QCD. At present, this limit is not yet relevant. A second source of uncertainty
is due to the knowledge of V,,4 and V,,s. For convenience, we summarize the isoQCD values

Fi50QCD |17 11— 127.13(2)exp (13) Qi MV (490)
fi20QD = 130.56(2) exp (13)QED (2)v,,, MeV (491)
;OQCD |Vus| = 35'09(4)9XP(4)QED MeV, (492)
150QCD _ 157 2(2)exp (2)qen (4)v,. MeV (493)

where we have used the PDG values [169] for f|V,| (equivalent to Eqgs. (486) and (487)),
and the values
Via = 0.97370(14),  Viy = 0.2232(6) .
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Here, V,,q is from the PDG [169] (beta decays) and the latter from Sec. 4 (f1(0) for
Ny =2+1+1). Of course, the information on pion and kaon leptonic decays do not enter
the determinations of V4 and V,,, used here. The uncertainties in the above values are in
the following assumed to have been considered in the estimates of the scale given by the
collaborations. This is analogous to the systematics due to excited-state contaminations
in hadron masses, an issue which is irrelevant in the pseudoscalar channel (see Fig. 51).

Depending on the lattice formulation, there is also a nontrivial renormalization of the
axial current. Since it is easily determined from a chiral Ward identity, it does not play
an important role. When it is present, it is assumed to be accounted for in the statistical
errors.

11.4.3 Other physics scales

Scales derived from bottomonium have been used in the past, in particular, the splitting
Amy = mry(2s) —Mr(15). They have very little dependence on the light-quark masses, but
need an input for the b-quark mass. In all relevant cases, the b quark is treated by NRQCD.

11.5 Theory scales

In the following, we consider in more detail the two classes of theory scales that are most
commonly used in typical lattice computations. The first class consists of scales related
to the static quark-antiquark potential [705]. The second class is related to the action
density renormalized through the gradient flow [319].

11.5.1 Potential scales

In this approach, lattice scales are derived from the properties of the static quark-
antiquark potential. In particular, a scale can be defined by fixing the force F'(r) between
a static quark and antiquark separated by the distance r in physical units [705]. Ad-
vantages of using the potential include the ease and accuracy of its computation, and its
mild dependence on the valence-quark mass. In general, a potential scale r. can be fixed
through the condition that the static force takes a predescribed value, i.e.,

r2F(r.) = X. (494)

where X, is a suitably chosen number. Phenomenological and computational considera-
tions suggest that the optimal choice for X, is in the region where the static force turns
over from Coulomb-like to linear behaviour and before string breaking occurs. In the
original work [705], it was suggested to use Xy = 1.65 leading to the condition

reF(rg) = 1.65. (495)

In Ref. [706], the value X; = 1.0 was proposed yielding the scale 7.

The static force is the derivative of the static quark-antiquark potential V' (r) which
can be determined through the calculation of Wilson loops. More specifically, the po-
tential at distance r is extracted from the asymptotic time dependence of the r x t-sized
Wilson loops W (r, t),

V(r)=- tlggo % log(W (r,t)) . (496)

The derivative of the potential needed for the force is then determined through the deriva-
tive of a suitable local parameterization of the potential as a function of r, e.g.,

V() = C,% 4 Cot Cyr, (497)
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estimating uncertainties due to the parameterization. In some calculations, the gauge field
is fixed to Coulomb or temporal gauge in order to ease the computation of the potential
at arbitrary distances.

In order to optimize the overlap of the Wilson loops with the ground state of the
potential, one can use different types and levels of spatial gauge field smearing and ex-
tract the ground state energy from the corresponding correlation matrix by solving a
generalized eigenvalue problem [930, 931, 1046]. Finally, one can also make use of the
noise reduction proposed in Refs. [1047, 1048]. It changes the definition of the discretized
loops by a smearing of the temporal parallel transporter [1049] and thus yields a different
discretization of the continuum force.

11.5.2 Gradient flow scales
The gradient flow B, (¢, z) of gauge fields is defined in the continuum by the flow equation

B, =D,Gyp, Bu|t:0 = Ay, (498)
G;UJ = auBu - 6I/Bu + [Bua Bu]; Du = 8” + [B;u ] ; (499)

where A, is the fundamental gauge field, G, the field strength tensor, and D,, the covari-
ant derivative [319]. At finite lattice spacing, a possible form of Eqs. (498) and (499) is

d
Cﬂav;‘,(x,ﬂ) = 798 : 6$,MSG(W) ! ‘/t(SC,,U,) ) (500)

where Vi(z,p) is the flow of the original gauge field U(x, ) at flow time ¢, Sg is an
arbitrary lattice discretization of the gauge action, and 0, denotes the su(3)-valued dif-
ferential operator with respect to Vi(x, ). An important point to note is that the flow
time ¢ has the dimension of a length squared, i.e., t ~ a2, and hence provides a means for
setting the scale.

One crucial property of the gradient flow is that any function of the gauge fields eval-
uated at flow times ¢ > 0 is renormalized [1050] by just renormalizing the gauge coupling.
Therefore, one can define a scale by keeping a suitable gluonic observable defined at con-
stant flow time ¢, e.g., the action density £ = —% Tr G, G [319], fixed in physical units.
This can, for example, be achieved through the condition

t2(E(te,x)) =c, BE(t,z)= —% Tr G (t, )G (t, x) (501)

where G, (t,z) is the field strength tensor evaluated on the flown gauge field V;. Then,
the lattice scale a can be determined from the dimensionless flow time in lattice units,
t. = a®t.. The original proposal in [319] was to use ¢ = 0.3 yielding the scale t,

t3(E(tg)) = 0.3. (502)

For convenience one sometimes also defines sg = /%.
An alternative scale wy has been introduced in Ref. [118]. It is defined by fixing a
suitable derivative of the action density,

W(t.) =t.- 0 (*(E®)),_, =c. (503)

t=t.
Setting ¢ = 0.3 yields the scale wqy through
W(wd) =0.3. (504)

In addition to the lattice scales from to and wg, one can also consider the scale from
the dimensionful combination to/wg. This combination has been found to have a very
weak dependence on the quark mass [43, 370, 1051].
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A useful property of the gradient flow scales is the fact that their quark-mass depen-
dence is known from xPT [1052].

Since the action density at t ~ t; ~ w2 usually suffers from large autocorrela-
tion [1051, 1053], the calculation of the statistical error needs special care.

Lattice artefacts in the gradient flow scales originate from different sources [1054],
which are systematically discussed by considering ¢ as a coordinate in a fifth dimension.
First, there is the choice of the action Sg for t > 0. Second, there is the discretization of
E(t,z). Third, there is the discretization of the 4-dimensional quantum action, which is
always there, and fourth, there are also terms localized at the boundary t = 0. The inter-
play between the different sources of lattice artefacts turns out to be rather subtle [1054].

Removing discretization errors due to the first two sources requires only classical (go-
independent) improvement. Those due to the quantum action are common to all ¢ = 0
observables, but the effects of the boundary terms are not easily removed in practice. At
tree level, the Zeuthen flow [1054] does the complete job, but none of the computations
reviewed here have used it. Discretization effects due to Sg can be removed by using an
improved action such as the tree-level Symanzik-improved gauge action [118, 1055]. More
phenomenological attempts of improving the gradient flow scales consist of applying a
t-shift [1056], or tree-level improvement [717].

11.5.3 Other theory scales

The MILC collaboration has been using another set of scales, the partially quenched
pseudoscalar decay constant fpis with degenerate valence quarks with a mass m, =
0.4 - Mgtrange, and the corresponding partially quenched pseudoscalar mass Mpss. So
far it has been a quantity only used by the MILC collaboration [18, 19, 149]. We do not
perform an in-depth discussion or an average but will list numbers in the results section.
Yet another scale that has been used is the leptonic decay constant of the 7s. This
fictitious particle is a pseudoscalar made of a valence quark-antiquark pair with different
(fictitious) flavours which are mass-degenerate with the strange quark [122, 124, 555].

11.6 List of computations and results

11.6.1 Gradient flow scales

We now turn to a review of the calculations of the gradient flow scales \/fy and wg. The
results are compiled in Tab. 76 and shown in Fig. 52. In the following, we briefly discuss
the calculations in the order that they appear in the table and figure.

ETM 21 [43] finalizes and supersedes ETM 20 discussed below. It determines the
scales v/to, wy, also to/woy = 0.11969(62) fm, and the ratio v/to/we = 0.82930(65), cf. also
HPQCD 13A [40]. Since ETM 21 is now published, the values replace the ones of ETM
20 in the FLAG averages given in this web update.

CalLat 20A [115] use M&bius Domain-Wall valence fermions on HISQ ensembles gen-
erated by the MILC and CalLat collaborations. The gauge fields entering the Md&bius
Domain-Wall operator are gradient-flow smeared with ¢t = a?. They compute the £ mass
and the scales wy, top and perform global fits to determine woMgq and /tgMgq at the
physical point. The flow is discretized with the Symanzik tree-level improved action and
the clover discretization of E(t) is used. A global fit with Bayesian priors is performed
including terms derived from xPT for finite volume and quark-mass dependences, as well
as a? and a%as(1.5/a) terms for discretization errors. Also, a tree-level improved defini-
tion of the GF scales is used where the leading-in-g? cutoff effects are removed up to and
including O(a®/t%).

BMW 20 [119] presents a result for wp in the context of their staggered fermion cal-
culation of the muon anomalous magnetic moment. It is the first computation that takes
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Collaboration Ref. Ny NSRS Vo [fm] wo [fm]
ETM 21 [43] 2+1+1 A fx 0.14436(61) 0.17383(63)
CalLat 20A [115] 24+1+1 A ma 0.1422(14) 0.1709(11)
BMW 20 [119] 14+1+14+1A ma 0.17236(29)(63)[70]
ETM 20 [1057) 2+1+1 C fr 0.1706(18)
MILC 15 [116] 24+1+1 A Fous(f)*  0.1416(+8/-5) 0.1714(+15/-12)
HPQCD 13A [40] 24141 A fr 0.1420(8) 0.1715(9)
RQCD 22 [1058]  2+1 P m= 0.1449(+7/-9)
CLS 21 [1059]  2+1 C frr [ 0.1443(7)(13)
CLS 16 [117]  2+1 A VEN e 0.1467(14)(7)
QCDSF/UKQCD 15B [718]  2+1 P m3 ) 0.1511(22)(6)(5)(3) 0.1808(23)(5)(6)(4)
RBC/UKQCD 14B  [10] 2+1 A me 0.14389(81) 0.17250(91)
HotQCD 14 [120] 2+1 A r1(frx)? 0.1749(14)
BMW 12A [118]  2+1 A mo 0.1465(21)(13) 0.1755(18)(4)

Table 76: Results for gradient flow scales at the physical point, cf. Eq. (469). Note that
BMW 20 [119] take IB and QED corrections into account. Some additional results for ratios

of scales are:

ETM 21 [43]: to/wo = 0.11969(62) fm.

# These scales are not physical scales and have been determined from f;.

QED and isospin-breaking corrections into account. The simulations are performed by
using staggered fermions with stout gauge field smearing with six lattice spacings and sev-
eral pion masses around the physical point with M, between 110 and 140 MeV. Volumes
are around L = 6 fm. At the largest lattice spacing, it is demonstrated how the effective
masses of the  correlator almost reach the plateau value extracted from a four-state fit
(two states per parity). Within the range where the data is fitted, the deviation of data
points from the estimated plateau is less than a percent. Isospin-breaking corrections
are computed by Taylor expansion around isoQCD with QED treated as QEDy,. Finite
volume effects in QED are taken from the 1/L,1/L? universal corrections and O(1/L?)
effects are neglected. The results for Mqwy are extrapolated to the continuum by a fit
with a? and a* terms.

ETM 20 [1057] presents in their proceedings contribution a preliminary analysis of
their Ny =2+ 141 Wilson twisted-mass fermion simulations at maximal twist (i.e., au-
tomatic O(a) improved), at three lattice spacings and pion masses at the physical point.
Their determination of wy = 0.1706(18) fm from f, using an analysis in terms of M, is
the value quoted above. They obtain the consistent value wy = 0.1703(18) fm from an
analysis in terms of the renormalized light quark mass.

MILC 15 [116] sets the physical scale using the fictitious pseudoscalar decay constant
Fp45=153.90(9)(+21/ — 28) MeV with degenerate valence quarks of mass m, = 0.4m
and physical sea-quark masses [149]. (Fp4s has strong dependence on the valence-quark
mass and is determined from fr.) They use a definition of the flow scales where the
tree-level lattice artefacts up to O(a*/t?) are divided out. Charm-quark mass mistunings
are between 1% and 11%. They are taken into account at leading order in 1/m, through

AS()}D applied directly to Fp4s and 1/m. corrections are included as terms in the fits. They

296

Updated Feb. 2023



use elaborate variations of fits in order to estimate extrapolation errors (both in GF scales
and Fj4s). They include errors from FV effects and experimental errors in fr in Fjps,.

HPQCD 13A [40] uses eight MILC-HISQ ensembles with lattice spacings a = 0.088,
0.121, 0.151 fm. Values of L are between 2.5 fm and 5.8 fm with M, L = 3.3-4.6. Pion
masses range between 128 and 306 MeV. QCD is defined by using the inputs M, =
134.98(32) MeV, My = 494.6(3) MeV, f+ = 130.4(2) MeV derived by model subtractions
of IB effects. Additional scale ratios are given: /to/wg = 0.835(8), r1/wo = 1.789(26).

RQCD 22 [1058] is an independent analysis of CLS ensembles employing Ny =2+ 1
nonperturbatively improved Wilson fermions and the tree-level Symanzik improved gauge
action. It uses a multitude of quark-mass combinations at six different values of the lattice
spacing, ranging from a < 0.098 fm down to a < 0.039 fm. Near-physical quark masses
are realized at a = 0.064 fm and a = 0.085 fm. The input quantities used to fix the
physical point and to set the scale are M, = 134.8(3) MeV, M = 494.2(3) MeV, and
mz = 1316.9(3) MeV (last line of pg. 33 in [1058]). Since RQCD 22 is not yet published
at the time of this web update, the result for /%y is not included in the FLAG average.

CLS 21 [1059] is a proceedings contribution describing a preliminary analysis follow-
ing the one in CLS 16 [117], cf. the description below. CLS 21 includes about double the
amount of ensembles as compared to CLS 16, in particular ensembles at two more lattice
spacings and two ensembles at the physical point. As a consequence, this analysis is not
considered a straightforward update and hence does not supersede the result of CLS 16.

CLS 16 [117] uses CLS configurations of 2+1 nonperturbatively O(a)-improved Wil-
son fermions. There are a few pion masses with the strange mass adjusted along a line
of m, + mg + ms = const. Three different lattice spacings are used. They determine %,
at the physical point defined by 7 and K masses and the linear combination frx + % fr-
They use the Wilson flow with the clover definition of E(t).

QCDSF 15B [718, 1060] results, unpublished, are obtained by simulating Ny =2+ 1
QCD with the tree-level Symanzik improved gauge action and clover Wilson fermions
with single level stout smearing for the hopping terms together with unsmeared links
for the clover term (SLINC action). Simulations are performed at four different lattice
spacings, in the range [0.06,0.08] fm, with My min = 228 MeV and My minL = 4.1. The
results for the gradient flow scales have been obtained by relying on the observation that
flavour-symmetric quantities get corrections of O((Am,)?) where Am, is the difference
of the quark mass from the SU(3)-symmetric value. The O(Am?) terms are not detected
in the data and subsequently neglected.

RBC/UKQCD 14B [10] presents results for v/tg and wy obtained in QCD with 2 + 1
dynamical flavours. The simulations are performed by using domain-wall fermions on six
ensembles with lattice spacing a~! = 1.38,1.73,1.78,2.36, 2.38, and 3.15 GeV, pion masses
in the range M™%y ¢ [139, 360] MeV. The simulated volumes are such that M, L > 3.9.
The effective masses of the () correlator are extracted with two-state fits and it is shown,
by using two different nonlocal interpolating operators at the source, that the correlators
almost reach a pleateau. In the calculation of /tg and wy, the clover definition of E(t) is
used. The values given are v/fp = 0.7292(41) GeV ! and wy = 0.8742(46) GeV " which
we converted to the values in Tab. 76.

HotQCD 14 [120] determines the equation of state with Ny = 2 4+ 1 flavours using
highly improved staggered quarks (HISQ/tree). As a byproduct, they update the results of
HotQCD 11 [713] by adding simulations at four new values of 3, for a total of 24 ensembles,
with lattice spacings in the range [0.04,0.25] fm and volumes in the range [2.6,6.1] fm
with M, = 160 MeV. They obtain values for the scale parameters ry and wq, via the
ratios ro/r1, wo/r1 and using 1 = 0.3106(14)(8)(4) fm from MILC 10 [45]. They obtain
for the ratios (r9/71)cont = 1.5092(39) and (wo/71)cont = 0.5619(21) in the continuum.
They crosscheck their determination of the scale r; using the hadronic quantities fx, f,
from HPQCD 09B [124] and the experimental value of M,,, and find good agreement.

BMW 12A [118] is the work in which wy was introduced. Simulations with 2HEX
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Figure 52: Results for gradient flow scales.

smeared Wilson fermions and two-level stout-smeared rooted staggered fermions are done.
The Wilson flow with clover E(t) is used, and a test of the Symanzik flow is carried out.
They take the results with Wilson fermions as their central value, because those “do not
rely on the ‘rooting’ of the fermion determinant”. Staggered fermion results agree within
uncertainties.

11.6.2 Potential scales

We now turn to a review of the calculations of the potential scales rg and ;. The results
are compiled in Tab. 77 and shown in Fig. 53. The most recent calculations date back to
2014, and we discuss them in the order that they appear in the table and the figure.

ETM 14 [7] uses Ny = 2+ 1 + 1 Wilson twisted-mass fermions at maximal twist
(i.e., automatic O(a)-improved), three lattice spacings and pion masses reaching down
to M, = 211 MeV. They determine the scale ry through f, = f.+ = 130.41 MeV. A
crosscheck of the so obtained lattice spacings with the ones obtained via the fictitious
pseudoscalar meson M, s made of two strange-like quarks gives consistent results. The
crosscheck is done using the dimensionless combinations roMy s (with 7 in the chiral
limit) and f,/Mys determined in the continuum, and then using r9/a and the value of
My s obtained from the experimental value of f. We also note that in Ref. [1051] using
the same ensembles the preliminary value wg = 0.1782 fm is determined, however, without
error due to the missing or incomplete investigation of the systematic effects.

HPQCD 13A [40] was already discussed above in connection with the gradient flow
scales.

HPQCD 11B [555] uses five MILC-HISQ ensembles and determines 71 from My (o4 —
M-y (15) and the decay constant f, (see HPQCD 09B). The valence b quark is treated by
NRQCD, while the light valence quarks have the HISQ discretization, identical to the sea
quarks.

HotQCD 14 [120] was already discussed in connection with the gradient flow scales.

xQCD 14 [26] uses overlap fermions as valence quarks on Ny = 2 + 1 domain-wall
fermion gauge configurations generated by the RBC/UKQCD collaboration [121]. Using
the physical masses of Dy, D¥ and J/v as inputs, the strange and charm quark masses
and the decay contant fp, are determined as well as the scale 7.

HotQCD 11 [713] uses configurations with tree-level improved Symanzik gauge ac-
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Collaboration Ref. Ny g g ro [fm] r1 [fm]
ETM 14 7] 2+1+1 A Fr 0.474(14)
HPQCD 13A [40] 24141 A fr 0.3112(30)
HPQCD 11B [555] 2+1+1 A AMry, fn. 0.3209(26)
HotQCD 14 [120] 241 A r1([45])% 0.4638(41)
xQCD 14 [26] 2+1 A three inputs®™  0.465(4)(9)
HotQCD 11 [713] 241 A fr 0.468(4)
RBC/UKQCD 10A[121]  2+1 A Mo 0.487(9) 0.333(9)
MILC 10 [45]  2+1 C fr 0.3106(8)(14)(4)
MILC 09 [161] 241 A fr 0.3108(15)(F2%)
MILC 09A 17 2+1 C fr 0.3117(6)(*12)
HPQCD 09B [124] 2+1 A three inputs 0.3133(23)(3)
PACS-CS 08 [197] 2+1 A Mg 0.4921(64)(7%)
HPQCD 05B [122]  2+1 A AMy 0.469(7) 0.321(5)
Aubin 04 [123] 241 A AMry 0.462(11)(4) 0.317(7)(3)

Table 77: Results for potential scales at the physical point, cf. Eq. (469). AMy = M2 —

MT(ls)'

# This theory scale was determined in turn from 7 [45].

tion and HISQ staggered quarks in addition to previously generated ensembles with p4
and asqtad staggered quarks. In this calculation, QCD is defined by generating lines of
constant physics with m;/mg = {0.2,0.1,0.05,0.025} and setting the strange quark mass
by requiring that the mass of a fictious 7,5 meson is M, . = \/2Mz — M2. The physi-
cal point is taken to be at m;/m, = 0.037. The physical scale is set by using the value
r1 = 0.3106(8)(18)(4) fm obtained in Ref. [45] by using f, as physical input. In the paper,
this result is shown to be consistent within the statistical and systematic errors with the
choice of fx as physical input. The result 7o/r; = 1.508(5) is obtained by averaging over
12 ensembles at m;/ms = 0.05 with lattice spacings in the range [0.066,0.14] fm. This
result is then used to get 1o = 0.468(4) fm. Finite volume effects have been monitored
with 20 ensembles in the range [3.2,6.1]fm with M, L > 2.6.

RBC/UKQCD 10A [121] uses Ny = 2 + 1 flavours of domain-wall quarks and the
Iwasaki gauge action at two values of the lattice spacing with unitary pion masses in the
approximate range [290,420] MeV. They use the masses of 7 and K meson and of the
) baryon to determine the physical quark masses and the lattice spacings, and so obtain
estimates of the scales 79,71 and the ratio r1/rg from a combined chiral and continuum
extrapolation.

MILC 10 [45] presents a further update of r; with asqtad staggered quark ensembles
with a € {0.045,0.06,0.09} fm. It supersedes MILC 09 [17, 161, 1061].

MILC 09 [161] presents an Ny = 2 + 1 calculation of the potential scales on asqtad
staggered quark ensembles with a € {0.045,0.06,0.09,0.12,0.15,0.18} fm. The continuum
extrapolation is performed by using Goldstone boson pions as light as M, = 224 MeV
(RMS pion mass of 258 MeV). The physical scale is set from f,. The result for 71 obtained
in the published paper [161] is then updated and, therefore, superseded by the conference
proceedings MILC 09A and 09B [17, 1061].
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=241

Ny

HPQCD 09B [124] is an extension of HPQCD 05B [122] and uses HISQ valence quarks
instead of asqtad quarks. The scale r; is obtained from three different inputs. First
r1 = 0.309(4) fm from the splitting of 2S5 and 1S T states as in Ref. [122], second
r1 = 0.316(5) fm from Mp, — M, /2 and third = 0.315(3) fm from the decay con-
stant of the ns. The ficitious n; state is operationally defined by setting quark masses to
the s-quark mass and dropping disconnected diagrams. Its mass and decay constant are
obtained from a partially quenched chiral perturbation theory analysis using the pion and
kaon states from experiment together with various partially quenched lattice data. The
three results are combined to r = 0.3133(23)(3) fm.

PACS-CS 08 [197] presents a calculation of rg in Ny = 2+ 1 QCD by using NP O(a)-
improved clover Wilson quarks and Iwasaki gauge action. The calculation is done at fixed
lattice spacing a = 0.09 fm and is extrapolated to the physical point from (unitary) pion
masses in the range [156,702] MeV. The Ny = 2+ 1 theory is defined by fixing M., M,
and Mgq to 135.0, 497.6, and 1672.25 MeV, respectively. The effective masses of smeared-
local §2 correlators averaged over the four spin polarizations show quite good plateaux.

HPQCD 05B [122] performed the first bottomonium spectrum calculation in full QCD
with Ny = 241 on MILC asqtad configurations and the b quark treated by NRQCD. They
find agreement of the low lying T states with experiment and also compare to quenched
and Ny = 2 results. They determined ro and r; from the splitting of 2S and 1S states.

Aubin 04 [123] presents an Ny = 2+ 1 calculation of the potential scales by using asg-
tad staggered quark ensembles with a = 0.09 and 0.12} fm. The continuum extrapolation
is performed by using Goldstone boson pions as light as m, = 250 MeV. The physical scale
is set from the T 2S-1S and 1P-18 splittings computed with NRQCD by HPQCD [1062].

FIAG2021 ro FIAG2021 r
A FLAG average 4 FLAG average
L ETM 14 — i HPQCD 13A
- —{— HPQCD 11B
T
A FLAG average 4
;l A FLAG average
il HotQCD 14
—— RBC/UKQCD 10A
—a— xQCD 14
HEllH MILC 10
1 HotQCD 11
. ot — MILC 09
——
RBC/UKQCD 10A . MILC 09A
—{ PACS-CS 08 %‘ = HPQCD 09B
— HPQCD 058 z - HPQCD 058
- Aubin 04 = Aubin 04
0.44 0.46 0.48 0.50 fm 030 031 032 0.33 fm

Figure 53: Results for potential scales.

11.6.3 Ratios of scales

It is convenient in many cases to also have ratios of scales at hand. In addition to translat-
ing from one scale to another, the ratios provide important crosschecks between different
determinations. Results on ratios provided by the collaborations are compiled in Tab. 78
and Fig. 54. The details of the computations were already discussed in the previous
sections.
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< > s
S g 2
S £ & ¥
S N
Collaboration Ref. Ny S g & Vo /wo ro/r1 r1/Wo
ETM 21 [43]  2+1+1 A x  *  *  0.82930(65)
HPQCD 13A [40] 2+141 A 4 O K«  0.835(8) 1.789(26)
HotQCD 14 [120] 2+1 A * * * 1.7797(67)
HotQCD 11 [713]  2+1 A x X K 1.508(5)
RBC/UKQCD 10A [121]  2+1 A o o o 1.462(32)#
Aubin 04 [123]  2+1 A o o o© 1.474(7)(18)
Table 78: Results for dimensionless ratios of scales.
#This value is obtained from r;/rg = 0.684(15)(0)(0).
FLAG2023 vV to/wo
b FLAG average
- ETM 21
L HPQCD 13A
0.82 0.83 0.84 0.85
FIAG2021 ro/r1 FIAG2023 ri/wo
A FLAG average
A FLAG average
— HPQCD 13A
HiH HotQCD 11
: — RBC/UKQCD 10A % A FLAG average
Aubin 04 _ I HotQCD 14
1.40 1.45 1.50 1.55 1.65 170 175 1.80 1.85

Figure 54: Results for dimensionless ratios of scales.
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11.7 Averages

Gradient flow scale /Ty

For Ny = 2+ 1+ 1, we have two recent calculations from ETM 21 [43] and CalLat
20A [115], and two less recent ones from MILC 15 [116] and HPQCD 13A [40] fulfilling
the FLAG criteria to enter the average. The latter two and CalLat 20A are based on the
same MILC-HISQ gauge field ensembles, hence we consider their statistical errors to be
100% correlated.

For Ny = 2 + 1, we have three calculations from CLS 16 [117], RBC/UKQCD 14B
[10], and BMW 12A [118] which enter the FLAG average. All three are independent
computations, so there is no correlation to be taken into account. QCDSF/UKQCD 15B
[718] does not contribute to the average, because it is not published. CLS 21 [1059] is a
proceedings contribution based on double the number of ensembles. It is therefore not a
straightforward update and does not supersede CLS 16 [117]. The new result by RQCD
22 [1058] was not published by the date of this web update, January 2023, and is also not
yet included in the average.

Performing the weighted and correlated average we obtain

Ny=2+1+41: o =0.14292(104) fm  Refs. [40, 43, 115, 116],  (505)
Nf=2+1: Vio = 0.14464(87) fm Refs. [10, 117, 118]. (506)

We note that the Ny = 241+ 1 results of staggered fermions and the twisted-mass result
are not well compatible. The resulting stretching factor based on the x? value from the
weighted average for Ny = 2+ 1+ 1 is 1.81. It causes the error of this web update to
be increased compared to FLAG 21. For the Ny = 2 4 1 average the stretching factor is
1.25. We hope that the differences for Ny = 2+ 14 1 get resolved in the near future and
the uncertainty of the average decreases.

Gradient flow scale wq
For Ny =1+ 1+1+1, including QED, there is a single calculation, BMW 20 [119]
with the result

Ny=14+1+1+1+QED: wo = 0.17236(70) fm Ref. [119]. (507)

For Ny = 2+ 1+ 1 we now have four calculations ETM 21 [43], CalLat 20A [115],
MILC 15 [116], and HPQCD 13A [40] entering the FLAG average. The proceedings ETM
20 is superseded by ETM 21. As discussed above in connection with \/#y we correlate the
statistical errors of CalLat 20A, MILC 15, and HPQCD 13A.

For Ny = 2+1, we have three calculations RBC/UKQCD 14B [10], HotQCD 14 [120],
and BMW 12A [118] that enter the FLAG average. These calculations are independent,
and no correlation needs to be taken into account. QCDSF/UKQCD 15B [718] does not
contribute to the average, because it is not published.

Performing the weighted and correlated average, we obtain

Ny=2+1+1:  we=0.17256(103) fm Refs. [40, 43, 115, 116], (508)
Ny =2+1: wo = 0.17355(92) fm Refs. [10, 118, 120]. (509)

As above Ny = 2+ 1+ 1 results of staggered fermions and the twisted-mass result are not
well compatible. The resulting stretching factor based on the x? value from the weighted
average is 1.67. It causes the error of this web update to be slightly increased compared
to FLAG 21. For the Ny = 2 4 1 average the stretching factor is 1.23. We hope that the
differences for Ny = 24 1 + 1 get resolved in the near future and the uncertainty of the
average decreases.
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Isospin-breaking and electromagnetic corrections are expected to be small at the level
of present uncertainties. This is also confirmed by the explicit computation by BMW 12A.
Therefore, we also perform an average over all Ny > 2 + 1 computations and obtain

Ny >2+1: wo = 0.17250(70) fm Refs. [40, 43, 115, 116, 119]. (510)

For the Ny > 2 + 1 average the rescaling factor is 1.45.

Gradient flow scale to/wq
Currently, there is only one calculation of the scale tg/wq available from ETM 21 [43]
which forms the FLAG average

Ny =241+1: to/wo = 0.11969(62) fm Ref. [43]. (511)

Potential scale 1

For Ny =241+ 1, there is currently only one determination of ry from ETM 14 [7],
namely rqg = 0.474(14) fm, which, therefore, represents the FLAG average.

For Ny =2+ 1, all but one calculation fulfill all the criteria to enter the FLAG aver-
age. HotQCD 14 [120] is essentially an update of HotQCD 11 [713] by enlarging the set
of ensembles used in the computation. Therefore, the result from HotQCD 14 supersedes
the one from HotQCD 11 and, hence, we only use the former in the average. The com-
putation of yQCD [26] is based on the configurations produced by RBC/UKQCD 10A
[121], and we, therefore, assume a 100% correlation between the statistical errors of the
two calculations. HPQCD 05B [122] enhances the calculation of Aubin 04 [123] by adding
ensembles at a coarser lattice spacing and using the same discretization for the valence
fermion. Therefore, we consider the full errors (statistical and systematic) on the results
from Aubin 04 and HPQCD 05B to be 100% correlated.

Performing the weighted and correlated average, we obtain

Ny=2+1+41: ro = 0.474(14) fm Ref. [7], (512)
Ny =2+1: ro = 0.4701(36) fm Refs. [26, 120-123]. (513)

We note that for the Ny = 2+ 1 average, the stretching factor based on the x2-value from
the weighted average is 1.14.

Potential scale rq

For Ny = 2 + 1 + 1, there are two works that fulfill the criteria to enter the FLAG
average, namely HPQCD 13A [40] and HPQCD 11B [555]. Both are based on MILC-
HISQ ensembles, the former uses eight, the latter only five. The result from HPQCD
13A supersedes the result from HPQCD 11B (in line with a corresponding statement in
HPQCD 13A) and forms the FLAG average.

For Ny =2+ 1, all the results quoted in Tab. 77 fulfill the FLAG criteria, but not all
of them enter the average. The published result from MILC 09 [161] is superseded by the
result in the proceedings MILC 10 [45], while MILC 09A [17] is a proceedings contribution
and does not enter the average. HPQCD 09B [124] uses HISQ valence quarks instead of
asqtad valence quarks as in HPQCD 05B [122]. Therefore, we have RBC/UKQCD 10A
[121], MILC 10, HPQCD 09B, HPQCD 05B, and Aubin 04 entering the average. However,
since the latter four calculations are based on the aqtad MILC ensembles, we attribute
100% correlation on the statistical error between them and 100% correlation on the sys-
tematic error between HPQCD 05B and Aubin 04 as discussed above in connection with rq.

Performing the weighted and correlated average, we obtain

Ny=2+1+1: 7y = 0.3112(30) fm Ref. [40], (514)
Np=2+1: ry = 0.3127(30) fm Refs. [45, 121-124]. (515)
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We note that for the Ny = 2+ 1 average the stretching factor based on the y?-value from
the weighted average is 1.57.

The scales Myas and fpas

As mentioned in Sec. 11.5.3, these scales have been used only by the MILC and
FNAL/MILC collaborations [18, 19, 149]. The latest numbers from Ref. [18] are fi,s =
153.98(11)(*1,)(12)[4] MeV and M4, = 433.12(14)(7¢")(4)[40] MeV and, hence, we have

Ny=2+1+1: Fips = 153.98(20) MeV Ref. [18], (516)
Ny=2+1+1: Myps = 433.12(30) MeV Ref. [18]. (517)

Dimensionless ratios of scales
We start with the ratio \/to/wq for which two Ny = 2+ 1+ 1 calculations from ETM
21 [43] and HPQCD 13A [40] are available and form the FLAG average

Np=2+1+1: Vi /wo = 0.82934(65) Refs. [40, 43]. (518)

We note that here the error is reduced compared to FLAG 21 by an order of magnitude
due to the very small error of ETM 21. It is further worth noting that the ETM 21
continuum extrapolated value is many standard deviations away from the results at finite
lattice spacings, see Figs. 11-12 in Ref. [43].

For the ratio ro/ry there are three calculations from HotQCD 11 [713], RBC/UKQCD
10A [121], and Aubin 04 [123] available. They all fulfill the FLAG criteria and enter the
FLAG average of this ratio,

Ny=2+1: ro/r1 = 1.5049(74) Refs. [121, 123, 713]. (519)

We note that the stretching factor based on the y2-value from the weighted average is 1.54.

Finally, for the ratio 71 /wg there is one computation from HotQCD 14 [120] for
Ny = 2+ 1+ 1, and one from HPQCD 13A [40] for Ny = 2 + 1 fulfilling the FLAG
criteria, and, hence, forming the FLAG values

Ny=2+1+1: ry Jwo = 1.789(26) Ref. [40], (520)
Ny=2+1: 1wy = 1.7797(67) Ref. [120].  (521)

11.8 Observations and conclusions

Unfortunately the different computations for theory scales reported here are generally not
in good agreement within each set of 2+141 and 2+1 flavour content. As a measure we
list here the stretching factors above one. We remind the reader that their squares are
equal to the x?/dof of the weighted averages. Quantitatively, the stretching factors are for
Ny =2+ 1: 1.3 (for /%), 1.2 (wo), 1.1 (ro), 1.6 (1), 1.5 (ro/r1). For Ny =2+ 141 the
numbers are larger: 1.8 (1/%g), 1.7 (wp) and due to differences which exist between present
days twisted-mass QCD results and staggered results. Of course, the limited number of
large-scale QCD simulations that are available means that there are only a small number of
truly independent determinations of the scales. For example, three out of the five compu-
tations entering our average for wq are based on the same HISQ rooted staggered fermion
configurations and thus their differences are only due to the choice of the physical scale
(mgq vs. fr), the valence quark action (Mobius domain-wall valence fermions vs. staggered
fermions) employed to compute it and different analysis of continuum limit, etc.

Due to the publication of ETM 21, differences between Ny = 2 + 1 and 2+1+1 QCD
are now smaller and (within their errors) in agreement with expectations [162, 163]. The
effect of the charm quark is —0.6(8)% on wy and —1.2(9)% on /¢y as computed from the
FLAG averages. Precision studies of the decoupling of charm quarks predicted generic

304 Updated Feb. 2023



effects of a magnitude of only ~ 0.2% [162, 163] for low energy quantities. Since the FLAG
numbers have changed quite a bit due to one more computation entering the averages,
we are looking forward to further and more precise results to see whether the numbers
hold up over time. In this respect, it is highly desirable for future computations to also
publish ratios such as /#p/wy where numbers are rare so far.

Such ratios of gradient flow scales are also of high interest in order to better under-
stand the specific discretization errors of gradient flow observables. So far, systematic
studies and information on the different contributions (see Sec. 11.5.2 and Ref. [1054]) are
missing. A worrying result is, for example, the scale-setting study of Ref. [171] on ratios
of scales. The authors find indications that the asymptotic ~ a? scaling does not set in
before a =~ 0.05 fm and the a = 0.04 fm data has a relevant influence on their continuum
extrapolations.

A final word concerns the physics scales that all results depend on. While the mass of
the ) baryon is more popular than the leptonic decay rate of the pion, both have system-
atics which are difficult to estimate. For the € baryon it is the contaminations by excited
states and for the decay rates it is the QED effects 6 fi5°QRCP. The uncertainty in V4 is
not relevant at this stage, but means that one is relying more on the standard model being
an accurate low energy theory than in the case of the 2 mass. In principle, excited state
effects are controlled by just going to large Euclidean time, but, in practice, this yields
errors that are too large. One, therefore, performs fits with a very small number of exci-
tations while theoretically there is a multitude of multi-hadron states that are expected
to contribute. For the leptonic decay rate of the pion, the situation is quite reversed,
namely, the problematic QED contributions have a well-motivated theory: chiral pertur-
bation theory. The needed combination of low-energy constants is not accessible from
experiment but its large-N estimate [522] has been (indirectly) confirmed by the recent
computation of §f5°QCP [241]. Unfortunately the same comparison is not so favourable
for the leptonic Kaon decay.
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A List of acronyms

BxPT
BCL
BGL
BK
BSM
BZ
xPT
CKM
CLN
CP
CPT
CVvC
DSDR

DW
DWF
EDM
EFT
EM
ESC
EW
FCNC
FH
FSE
FV
GF
GGOU
GRS
HEX
HISQ
HMYPT

HMC

baryonic chiral perturbation theory
Bourrely-Caprini-Lellouch
Boyd-Grinstein-Lebed
Becirevic-Kaidalov

beyond standard model
Ball-Zwicky

chiral perturbation theory
Cabibbo-Kobayashi-Maskawa
Caprini-Lellouch-Neubert
charge-parity

charge-parity-time reversal
conserved vector current
dislocation suppressing determinant
ratio

domain wall

domain wall fermion

electric dipole moment

effective field theory
electromagnetic

excited state contributions
electroweak

flavor-changing neutral current
Feynman-Hellman

finite-size effects

finite volume

gradient flow
Gambino-Giordano-Ossola-Uraltsev
Gasser-Rusetsky-Scimemi
hypercubic stout

highly-improved staggered quarks
heavy-meson chiral perturbation
theory

hybrid Monte Carlo

HMrSyPT heavy-meson rooted staggered chi-

HQET
IR
is0QCD
LD
LEC
LO
LW
MC
MM
MOM
MS

NDR
nEDM

ral perturbation theory
heavy-quark effective theory
infrared

isospin-symmetric QCD
long distance
low-energy constant
leading order
Liischer-Weisz

Monte Carlo

minimal MOM
momentum subtraction
modified  minimal
scheme

naive dimensional regularization
nucleon electric dipole moment

substraction
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NGB
NLO
NME
NNLO
NP
npHQET

NRQCD
NSPT

OPE
PCAC
PDF
PDG
QCD
QED
QEDy,

QEDL,

RG

RGI
RH
RHQ
RHQA
RI-MOM

SMOM

RMS
SxPT
SD
SF
SIDIS

SM
SSF
SUSY
SW
UT
Uuv

Nambu-Goldstone bosons
next-to-leading order

nucleon matrix elements
next-to-next-to-leading order
nonperturbative

nonperturbative heavy-quark effec-
tive theory

nonrelativistic QCD

numerical stochastic perturbation
theory

operator product expansion
partially-conserved axial current
parton distribution function
particle data group

quantum chromodynamics
quantum electrodynamics
formulation of QED in finite volume
(see [183])

formulation of QED in finite volume
(see [1063])

renormalization group
renormalization group invariant

R. Hill

relativistic heavy-quark

relativistic heavy-quark action
regularization-independent momen-
tum subtraction (also RI/MOM)
regularization-independent
symmetric momentum
RI/SMOM)

root mean square
staggered chiral perturbation theory
short distance

Schrédinger functional
semi-inclusive deep-inelastic scat-
tering

standard model

step-scaling function
supersymmetric
Sheikholeslami-Wohlert

unitarity triangle

ultraviolet

(also



B Appendix

B.1 Parameterizations of semileptonic form factors

In this section, we discuss the description of the ¢?-dependence of form factors, using the
vector form factor fi of B — wlv decays as a benchmark case. Since in this channel
the parameterization of the g?>-dependence is crucial for the extraction of |Vy;| from the
existing measurements (involving decays to light leptons), as explained above, it has been
studied in great detail in the literature. Some comments about the generalization of the
techniques involved will follow.

The vector form factor for B — wfv All form factors are analytic functions of ¢
outside physical poles and inelastic threshold branch points; in the case of B — wlv, the
only pole expected below the Br production region, starting at ¢> =t = (mp +my)?, is
the B*. A simple ansatz for the ¢>-dependence of the B — mfv semileptonic form factors
that incorporates vector-meson dominance is the Beéirevié-Kaidalov (BK) parameteriza-
tion [502], which for the vector form factor reads:

. £
MO = @m0 o) 22

Because the BK ansatz has few free parameters, it has been used extensively to parameter-
ize the shape of experimental branching-fraction measurements and theoretical form-factor
calculations. A variant of this parameterization proposed by Ball and Zwicky (BZ) adds
extra pole factors to the expressions in Eq. (522) in order to mimic the effect of multipar-
ticle states [1064]. A similar idea, extending the use of effective poles also to D — wfv
decays, is explored in Ref. [1065]. Finally, yet another variant (RH) has been proposed by
Hill in Ref. [569]. Although all of these parameterizations capture some known properties
of form factors, they do not manifestly satisfy others. For example, perturbative QCD
scaling constrains the behaviour of f1 in the deep Euclidean region [1066-1068], and an-
gular momentum conservation constrains the asymptotic behaviour near thresholds—e.g.,
Im £y (%) ~ (¢ —t1)?/? (see, e.g., Ref. [1069]). Most importantly, these parameterizations
do not allow for an easy quantification of systematic uncertainties.

A more systematic approach that improves upon the use of simple models for the ¢ be-
haviour exploits the positivity and analyticity properties of two-point functions of vector
currents to obtain optimal parameterizations of form factors [570, 667, 1068, 1070-1073].
Any form factor f can be shown to admit a series expansion of the form

16*) = Gy 2 ot et to)" (523

n=0

where the squared momentum transfer is replaced by the variable

Vie —@ - Vii =1t
(¢ to) = Y24 S (524)
Vie — @+ VIi =1

This is a conformal transformation, depending on an arbitrary real parameter ty < ¢4,
that maps the ¢? plane cut for ¢? >t onto the disk |z(¢?,t9)| < 1 in the z complex plane.
The function B(q?) is called the Blaschke factor, and contains poles and cuts below ¢, —
for instance, in the case of B — 7 decays,

2 o) — z(m%., to)
B(d?) = 2(q°%, to B+ t0) _ 2 02y, 9
(Q) l—Z(qz,tO)Z(mQB*7t0) Z(q ,Mp ) (5 5)
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Finally, the quantity ¢(q?,to), called the outer function, is some otherwise arbitrary func-
tion that does not introduce further poles or branch cuts. The crucial property of this
series expansion is that the sum of the squares of the coefficients

= 1 dz
2 2
=— ¢ — |B 526
> at =5 § ZIBESEIP, (526)
n=0
is a finite quantity. Therefore, by using this parameterization an absolute bound to the
uncertainty induced by truncating the series can be obtained. The aim in choosing ¢ is to
obtain a bound that is useful in practice, while (ideally) preserving the correct behaviour
of the form factor at high ¢? and around thresholds.

The simplest form of the bound would correspond to Y.~ a2 = 1. Imposing this
bound yields the following “standard” choice for the outer function

o(q°, to) Zm (\/t+ -+ \/ty — to)
- , (527)
< (Vi=re i) (iR vi) T et

where t_ = (mp —m;,)?, and x;- (0) is the derivative of the transverse component of the
polarization function (i.e., the Fourier transform of the vector two-point function) II,, (¢)
at Euclidean momentum Q? = —¢? = 0. It is computed perturbatively, using operator
product expansion techniques, by relating the B — wfv decay amplitude to {v — Bw
inelastic scattering via crossing symmetry and reproducing the correct value of the in-
clusive /v — X, amplitude. We will refer to the series parameterization with the outer
function in Eq. (527) as Boyd, Grinstein, and Lebed (BGL). The perturbative and OPE
truncations imply that the bound is not strict, and one should take it as

N
Y ar S, (528)
n=0

where this holds for any choice of N. Since the values of |z| in the kinematical region of
interest are well below 1 for judicious choices of tg, this provides a very stringent bound
on systematic uncertainties related to truncation for N > 2. On the other hand, the outer
function in Eq. (527) is somewhat unwieldy and, more relevantly, spoils the correct large
¢? behaviour and induces an unphysical singularity at the Br threshold.

A simpler choice of outer function has been proposed by Bourrely, Caprini and Lellouch
(BCL) in Ref. [1069], which leads to a parameterization of the form

. N
fr(d?) = ey Zai(to)z(qato)n. (529)
n=0

This satisfies all the basic properties of the form factor, at the price of changing the
expression for the bound to

N
> Bj(to)a] (to)ayf (to) < 1. (530)
J,k=0

The constants Bj, can be computed and shown to be |Bji| < O(1072) for judicious
choices of ty; therefore, one again finds that truncating at N > 2 provides sufficiently
stringent bounds for the current level of experimental and theoretical precision. It is
actually possible to optimize the properties of the expansion by taking

to = topt = (mp +mg)(y/mp — \/”Tw)Qv (531)
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which for physical values of the masses results in the semileptonic domain being mapped
onto the symmetric interval |z| < 0.279 (where this range differs slightly for the B and
B decay channels), minimizing the maximum truncation error. If one also imposes that
the asymptotic behaviour Im f, (¢?) ~ (¢ — t4)/? near threshold is satisfied, then the
highest-order coefficient is further constrained as

T G ) VAT
ay = Z(fl) na, . (532)
n=0

Substituting the above constraint on aj into Eq. (529) leads to the constrained BCL
parameterization

1 = n
(@) = s S af [ = ()N L] (533)

1 —q¢%/m3. ;) N
which is the standard implementation of the BCL parameterization used in the literature.
Parameterizations of the BGL and BCL kind, to which we will refer collectively as
“z-parameterizations”, have already been adopted by the BaBar and Belle collabora-
tions to report their results, and also by the Heavy Flavour Averaging Group (HFAG,
later renamed HFLAV). Some lattice collaborations, such as FNAL/MILC and ALPHA,
have already started to report their results for form factors in this way. The emerging
trend is to use the BCL parameterization as a standard way of presenting results for
the ¢?-dependence of semileptonic form factors. Our policy will be to quote results for
z-parameterizations when the latter are provided in the paper (including the covariance
matrix of the fits); when this is not the case, but the published form factors include the full
correlation matrix for values at different ¢2, we will perform our own fit to the constrained
BCL ansatz in Eq. (533); otherwise no fit will be quoted. We however stress the impor-
tance of providing, apart from parameterization coefficients, values for the form factors
themselves (in the continuum limit and at physical quark masses) for a number of values
of g2, so that the results can be independently parameterized by the readers if so wished.

The scalar form factor for B — wfrv The discussion of the scalar B — 7 form
factor is very similar. The main differences are the absence of a constraint analogue to
Eq. (532) and the choice of the overall pole function. In our fits we adopt the simple
expansion:

fo(g?) = Z ad 2", (534)

We do impose the exact kinematical constraint fi(0) = fo(0) by expressing the a%,_;
coefficient in terms of all remaining a} and al coefficients. This constraint introduces
important correlations between the a;" and a2 coefficients; thus only lattice calculations
that present the correlations between the vector and scalar form factors can be used in
an average that takes into account the constraint at ¢ = 0.

Finally we point out that we do not need to use the same number of parameters for the
vector and scalar form factors. For instance, with (N = 3, N = 3) we have aj, , and
ag,l, while with (N = 3, N° = 4) we have aéﬁl,z and a8’1_2 as independent fit parameters.
In our average we will choose the combination that optimizes uncertainties.

Extension to other form factors The discussion above largely extends to form

factors for other semileptonic transitions (e.g., Bs — K and By — DE:)), and semilep-
tonic D and K decays). Details are discussed in the relevant sections.
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A general discussion of semileptonic meson decay in this context can be found, e.g., in
Ref. [1074]. Extending what has been discussed above for B — 7, the form factors for a
generic H — L transition will display a cut starting at the production threshold ¢, and
the optimal value of ¢y required in z-parameterizations is to = t4 (1 —+/1 — t_/t;) (where
ty = (mg £ mg)?). For unitarity bounds to apply, the Blaschke factor has to include
all sub-threshold poles with the quantum numbers of the hadronic current — i.e., vector
(resp. scalar) resonances in B scattering for the vector (resp. scalar) form factors of
B — 7, B; — K, or A, — p; and vector (resp. scalar) resonances in B.7 scattering for the
vector (resp. scalar) form factors of B — D or Ay — A..%? Thus, as emphasized above,
the control over systematic uncertainties brought in by using z-parameterizations strongly
depends on implementation details. This has practical consequences, in particular, when
the resonance spectrum in a given channel is not sufficiently well-known. Caveats may also
apply for channels where resonances with a nonnegligible width appear. A further issue is
whether t; = (mg+m L)2 is the proper choice for the start of the cut in cases such as By —
K/lv and B — D/{v, where there are lighter two-particle states that project on the current
(B, and B..,m for the two processes, respectively).”’ In any such situation, it is not clear
a priori that a given z-parameterization will satisfy strict bounds, as has been seen, e.g., in
determinations of the proton charge radius from electron-proton scattering [1075-1077].

The HPQCD collaboration pioneered a variation on the z-parameterization approach,
which they refer to as a “modified z-expansion,” that is used to simultaneously extrap-
olate their lattice simulation data to the physical light-quark masses and the continuum
limit, and to interpolate/extrapolate their lattice data in ¢?. This entails allowing the
coefficients a,, to depend on the light-quark masses, squared lattice spacing, and, in some
cases the charm-quark mass and pion or kaon energy. Because the modified z-expansion is
not derived from an underlying effective field theory, there are several potential concerns
with this approach that have yet to be studied. The most significant is that there is
no theoretical derivation relating the coefficients of the modified z-expansion to those of
the physical coefficients measured in experiment; it therefore introduces an unquantified
model dependence in the form-factor shape. As a result, the applicability of unitarity
bounds has to be examined carefully. Related to this, z-parameterization coefficients im-
plicitly depend on quark masses, and particular care should be taken in the event that
some state can move across the inelastic threshold as quark masses are changed (which
would in turn also affect the form of the Blaschke factor). Also, the lattice-spacing depen-
dence of form factors provided by Symanzik effective theory techniques may not extend
trivially to z-parameterization coefficients. The modified z-expansion is now being uti-
lized by collaborations other than HPQCD and for quantities other than D — wfv and
D — Kl{lv, where it was originally employed. We advise treating results that utilize
the modified z-expansion to obtain form-factor shapes and CKM matrix elements with
caution, however, since the systematics of this approach warrant further study.

Choice of form-factor basis for chiral-continuum extrapolations For
pseudoscalar-to-pseudoscalar transitions Py — P, (such as B — 7 or By — K), the
chiral and continuum extrapolations have often been performed in a different basis f|, f1
given by [1078]

(P2(p")|[V*|Pi(p)) = V2My[v* f (E2) + P/l fL(E2)]. (535)

Here, v* = p#/M; is the initial-meson four-velocity, p/f = p't — (v - p')vH is the projec-
tion of the final-meson momentum in the direction perpendicular to v*, and the form

89 A more complicated analytic structure may arise in other cases, such as channels with vector mesons in
the final state. We will however not discuss form-factor parameterizations for any such process.

9OWe are grateful to G. Herdoiza, R.J. Hill, A. Kronfeld and A. Szczepaniak for illuminating discussions on
this issue.

312



factors are taken to be functions of Fy = v-p’ (the energy of the final-state meson in the
initial-meson rest frame). After the chiral and continuum extrapolations, the standard
form factors are then constructed as the linear combinations

B 2M,
- MP - Mj
1

2
= — Es) + (M — E Es)|. 537
f+(a%) V2, [fu( 2) + (M 2) fi( 2)] (537)
The decomposition (535) is motivated by heavy-meson chiral perturbation theory and is
also convenient for the extraction of the form factors from the correlation functions. For
example, for B — 7, heavy-meson chiral perturbation theory predicts, at leading-order
in both the chiral and the heavy-quark expansion,

fo(@®) [(My — Eo) fy(E2) + (B — M) fL(E2)], (536)

fL(Er) = %%, (538)
fy(E) = fi (539)

where Ag« = Mp+« — Mp. For a general transition P, — P, the chiral and continuum
extrapolations were therefore commonly performed by fitting functions of the form

fL(E2) = ﬁ [} (540)

and

1

fH(EQ) = E2 T A” |::| or fH(EQ) = l::l (541)
with A} = M- — My and A = My+ — My, where M;- and Mg+ denote the masses of
the bound states with J” = 1= and J¥ = 0% that couple to the weak current, and the
ellipsis in the brackets denote terms describing the remaining dependence on the quark
masses, lattice spacing, and kinematics. The terms in front of the brackets introduce poles
at By = —A, which corresponds to ¢° ~ M_?P for large M;. Depending on the process,
there may be no QCD-stable bound state with J¥ = 0%, in which case this pole factor
for fj is usually omitted.

A problem with the above prescription is that, for finite heavy-quark mass, the J*
quantum numbers of the poles appearing in the form factors are definite only in the he-
licity basis of the form factors, with J¥ =1~ for f, and J¥ = 0 for fy. In particular, the
form factor f, being a linear combination of f, and fy, also has a pole at the lower mass
M, - that is neglected when using the above functions. The alternative is to perform the
chiral-continuum extrapolations for f; and fy using

fo(Es) = ﬁ H (542)
and
Fo(Es) = EQiAOH or  folBs) = H (543)

where AL = M;- — My and Ay = My+ — M; now truly correspond to the lowest pole in
each form factor. The authors of Ref. [575] found that this method (in the case of By — K
form factors) yields significantly different results for the extrapolated fy when compared
to extrapolating f), fi and then reconstructing f; and fo. Lattice determinations of
the form factors based on extrapolations of f|, f1 may therefore have an uncontrolled
systematic error, and directly extrapolating f; and fy appears to be the better choice.
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C Notes

In the following Appendices we provide more detailed information on the simulations used
to calculate the quantities discussed in Secs. 3-10. We present this information only for
results that are new w.r.t. FLAG 19. For all other results the information is available
in the corresponding Appendices B.1-8 in FLAG 19 [4] and B.1-7 of FLAG 16 [3]. The
complete information is available on the FLAG website http://flag.unibe.ch [5].

C.1 Notes to Sec. 3 on quark masses

Collab. Ref. Ny a [fm] Description

ETM 21A [6] 2+1+1 0.07, 0.08, 0.09 Scale set from wyg.

Table 79: Continuum extrapolations/estimation of lattice artifacts in determinations of 1,4,
m and, in some cases m, and mg, with Ny =2+ 1+ 1 quark flavours.

Collab. Ref. Ny a [fm] Description

ALPHA 19 [9] 2+1 0.05, 0.064, 0.076, 0.086

Table 80: Continuum extrapolations/estimation of lattice artifacts in determinations of 1,4,
ms and, in some cases m,, and mg, with Ny = 2 4+ 1 quark flavours.

Collab. Ref. Ny My min [MeV] Description

ETM 21A [6] 24+1+1 physical

Table 81: Chiral extrapolation/minimum pion mass in determinations of m,g4, ms and, in
some cases, m, and mgq, with Ny = 2+ 1+ 1 quark flavours.

Collab. Ref. Ny My min [MeV] Description

ALPHA 19 [9] 2+1 198

Table 82: Chiral extrapolation/minimum pion mass in determinations of myg4, ms and, in
some cases m,, and my, with Ny = 2 + 1 quark flavours.
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Collab. Ref. Ny L [fm)] My minL Description

ETM 21A [6] 241+1 2.5 5.6 3.6

Table 83: Finite-volume effects in determinations of m,g, ms and, in some cases m, and my,
with Ny = 2 + 1 + 1 quark flavours.

Collab. Ref. Ny L [fm] My minL Description

ALPHA 19 [9] 2+1 2.4 - 4.1 > 4.0

Table 84: Finite-volume effects in determinations of m,g, ms and, in some cases m, and my,
with Ny = 2 + 1 quark flavours.

Collab. Ref. Ny Description

ETM 21A [6] 24141 Nonperturbative (RI/MOM)

Table 85: Renormalization in determinations of m,g4, ms and, in some cases m,, and mg, with
Ny =2+ 1+ 1 quark flavours.

Collab. Ref. Ny Description

ALPHA 19 9] 2+1 Schrodinger functional.

Table 86: Renormalization in determinations of m,g, ms and, in some cases m,, and mg, with
Ny =2+ 1 quark flavours.
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Collab. Ref. Ny a [fm] Description

ETM 21A [6] 24+1+1 0.07, 0.08, 0.09 Scale set from wo. Twisted
mass action for charm quarks.

HPQCD 20A [25] 24141 0.03, 0.042,0.06, 0.09, Scale set from wo and f.. HISQ
0.12 action for charm quarks.

Table 87: Continuum extrapolations/estimation of lattice artifacts in the determinations of
me with Ny = 2 + 1 + 1 quark flavours.

Collab. Ref. Ny a [fm] Description

ALPHA 21 [29] 241 0.039 to 0.087 fm Wilson-clover action for the
charm quark.

Petreczky 19 [28] 2+1 0.025 to 0.11 fm HISQ action for the charm
quark. Scale set from r; param-
eter of heavy quark potential
and fr.

Table 88: Continuum extrapolations/estimation of lattice artifacts in the determinations of
me with Ny = 2 + 1 quark flavours.

Collab. Ref. Ny M min [MeV] Description
ETM 21A [6] 24141 physical
HPQCD 20A [25] 2+1+1 physical

Table 89: Chiral extrapolation/minimum pion mass in the determinations of m, with Ny =
2 4+ 1+ 1 quark flavours.
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Collab. Ref. Ny M min [MeV] Description

ALPHA 21 [29] 2+1 198

Petreczky 19 [28] 2+1 161

Table 90: Chiral extrapolation/minimum pion mass in the determinations of m, with Ny =
2 4+ 1 quark flavours.

Collab. Ref. Ny L [fm] Mz minL Description
ETM 21A [6] 24141 2.5 5.6 3.6
HPQCD 20A [25] 241+1 1.9 - 5.76 3.8

Table 91: Finite-volume effects in the determinations of m, with Ny = 24141 quark flavours.

Collab. Ref. Ny L [fm] My min L Description
ALPHA 21 [29] 241 2.5-4.0 4.2
Petreczky 19 [28} 241 1.6 — 5.2 4.2

Table 92: Finite-volume effects in the determinations of m. with Ny = 2 4 1 quark flavours.

Collab. Ref. Ny Description
ETM 21A [6] 2+1+1 Nonperturbative (RI/MOM)
HPQCD 20A [25] 24+1+1 Nonperturbative (RI/SMOM)

Table 93: Renormalization in the determinations of m. with Ny = 2 4+ 1 + 1 quark flavours.

Collab. Ref. Ny Description
ALPHA 21 [29] 2+1 Schrédinger functional
Petreczky 19 [28] 2+1 not required

Table 94: Renormalization in the determinations of m. with Ny = 2 4 1 quark flavours.
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Collab. Ref. Ny a [fm] Description

HPQCD 21 [31] 24141 0.03, 0.042, 0.06, 0.09 Scale set from wo and fr. HISQ
action for charm quarks.

Table 95: Continuum extrapolations/estimation of lattice artifacts in the determinations of
my with Ny = 2 41+ 1 quark flavours.

Collab. Ref. Ny a [fm] Description

Petreczky 19 (28] 2+1 0.025 to 0.11 fm HISQ action for the charm
quark. Scale set from r; param-
eter of heavy quark potential
and fr.

Table 96: Continuum extrapolations/estimation of lattice artifacts in the determinations of
my with Ny = 2 + 1 quark flavours.

Collab. Ref. Ny M min [MeV]

HPQCD 21 [31] 24+1+1 physical

Table 97: Chiral extrapolation/minimum pion mass in the determinations of m; with Ny =
2 4+ 1+ 1 quark flavours.

Collab. Ref. Nf M-/r,min [MQV]

Petreczky 19 [28] 2+1 161

Table 98: Chiral extrapolation/minimum pion mass in the determinations of m; with Ny =
2 + 1 quark flavours.
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Collab. Ref. Ny L [fm] Mz min L

HPQCD 21 [31] 2+1+1 1.9 - 5.76 3.8

Table 99: Finite-volume effects in the determinations of my, with Ny = 24141 quark flavours.

Collab. Ref. Ny L [fm)] My minL

Petreczky 19 [28] 2+1 1.6 - 5.2 4.2

Table 100: Finite-volume effects in the determinations of m; with Ny = 2 + 1 quark flavours.

Collab. Ref. Ny Description

ETM 21A [6] 2+1+1 Nonperturbative (RI/MOM)

Table 101: Lattice renormalization in the determinations of m; with Ny = 2+ 1+ 1 flavours.

Collab. Ref. Ny Description

Petreczky 19 [28] 2+1 not required

Table 102: Lattice renormalization in the determinations of m; with Ny = 2 + 1 flavours.
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C.2 Notes to Sec. 4 on |V,,| and |V,

Collab. Ref. Ny a [fm] Description

FNAL/MILC 18 [36] 2+1+1 0.042, 0.06, 0.09, 0.12, 0.15 HISQ quark action. Relative scale
through ;.

PACS 19 [297] 2+1 0.085 Nonperturbative O(a) clover quark ac-
tion. Scale set from =-baryon mass.

PACS 22 [296] 2+1 0.085, 0.063 Nonperturbative O(a) clover quark ac-

tion. Scale set from =-baryon mass.

Table 103: Continuum extrapolations/estimation of lattice artifacts in the determinations of

f+(0).

Collab. Ref. Ny My min [MeV] Description

FNAL/MILC 18 [36] 24141 144rMs (135x,5) Chiral interpolation through NLO SU(3)
PQ staggered xPT with continuum xPT at
NNLO. Lightest Nambu-Goldstone mass is
135 MeV and lightest RMS mass is 144 MeV
at the same gauge ensemble with a ~ 0.06 fm.

PACS 19 [297] 2+1 135 Physical point simulation at a single pion
mass 135 MeV.
PACS 22 [296] 241 135 Physical point simulation at a single pion

mass 135 MeV.

Table 104: Chiral extrapolation/minimum pion mass in determinations of f4(0). The sub-
scripts RMS and 7,5 in the case of staggered fermions indicate the root-mean-square mass
and the Nambu-Goldstone boson mass, respectively.

Collab. Ref. Ny L [fm)] My min L Description

FNAL/MILC 18 [36] 24141 2.6-5.8 4.2rMs(3.9x,5) The values correspond to
Mﬂ—,RMs = 144 MeV and
M 5 = 135 MeV, respectively.

PACS 19 [297] 2+1 10.9 7.5
PACS 22 [296] 2+1 10.9 7.5

Table 105: Finite-volume effects in determinations of f(0). The subscripts RMS and =, 5 in
the case of staggered fermions indicate the root-mean-square mass and the Nambu-Goldstone
boson mass, respectively.
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Collab. Ref. Ny a [fm] Description

ETM 21 [43] 24141 0.07, 0.08, 0.09 Wilson-clover twisted mass quark ac-
tion. Relative scale through gradi-
ent flow scale wg and absolute scale
through f.

CalLat 20 [42] 2+1+1 0.06, 0.09, 0.12, 0.15 Mobius domain-wall valence quarks
on gradient-flowed HISQ ensembles.
Relative scale through the gradient
flow scale wg.

Table 106: Continuum extrapolations/estimation of lattice artifacts in determinations of
Jr/fx for Ny =241+ 1 simulations.

Collab. Ref. Ny Mz min [MeV] Description

ETM 21 [43] 24141 134 Chiral extrapolation based on NLO SU(2)
xPT.

CalLat 20 [42] 2+1+1 157 Chiral extrapolation based on NNLO SU(3)

xPT. We quote the root-mean-square
(RMS) mass of the valence and valence-
sea pions as Mr min. The smallest mass is
176 MeV for the HISQ sea pions, which do
not enter until NNLO in the xPT expres-
sion.

Table 107: Chiral extrapolation/minimum pion mass in determinations of fx/fr for Ny =
2+ 1+ 1 simulations.

Collab. Ref. Ny L [fm] My minL Description

ETM 21 [43] 24+1+1 2.0-5.6 3.8 Three different volumes at M, =
253 MeV and a = 0.08 fm.

CalLat 20 [42] 24141 24-7.2 3.8 Three different volumes at M, =

220 MeV and a = 0.12 fm.

Table 108: Finite-volume effects in determinations of fx/fr for Ny =2+ 1+ 1.

321



C.3 Notes to section 5 on low-energy constants

Collab. Ref. Ny a [fm)] Description

ETM 21A  [6] 2+141 0.095, 0.082, 0.069 Scale set by fr = 130.4(2) MeV.
ETM 21 [43] 24+1+1 0.092, 0.080, 0.068 Scale set by fr = 130.4(2) MeV.
xQCD 21 [353] 2+1 0.063, 0.071, 0.084, 0.114 Same configs. as RBC/UKQCD 15E.
Wang 16 [355] 2+1 0.113 Same configs. as RBC/UKQCD 08A.
ETM 20A  [352] 2 0.0914(15) Single lattice spacing.

Table 109: Continuum extrapolations/estimation of lattice artifacts in determinations of the
SU(2) low-energy constants X, F, {4, {g, and SU(3) low-energy constants g, Fp.

Collab. Ref. Ny a[fm] or ™! [GeV] Description

Gao 21 [377] 241 0.04, 0.06, 0.076 One lattice spacing at phys. pt.
xQCD 20 [378] 2+1 0.083-0.195 One lattice spacing below 0.1 fm.
Feng 19 [379] 2+1 1.015, 1.378, 1.730 a > 0.1 fm.

Table 110: Continuum extrapolations/estimation of lattice artifacts in determinations of the
low-energy constants related to the vector form factor of the pion.

Collab. Ref. Ny a [fm] Description

ETM 20B  [394] 2 0.0914(15) Single lattice spacing.
Mai 19 [393] 2 0.12 Single lattice spacing.
Culver 19  [392] 2 0.12 Single lattice spacing.

Table 111: Continuum extrapolations/estimation of lattice artifacts in determinations of the
low-energy constants related to w7 scattering.
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Collab. Ref. Ny a [fm] Description

ETM 18B [100] 2+1+1 0.089, 0.082, 0.062 Same configuration with ETM 17G.
ETM 17G [101] 2+1+1 0.089, 0.082, 0.062 Scale set by the Sommer parameter rg.
PACS-CS 13 [346] 241 0.09 Single lattice spacing.

Fu 11A [401] 2+1 0.15 Single lattice spacing.

NPLQCD 07B  [403] 2+1 0.09, 0.125 Configurations generated by MILC.
NPLQCD 06B  [351] 2+1 0.125 Single lattice spacing.

Table 112: Continuum extrapolations/estimation of lattice artifacts in determinations of the
low-energy constants related to wK scattering.

Collab. Ref. Ny Mz mgmin [MeV] Description
ETM 21A  [6] 24141 134 4 pion masses in [134, 346] MeV.
ETM 21 [43] 24141 135 4 pion masses in [134, 346] MeV.
xQCD 21  [353] 241 139 3 pion masses with different a.
Wang 16 [355] 2+1 220 8 (3) pion masses in val (sea) sector.
ETM 20A  [352] 2 132

Table 113:  Chiral extrapolation/minimum pion mass in determinations of the SU(2) low-

energy constants ¥, F, /4, 0, and SU(3) low-energy constants g, Fp.

Collab. Ref. M mgmin [MeV] Description
Gao 21 [377] 140
xQCD 20  [378] 139
Feng 19 [379] ~ 135
Table 114:  Chiral extrapolation/minimum pion mass in determinations of the low-energy

constants related to the vector form factor of the pion.
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Collab. Ref. Ny M mpmin [MeV] Description

ETM 20B  [394] 2 134 2 pion masses.
Mai 19 393] 2 224
Culver 19  [392] 2 226 2 pion masses.

Table 115:  Chiral extrapolation/minimum pion mass in determinations of the low-energy
constants related to w7 scattering.

Collab. Ref. Ny Mz mpmin [MeV] Description

ETM 18B [100] 2+1+1 276 5 pion masses in [230, 450] MeV.
ETM 17G [101] 2+1+1 276 5 pion masses in [230, 450] MeV.
PACS-CS 13 [346] 2+1 166 5 pion masses in [166,707] MeV.
Fu 11A [401] 2+1 590 (RMS) 6 valence pion masses.
NPLQCD 07B  [403] 2+1 413 (RMS) 4 pion masses.

NPLQCD 06B  [351] 2+1 488 (RMS) 4 pion masses.

Table 116: Chiral extrapolation/minimum pion mass in determinations of the low-energy
constants related to K scattering.

Collab. Ref. Ny L [fm] #V
ETM 21A  [6] 24+1+1 5.52 2
ETM 21 [43] 24141 5.55 2
xQCD 21 [353] 2+1 5.4 2 at physical point.
Wang 16 [355] 2+1 2.7 1
ETM 20A  [352] 2 4.39 2
Table 117:  Finite-volume effects in determinations of the SU(2) low-energy constants

¥, F, 14,0, and SU(3) low-energy constants g, Fp.
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Collab.  Ref. N L [fm)] #V
Gao 21  [377] 241 4.86 1
XQCD 20 [378] 241 6.24 3
Feng 19 [379] 2+1 6.22 3

Table 118:

Finite-volume effects

the vector form factor of the pion.

in determinations of the low-energy constants related to

Collab. Ref. N; L [fm] 4V
ETM 20B  [394] 2 2.92 2
Mai 19 393 2 2.88 1
Culver 19 [392] 2 2.88 3

Table 119: Finite-volume effects in determinations of the low-energy constants related to wm

scattering.
Collab. Ref. Ny L [fm] #V
ETM 18B [100] 2+1+4+1 2.832 2
ETM 17G [101] 2+1+1 2.832 2
PACS-CS 13 [346] 241 2.9 1
Fu 11A [401] 241 2.4 1
NPLQCD 07B  [403] 241 2.52 2
NPLQCD 06B  [351] 241 2.5 2

Table 120: Finite-volume effects in determinations of the low-energy constants related to
w K scattering.
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C.4 Notes to Sec. 6 on kaon mixing
C.4.1 K — nrm decay amplitudes

Collab. Ref. Ny a [fm] Description
RBC/UKQCD 20 [431] 2+1 0.143 Single lattice spacing.
RBC/UKQCD 15G  [432] 2+1 0.143 Single lattice spacing.

RBC/UKQCD 15F  [50] 241 0.114,0.084 Combined chiral-continuum fit based on two values of
the lattice spacing. Systematic error associated with
the extrapolation to the continuum limit is negligible
with respect to the statistical errors.

Table 121: Continuum extrapolations/estimation of lattice artifacts in determinations of the
K — 7 dec